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Abstract

Schelling’s model is an influential model that reveals how in-
dividual perceptions and incentives can lead to racial segre-
gation. Inspired by a recent stream of work, we study wel-
fare guarantees and complexity in this model with respect to
several welfare measures. First, we show that while maximiz-
ing the social welfare is NP-hard, computing an assignment
with approximately half of the maximum welfare can be done
in polynomial time. We then consider Pareto optimality and
introduce two new optimality notions, and establish mostly
tight bounds on the worst-case welfare loss for assignments
satisfying these notions. In addition, we show that for trees, it
is possible to decide whether there exists an assignment that
gives every agent a positive utility in polynomial time; more-
over, when every node in the topology has degree at least 2,
such an assignment always exists and can be found efficiently.

1 Introduction
Schelling’s model was proposed half a century ago to il-
lustrate how individual perceptions and incentives can lead
to racial segregation, and has been used to study this
phenomenon in residential metropolitan areas in particular
(Schelling 1969, 1971). The model is rather simple to de-
scribe. There are a number of agents, each of whom belongs
to one of two predetermined types and occupies a location;
in his original work, Schelling assumed that the locations
are cells of a rectangular board, which can be represented as
a grid graph.1 Every agent would like to occupy a node on
the graph such that the fraction of other agents of the same
type in the neighborhood of that node is at least a prede-
fined tolerance threshold τ ∈ [0, 1]. If this condition is not
met for an agent, then the agent can relocate to a randomly
chosen empty node on the grid. One of the most surprising
findings of Schelling is that, starting from a random initial
assignment of the agents to the nodes of the grid, the dy-
namics may converge to segregated assignments even when
τ ≈ 1/3, contrasting the intuition that segregation should
happen only when τ ≥ 1/2.

Throughout the years, hundreds of researchers in soci-
ology and economics reconfirmed Schelling’s observations
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1Schelling also considered a variant in which the locations form
a line graph.

and made similar ones for numerous variants of the model
using computer simulations—see, e.g., (Clark and Fossett
2008). More recent work, mainly in computer science, per-
formed rigorous analyses of such variants, some of which
are quite close to the original model, and showed that the dy-
namics according to which the agents relocate converges to
assignments in which the agents form large monochromatic
regions (that is, subgraphs consisting only of agents of the
same type); in addition, this line of work established bounds
on the size of these regions. We refer to the papers (Polli-
cott and Weiss 2001; Young 2001; Zhang 2004; Pancs and
Vriend 2007; Brandt et al. 2012; Barmpalias, Elwes, and
Lewis-Pye 2014, 2015; Bhakta, Miracle, and Randall 2014;
Immorlica et al. 2017) for results of this flavor.

While most of the literature on Schelling’s model has fo-
cused on properties related to segregation between the two
types, segregation itself is only one side of the story, espe-
cially when we allow different, possibly more complex lo-
cation graphs. Given that the agents are willing to relocate
to be close to other agents of the same type, another natural
question is whether the resulting assignments satisfy some
sort of efficiency. This has been considered in part by a re-
cent array of papers (Chauhan, Lenzner, and Molitor 2018;
Echzell et al. 2019; Elkind et al. 2019; Agarwal et al. 2020;
Bilò et al. 2020; Chan, Irfan, and Than 2020; Kanellopou-
los, Kyropoulou, and Voudouris 2020), which have studied
Schelling’s model from a game-theoretic perspective. In par-
ticular, instead of randomly relocating, the agents are as-
sumed to be strategic and each of them aims to select a lo-
cation that maximizes her utility, defined as the fraction of
same-type agents in her neighborhood.

Besides questions related to the existence and computa-
tion of equilibria (i.e., assignments in which no agent has an
incentive to relocate in order to increase her utility), the au-
thors of some of the aforementioned papers have also stud-
ied the efficiency of assignments in terms of social welfare,
defined as the total utility of the agents. For this objective,
these authors have shown that computing assignments (not
necessarily equilibria) maximizing the social welfare is NP-
hard under specific assumptions about the graph and the be-
havior of the agents. Furthermore, they established several
bounds on the worst-case ratio between the maximum social
welfare (achieved by any possible assignment) and the so-
cial welfare of the best or worst equilbrium assignment, also
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known as the price of stability (Anshelevich et al. 2008) and
the price of anarchy (Koutsoupias and Papadimitriou 1999),
respectively. These ratios quantify the welfare that is lost
due to the agents aiming to maximize their individual utili-
ties rather than their collective welfare.

Inspired by this very recent stream of work, we study wel-
fare guarantees and complexity in Schelling’s model, not
only with respect to the social welfare, but also to different
notions of efficiency, such as Pareto optimality and natural
variants of it.

1.1 Our Contribution

Our setting consists of n agents partitioned into two types,
and a location graph known as the topology; agents of the
same type are “friends”, and agents of different types are
“enemies”. Each agent is assigned to a single node of the
graph, and the utility of the agent is defined as the fraction
of her friends among the agents in her neighborhood.

We start by considering the social welfare. We show that
for any topology and any distribution of the agents into
types, there always exists an assignment with social wel-
fare at least n/2 − 1, and provide a polynomial-time algo-
rithm for computing such an assignment. Since the social
welfare never exceeds n, our algorithm produces an assign-
ment with at least approximately half of the maximum social
welfare. We complement this result by showing that maxi-
mizing the social welfare is NP-hard, even when the topol-
ogy is a graph such that the number of nodes is equal to the
number of agents. This improves upon previous hardness re-
sults of Elkind et al. (2019) and Agarwal et al. (2020) whose
reductions use instances with “stubborn agents” (who are
assigned to fixed nodes in advance and cannot move), and
either a topology with the number of nodes larger than the
number of agents, or at least three types of agents instead of
just two. These results are presented in Section 3.

Even if an assignment does not maximize the social wel-
fare, it does not mean that the assignment cannot be optimal
in other senses. With this is mind, we next turn our attention
to different notions of optimality. In particular, we consider
the well-known notion of Pareto optimality (PO), according
to which it should not be possible to improve the utility of
an agent without decreasing that of another agent. We also
introduce two variants of PO, called utility-vector optimal-
ity (UVO) and group-welfare optimality (GWO), which are
particularly appropriate for Schelling’s model but may be of
interest in other settings as well. Informally, an assignment
is UVO if we cannot improve the sorted utility vector of the
agents, and GWO if it is not possible to increase the total
utility of one type of agents without decreasing that of the
other type. We prove several results on these three notions
of optimality. First, while UVO and GWO imply PO by def-
inition, we show that they are not implied by each other or
by PO. Then, for each X ∈ {PO,UVO,GWO}, we estab-
lish mostly tight bounds on the price of X , which is an ana-
logue of the price of anarchy: the price of X is defined as
the worst-case ratio between the maximum social welfare
(among all assignments) and the minimum social welfare

among all assignments satisfying X .2 These results can be
found in Section 4.

Finally, another important measure of efficiency is the
number of agents who receive a positive utility in the assign-
ment. Even though only requiring the utility to be nonzero
seems minimal, there exist simple instances in which not all
of the agents can be guaranteed to obtain a positive utility.
We show that for trees, it is possible to decide in polynomial
time whether there exists an assignment such that all agents
receive a positive utility. In addition, we prove that it is al-
ways possible to guarantee a positive utility for at least half
of the agents; moreover, when every node in the topology
has degree at least 2, there exists an assignment in which all
agents receive a positive utility, and such an assignment can
be computed in polynomial time. These results are presented
in Section 5.

1.2 Related Work
As already mentioned, Schelling’s model and its variants
have been studied extensively from many different perspec-
tives in several disciplines. For an overview of early work on
the model, we refer the reader to (Immorlica et al. 2017).

Most related to our present work are the papers (Elkind
et al. 2019; Agarwal et al. 2020; Bilò et al. 2020; Kanel-
lopoulos, Kyropoulou, and Voudouris 2020), which studied
game-theoretic and complexity questions related to the so-
cial welfare in Schelling games. In particular, Elkind et al.
(2019) considered jump Schelling games in which there are
k ≥ 2 types of agents, and the topology is a graph with
more nodes than agents so that there are empty nodes to
which unhappy agents can jump. They showed that equi-
librium assignments do not always exist, proved that com-
puting equilibrium assignments and assignments with social
welfare close to n (the maximum possible) is NP-hard, and
bounded the price of anarchy and stability for both general
and restricted games.

Later on, Agarwal et al. (2020) considered the comple-
ment case of swap Schelling games in which the number
of nodes in the topology is equal to the number of agents;
since there are no empty nodes to which the agents can jump,
the agents can increase their utility only by swapping posi-
tions pairwise. For this setting, the authors showed results
similar to those of Elkind et al. (2019). Bilò et al. (2020)
improved some of the price of anarchy bounds of Agarwal
et al. (2020), and also studied a variation of the model in
which the agents have a restricted view of the topology and
can only swap with their neighbors. Finally, Kanellopoulos,
Kyropoulou, and Voudouris (2020) investigated the price of
anarchy and stability in jump Schelling games, but with a
slightly different utility function according to which an agent
considers herself as part of her set of neighbors.

The price of Pareto optimality was first considered by
Elkind, Fanelli, and Flammini (2020), and implicitly stud-

2Note that an analogue of the price of stability, where we con-
sider the worst-case ratio between the maximum social welfare and
the maximum social welfare among assignments satisfying the op-
timality notion, is uninteresting: for all of the optimality notions we
consider, this price is simply 1.
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ied by Bullinger (2020), in the context of fractional hedo-
nic games, which are closely related to Schelling games.
Since Pareto optimality is a fundamental notion in various
settings, its price has also been studied in the context of so-
cial distance games (Balliu, Flammini, and Olivetti 2017)
and fair division (Bei et al. 2019). To the best of our knowl-
edge, this is the first time that Pareto optimality is studied in
Schelling’s model.

2 Preliminaries
Let N = {1, . . . , n} be a set of n ≥ 2 agents. The agents
are partitioned into two different types (or colors), red and
blue. Denote by r and b the number of red and blue agents,
respectively; we have r + b = n. The distribution of agents
into types is called balanced if |r − b| ≤ 1. We say that
two agents i, j ∈ N , i 6= j, are friends if i and j are of the
same type; otherwise we say that they are enemies. For each
i ∈ N , we denote the set of all friends of agent i by F (i).

A topology is a simple connected undirected graph G =
(V,E), where V = {v1, . . . , vt}. Each agent in N has to
select a node of this graph so that there are no collisions.
A tuple I = (N,G) is called a Schelling instance. Given a
set of agents N and a topology G = (V,E) with |V | ≥ n,
an assignment is a vector v = (v(1), . . . , v(n)) ∈ V n such
that v(i) 6= v(j) for all i, j ∈ N such that i 6= j; here, v(i)
is the node of the topology where agent i is positioned. A
node v ∈ V is occupied by agent i if v = v(i). For a given
assignment v and an agent i ∈ N , let Ni(v) = {j ∈ N :
{v(i), v(j)} ∈ E} be the set of neighbors of agent i. Let
fi(v) = |Ni(v) ∩ F (i)| be the number of neighbors of i in
v who are her friends. Similarly, let ei(v) = |Ni(v)|−fi(v)
be the number of neighbors of i in v who are her enemies.
Following prior work, we define the utility ui(v) of an agent
i in v to be 0 if Ni(v) = 0; otherwise, her utility is defined
as the fraction of her friends among the agents in her neigh-
borhood:

ui(v) =
fi(v)

fi(v) + ei(v)
.

The social welfare of an assignment v is defined as the total
utility of all agents:

SW(v) =
∑
i∈N

ui(v).

Let v∗(I) be an assignment that maximizes the social wel-
fare for a given instance I; we refer to it as a maximum-
welfare assignment. Note that for any assignment v, we have
ui(v) ≤ 1, and so SW(v∗) ≤ n. Denote by SWR(v) and
SWB(v) the sum of the utilities of the red and blue agents,
respectively; we have SWR(v) + SWB(v) = SW(v).

3 Social Welfare
The first question we address is whether a high social wel-
fare can always be achieved in any Schelling instance. Even
though it may seem that we can obtain high welfare sim-
ply by grouping the agents of each type together, given the
possibly complex topology in combination with the distri-
bution of agents into types, it is unclear how this idea can be

executed in general or what guarantee it results in. Neverthe-
less, we show that high welfare is indeed always achievable.
Moreover, we provide a tight lower bound on the maximum
welfare for each number of agents.

For any positive integer n, define

g(n) =

{
n(n−2)
2(n−1) if n is even;
n−1
2 if n is odd.

Note that g(n) ≥ n/2 − 1 for all n. Our approach is to
choose an assignment uniformly at random among all pos-
sible assignments. Equivalently, we place agents in the fol-
lowing iterative manner: for an arbitrary unoccupied node,
assign a uniformly random agent who is unassigned thus far.
We show that the expected welfare of the assignment result-
ing from this simple randomized algorithm is at least g(n),
which implies the existence of an assignment with this wel-
fare guarantee.
Theorem 3.1. For any Schelling instance with n agents,
there exists an assignment with social welfare at least g(n).
Moreover, the bound g(n) cannot be improved.

Proof. First, note that we may assume that the number of
agents is equal to the number of nodes by restricting our
attention to an arbitrary connected subgraph of G with the
desired size. For vi ∈ V , let Nvi = {vj ∈ V | {vi, vj} ∈
E} be the neighborhood of node vi in G, and nvi = |Nvi |
be its size.

Consider an assignment of the agents to the nodes of G
chosen uniformly at random. Let W be a random variable
denoting the social welfare of this assignment, Ui a random
variable denoting the expected utility of the agent placed at
node vi, and Xi a binary random variable describing the
color of this agent, where Xi = 1 if node vi is occupied
by a blue agent and Xi = 0 if it is occupied by a red agent.
We have

E[W ] =

n∑
i=1

E[Ui] =

n∑
i=1

(Pr(Xi = 1) · E[Ui | Xi = 1]

+ Pr(Xi = 0) · E[Ui | Xi = 0]).

In the first equality we use linearity of expectation, and in
the second equality the law of total expectation.

Now, for a fixed vi ∈ V , it holds that

E[Ui | Xi = 1] =
1

nvi

∑
vj∈Nvi

E[Xj | Xi = 1]

=
1

nvi

∑
vj∈Nvi

Pr(vj blue | vi blue)

=
1

nvi

∑
vj∈Nvi

b− 1

n− 1
=
b− 1

n− 1
,

where the first equality is again due to linearity of expecta-
tion. Similarly, we have E[Ui | Xi = 0] = r−1

n−1 . Hence,

E[W ] =
n∑

i=1

(
b

n
· b− 1

n− 1
+
r

n
· r − 1

n− 1

)
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Algorithm 1 Assignment with high social welfare

Input: Schelling instance I = (N,G = (V,E))
Output: Assignment with social welfare at least g(n)

for i = 1, . . . , n do
if there is a unique assignment v consistent with
X1 = a1, . . . , Xi−1 = ai−1 (up to permuting agents
of the same color) then

return v
W0 = E[W | X1 = a1, . . . , Xi−1 = ai−1, Xi = 0]
W1 = E[W | X1 = a1, . . . , Xi−1 = ai−1, Xi = 1]
if W1 ≥W0 then
ai = 1 /*assign a blue agent to vi*/

else
ai = 0 /*assign a red agent to vi*/

return Assignment corresponding to (a1, . . . , an)

= b · b− 1

n− 1
+ r · r − 1

n− 1

=
1

n− 1
(b(b− 1) + (n− b)(n− b− 1))

=
1

n− 1
(n2 − n+ 2b(b− n)).

Observe that the function b(b − n) is decreasing in the
range b ∈ [0, n/2] and increasing in the range b ∈ [n/2, n].
This means that for even n, we have

E[W ] ≥ 1

n− 1

(
n2 − n+ 2 · n

2
·
(
−n

2

))
=
n(n− 2)

2(n− 1)
= g(n).

For n odd, since b is an integer, it holds that

E[W ] ≥ 1

n− 1

(
n2 − n+ 2 · n− 1

2
·
(
−n+ 1

2

))
=
n− 1

2
= g(n),

implying that E[W ] ≥ g(n) in both cases.
Finally, it can be verified that when G is a complete graph

and the distribution of agents into types is balanced, every
assignment has social welfare exactly g(n).

Next, we derandomize the algorithm in Theorem 3.1 to
produce an efficient deterministic algorithm that computes
an assignment with welfare at least g(n). The pseudocode of
the algorithm, which shares the notation of Theorem 3.1, can
be found in Algorithm 1. The idea is that when we choose
an agent to be assigned to an unassigned node, we pick a
type such that the expected welfare is maximized, where the
expectation is taken with respect to the uniform distribution
of the remaining agents to the remaining nodes.
Theorem 3.2. Algorithm 1 returns an assignment with so-
cial welfare at least g(n) in polynomial time.

Proof. First, we prove that the welfare of the returned as-
signment is at least g(n). For i = 0, . . . , n, denote by Ai the

event X1 = a1∧X2 = a2∧ · · ·∧Xi = ai. In particular, A0

is the entire sample space. We will show by induction that
for each i, E[W | Ai] ≥ E[W ]. The base case i = 0 holds
trivially. For i ∈ {1, . . . , n}, if there is a unique assignment
consistent with X1 = a1 ∧ · · · ∧ Xi−1 = ai−1, then the
social welfare of the returned assignment is E[W | Ai−1] ≥
E[W ] ≥ g(n), where the first inequality follows from the
induction hypothesis and the second inequality from Theo-
rem 3.1. Otherwise, we have
E[W ] ≤ E[W | Ai−1]

= Pr(Xi = 0 | Ai−1) · E[W | Ai−1 ∧Xi = 0]

+ Pr(Xi = 1 | Ai−1) · E[W | Ai−1 ∧Xi = 1]

≤ Pr(Xi = 0 | Ai−1) · E[W | Ai]

+ Pr(Xi = 1 | Ai−1) · E[W | Ai]

= E[W | Ai],

where we use the law of total expectation for the first equal-
ity and the choice of ai in the algorithm for the second in-
equality. This completes the induction. Hence, if the algo-
rithm terminates in the jth iteration, the welfare of the re-
turned assignment is E[W | Aj ] ≥ E[W ] ≥ g(n).

We next show that the algorithm can be implemented in
polynomial time. To this end, it suffices to show that the
quantities W0 and W1 can be computed efficiently for each
fixed i ∈ {1, . . . , n}. If there is only one type of agents left
after having assigned the first i agents, this is straightfor-
ward, so assume that both types of agents still remain. By
linearity of expectation, for each x ∈ {0, 1},

E[W | Ai−1 ∧Xi = x] =
n∑

j=1

E[Uj | Ai−1 ∧Xi = x].

By the law of total expectation,
E[Uj |Ai−1 ∧Xi = x]

= Pr(Xj = 0 | Ai−1 ∧Xi = x)

· E[Uj | Ai−1 ∧Xi = x ∧Xj = 0]

+ Pr(Xj = 1 | Ai−1 ∧Xi = x)

· E[Uj | Ai−1 ∧Xi = x ∧Xj = 1],

where a probability can be 0 if vj has already been assigned
an agent (i.e., if j ≤ i). When j > i, we have

Pr(Xj = 1 | Ai−1 ∧Xi = x) =
b−

∑i−1
k=1 ai − x
n− i

.

Also, by linearity of expectation,
E[Uj | Ai−1 ∧Xi = x ∧Xj = 1]

=
1

nvj

∑
vk∈Nvj

E[Xk | Ai−1 ∧Xi = x ∧Xj = 1].

Finally,
E[Xk | Ai−1 ∧Xi = x ∧Xj = 1]

=


ak if k ≤ i− 1;

x if k = i;
b−

∑i−1
`=1 a`−x−1
n−i−1 if k > i.

The computations for Xj = 0 as well as for j ≤ i can be
done similarly.
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Since the social welfare of any assignment is at most n,
Algorithm 1 always produces an assignment with at least
roughly half of the optimal welfare. This raises the question
of whether it is possible to compute a maximum-welfare as-
signment for any given instance in polynomial time. Unfor-
tunately, Elkind et al. (2019, Thm. 4.2) proved that maximiz-
ing social welfare is NP-hard. However, their proof relies on
the existence of a “stubborn agent”, who is assigned to a
fixed node in advance and cannot move, and uses a topology
with more nodes than agents.3 We show that the hardness
remains even when both of these assumptions are removed
and the topology is a regular graph.
Theorem 3.3. It is NP-complete to decide whether there ex-
ists an assignment with social welfare at least s, given a
Schelling instance and a rational number s, even for the
class of instances where the number of agents is equal to
the number of nodes and the topology is a regular graph.

Due to space constraints, the proof of Theorem 3.3 (and
all other missing proofs) can be found in the full version of
our paper (Bullinger, Suksompong, and Voudouris 2020).

4 Optimality Notions
Even when an assignment does not have the maximum so-
cial welfare, there can still be other ways in which it is “op-
timal”. In this section, we consider some optimality notions
and quantify them in relation to social welfare. A classical
optimality notion is Pareto optimality.
Definition 4.1. An assignment v is said to be Pareto dom-
inated by assignment v′ if ui(v) ≤ ui(v

′) for all i ∈ N ,
with the inequality being strict for at least one i. An assign-
ment v is Pareto optimal (PO) if it is not Pareto dominated
by any other assignment.

Given two vectors w1 and w2 of the same length k, we
say that w1 weakly dominates w2 if for each i ∈ {1, . . . , k},
the ith element of w1 is at least that of w2. We say that w1

strictly dominates w2 if at least one of the inequalities is
strict.

For an assignment v, denote by u(v) the vector of length
n consisting of the agents’ utilities ui(v), sorted in non-
decreasing order. Similarly, denote by uR(v) and uB(v) the
corresponding vectors of length r and b for the red and blue
agents, respectively. Note that an assignment v is Pareto op-
timal if and only if there is no other assignment v′ such that
uX(v′) weakly dominates uX(v) for X ∈ {R,B} and at
least one of the dominations is strict.

Motivated by this observation, we define two new opti-
mality notions appropriate for Schelling instances.
Definition 4.2. An assignment v is said to be
• group-welfare dominated by assignment v′ if

SWX(v′) ≥ SWX(v) for X ∈ {R,B} and at least
one of the inequalities is strict;

• utility-vector dominated by assignment v′ if u(v′) strictly
dominates u(v).

3Agarwal et al. (2020) showed that hardness holds when the
numbers of agents and nodes are equal, but still required stubborn
agents and moreover assumed at least three types of agents.
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Figure 1: Implication relations among optimality notions
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Figure 2: Example showing that GWO does not imply UVO.

An assignment v is group-welfare optimal (GWO) (resp.,
utility-vector optimal (UVO)) if it is not group-welfare dom-
inated (resp., utility-vector dominated) by any other assign-
ment.

The implication relations in Figure 1 follow immediately
from the definitions; in particular, both of the new notions
lie between welfare maximality and Pareto optimality. We
claim that no other implications exist between these notions.
To establish this claim, it suffices to show that GWO and
UVO do not imply each other.
Proposition 4.3. GWO does not imply UVO.

Proof. Assume that the topology is a star as in Figure 2, and
there are two red and n − 2 blue agents, where n ≥ 5. The
left assignment v is GWO, since putting a blue agent at the
center as in the right assignment v′ leaves both red agents
with utility 0. However, v is not UVO, as

u(v) = (1, 1/(n− 1), 0, . . . , 0)

is strictly dominated by

u(v′) = (1, . . . , 1, (n− 3)/(n− 1), 0, 0).

Proposition 4.4. UVO does not imply GWO.

Proof. Let n be a multiple of 4. Suppose that the topol-
ogy is a complete bipartite graph with n/2 nodes on each
side, and there are n/2 red and n/2 blue agents (Figure 3).
The left assignment v, which assigns one red agent to the
left side and one blue agent to the right side, is UVO. In-
deed, the red agent assigned to the left side receives utility
(n/2 − 1)/(n/2), and any assignment in which an agent
receives equal or higher utility must have the same sorted
utility vector as v. We have

SW(v) = 2 · n/2− 1

n/2
+ 2(n/2− 1) · 1

n/2
= 4− 8

n
,
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Figure 3: Example showing that UVO does not imply GWO.
The topology is a complete bipartite graph.

with each group receiving half of the welfare, i.e., 2 − 4/n.
On the other hand, in the right assignment v′, which assigns
half of the agents of each color to each side, every agent
receives utility 1/2. Hence SW(v′) = n/2, and each group
receives a total utility of n/4. Hence, when n ≥ 8, v is UVO
but not GWO.

In order to quantify the welfare guarantee that each op-
timality notion provides, we define the price of a notion as
follows.

Definition 4.5. Given a property P of assignments and a
Schelling instance, the price of P for that instance is defined
as the ratio between the maximum social welfare and the
minimum social welfare of an assignment satisfying P :

Price of P for instance I =
SW(v∗(I))

minv∈P (I) SW(v)
,

where P (I) is the set of all assignments satisfying P in in-
stance I .4

The price of P for a class of instances is then defined as
the supremum price of P over all instances in that class.

For P ∈ {PO,GWO,UV O}, we have v∗(I) ∈ P (I),
so the price of P is always well-defined and at least 1. Note
also that maxv∈P (I) SW(v) = SW(v∗(I)).

In Figure 2, the left assignment is GWO and PO and has
social welfare n/(n−1), whereas the maximum-welfare as-
signment on the right has social welfare n(n−3)/(n−1). We
therefore have the following bound (for n ≤ 4, the bound
holds trivially).

Proposition 4.6. For each n, the price of GWO and the price
of PO are at least n− 3.

The following result shows that the welfare of a UVO as-
signment can also be a linear factor away from the maximum
welfare, but not more.

4We interpret the ratio 0
0

in this context to be equal to 1.

Theorem 4.7. The price of UVO is Θ(n).

Proof. Lower bound: Consider the topology in Figure 3. As
in the proof of Proposition 4.4, the left assignment v is UVO
and has social welfare 4− 8/n. On the other hand, the right
assignment v′ has social welfare n/2, meaning that the ratio
SW(v′)/SW(v) is greater than n/8.

Upper bound: We claim that if n ≥ 3, any UVO assign-
ment has social welfare at least5 1/2; since the maximum
social welfare is at most n, this yields the desired bound.
Assume first that the number of agents is equal to the num-
ber of nodes. Let v be a UVO assignment. If there is a red
agent and a blue agent both receiving utility 0, then since
no node is empty and n ≥ 3, swapping them yields an im-
provement with respect to the utility vector. So we may as-
sume that all agents of one type, say blue, receive a positive
utility. If at least n/2 agents receive a positive utility, then
SW(v) ≥ n/(2n − 2) ≥ 1/2. Assume therefore that more
than n/2 agents receive utility 0; these agents must all be
red. Swap b of these red agents with utility 0 with all b blue
agents to obtain an assignment v′. Each of these b red agents
receives utility in v′ at least the utility in v of the blue agent
with whom it was swapped, while all blue agents receive
utility 0 in v′. Every other (red) agent is not worse off, and
at least one of them is better off (in particular, one who re-
ceives utility 0 in v, which must exist since n/2 > b). Hence
v is utility-vector dominated by v′, a contradiction.

Now, assume that the number of agents is less than the
number of nodes. Since n ≥ 3, any UVO assignment v must
have SW(v) > 0, so there exists a connected component of
v with a positive social welfare. Let n′ be the size of this
component. If n′ = 2, then SW(v) ≥ 2. Else, the assign-
ment restricted to this component is also UVO, and by our
earlier arguments has social welfare at least 1/2.

Next, we show that the price of GWO is also linear. We
start by establishing a lower bound on the social welfare of
GWO assignments.

Theorem 4.8. Any GWO assignment has social welfare at
least n/(n− 1) for n ≥ 4, and 1 for n = 3. Moreover, these
bounds cannot be improved.

Since the social welfare never exceeds n, Proposition 4.6
and Theorem 4.8 imply that the price of GWO is Θ(n).

We now turn to Pareto optimality, for which we prove a
weaker lower bound on the social welfare.

Theorem 4.9. When n ≥ 3, any PO assignment has social
welfare at least 1/

√
n.

Combined with Proposition 4.6, Theorem 4.9 implies that
when n ≥ 3, the price of PO is at least n − 3 and at most
n
√
n.

We conjecture that the welfare guarantee in Theorem 4.9
can be improved to n/(n − 1) for n ≥ 4, which would be
tight due to the left assignment in Figure 2. In our full ver-
sion, we confirm this conjecture when the topology is a tree;
this also implies that the price of PO is Θ(n) in this special

5In the full version of our paper, we improve this bound to 1 via
a longer proof (Bullinger, Suksompong, and Voudouris 2020).
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Figure 4: Example showing that Theorem 5.3 does not hold
when the number of nodes is greater than the number of
agents. There are three red and three blue agents. No matter
how the agents are placed, at least one of them will receive
utility 0.

case. In addition, we prove a linear bound on the price of
PO when the fraction of agents of each type is at least some
constant.

5 Number of Positive Agents
In this section, we consider the problem of maximizing the
number of agents receiving a positive utility, who we refer
to as positive agents. Notice that it is not always possible
to make every agent positive—for example, in a star, every
agent whose type is different from the center agent receives
zero utility. We begin by showing that for trees, deciding
whether it is possible to make every agent positive can be
done efficiently. Our algorithm is based on dynamic pro-
gramming and shares some similarities with the algorithm
of Elkind et al. (2019) for deciding whether an equilibrium
exists on a tree.
Theorem 5.1. There is a polynomial-time algorithm that
decides whether there exists an assignment in which every
agent receives a positive utility when the topology is a tree.

Observe that for any topology, an assignment in which at
least half of the agents are positive is guaranteed to exist
and can be easily found by using depth-first search for the
majority type.
Proposition 5.2. For any n ≥ 3, there exists a polynomial-
time algorithm that computes an assignment in which at
least dn/2e agents receive a positive utility.

The bound dn/2e is tight when the topology is a star and
there are dn/2e red and bn/2c blue agents.

Next, we show that when every node has degree at least 2
and the number of agents is equal to the number of nodes, it
is possible to give every agent a positive utility. Note that the
latter condition is also necessary—for the topology given in
Figure 4, if there are three red and three blue agents (so one
node is left unoccupied), it is easy to see that no assignment
makes every agent positive.
Theorem 5.3. Suppose that every node in the topology has
degree at least 2, the number of agents is equal to the number
of nodes, and there are at least two agents of each type. Then
there exists an assignment such that every agent receives a
positive utility.

Proof. Consider an arbitrary assignment v. If every agent
is already positive, we are done, so assume that there is an

agent i with utility 0. Without loss of generality, i is a blue
agent. Among all paths from i to another blue agent, con-
sider one with maximum length—suppose that the path goes
to agent j. Since there are at least two blue agents, such a
path must exist; moreover, since i has utility 0, the path con-
tains at least one red agent. Let k be the last red agent on the
path before reaching j. Swap i and k.

We claim that in the resulting assignment v′, the number
of positive agents increases by at least 1; by applying such
swaps repeatedly, we will reach an assignment in which all
agents are positive. To establish the claim, it suffices to show
that i, k, as well as any agent adjacent to either of them are
positive in v′. Since i has utility 0 in v, she has at least two
red neighbors in v, so k is positive in v′. Moreover, i is adja-
cent to j in v′ and therefore becomes positive. Any other red
agent on the path remains positive, and all agents adjacent to
k in v′ are red (besides possibly i, if k is the only red agent
on the path) and are therefore positive. Finally, consider any
red agent ` adjacent to i in v′ not lying on the path. Since
every node has degree at least 2, agent ` must have a neigh-
bor m 6= i (possibly m = j). If ` is adjacent to k, then ` is
positive since k is red. Else, if m is a blue agent, we obtain a
longer path from i to m in v than the original longest path, a
contradiction. Hence m must be red, and ` is positive in v′,
proving the claim.

Since the longest path problem is known to be NP-hard,
the proof of Theorem 5.3 does not give rise to a polynomial-
time algorithm for computing a desired assignment. In the
full version of our paper, we present an inductive approach
that is more involved but leads to an efficient algorithm
(Bullinger, Suksompong, and Voudouris 2020).

6 Conclusion
In this paper, we have studied questions regarding welfare
guarantees and complexity in Schelling segregation. Our
findings are mostly positive: An assignment with high so-
cial welfare always exists, and the welfare of assignments
satisfying most optimality notions are at most a linear fac-
tor away from the maximum social welfare. Furthermore,
even though an assignment yielding a positive utility to ev-
ery agent may not exist, the existence can be guaranteed
when every node in the topology has degree at least 2, a
realistic assumption in well-connected metropolitan areas.

Several interesting directions remain from our work. On
the technical side, it would be useful to close the gap on
the price of Pareto optimality, which we conjecture to be
Θ(n), and characterize the topologies for which an assign-
ment such that every agent receives a positive utility always
exists. Another open question is whether we can obtain a
better approximation to social welfare in polynomial time.
From a more conceptual perspective, one could try to extend
our results to a model with more than two types of agents or
more complex friendship relations (Elkind et al. 2019) or
modified utility functions (Kanellopoulos, Kyropoulou, and
Voudouris 2020). Studying our new optimality notions from
Section 4 in related settings such as hedonic games, espe-
cially when agents are partitioned into types, may lead to
intriguing discoveries as well.
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