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Abstract

Tournament solutions are standard tools for identifying win-
ners based on pairwise comparisons between competing al-
ternatives. The recently studied notion of margin of victory
(MoV) offers a general method for refining the winner set
of any given tournament solution, thereby increasing the dis-
criminative power of the solution. In this paper, we reveal
a number of structural insights on the MoV by investigating
fundamental properties such as monotonicity and consistency
with respect to the covering relation. Furthermore, we pro-
vide experimental evidence on the extent to which the MoV
notion refines winner sets in tournaments generated accord-
ing to various stochastic models.

1 Introduction
Tournaments serve as a practical tool for modeling scenarios
involving a set of alternatives along with pairwise compar-
isons between them. Perhaps the most common example of
a tournament is a round-robin sports competition, where ev-
ery pair of teams play each other once and there is no tie in
match outcomes. Another application, typical especially in
the social choice literature, concerns elections: here, alter-
natives represent election candidates, and pairwise compar-
isons capture the majority relation between pairs of candi-
dates. In order to select the “winners” of a tournament in
a consistent manner, numerous methods—known as tour-
nament solutions—have been proposed. Given the ubiquity
of tournaments, it is hardly surprising that tournament so-
lutions have drawn substantial interest from researchers in
the past few decades (Laslier 1997; Woeginger 2003; Hudry
2009; Aziz et al. 2015; Dey 2017; Brandt, Brill, and Harren-
stein 2018; Brandt et al. 2018; Han and van Deemen 2019).

While tournament solutions are useful for selecting the
best alternatives according to various desiderata, several so-
lutions suffer from the setback that they tend to choose large
winner sets. For instance, Fey (2008) showed that the top
cycle, the uncovered set, and the Banks set are likely to in-
clude all alternatives in a large random tournament. To ad-
dress this issue, we recently introduced the notion of margin
of victory (MoV) for tournaments (Brill, Schmidt-Kraepelin,
and Suksompong 2020b). The MoV of a winner is defined
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as the minimum number of pairwise comparisons that need
to be reversed in order for the winner to drop out of the win-
ner set. Analogously, the MoV of a non-winner is defined
as the negative of the minimum number of comparisons that
must be reversed for it to enter the winner set.1 In addition
to refining tournament solutions, the notion also has a natu-
ral interpretation in terms of bribery and manipulation: the
MoV of an alternative reflects the cost of bribing voters or
manipulating match outcomes so that the status of the alter-
native changes with respect to the winner set. For a number
of common tournament solutions, we studied the complex-
ity of computing the MoV and provided bounds on its values
for both winners and non-winners (Brill et al. 2020b).

Our previous results paint an initial picture on the prop-
erties of the MoV in tournaments. Nevertheless, several im-
portant questions about the notion remain unanswered from
that work. For each tournament solution, how many different
values does the MoV take on average? How large is the set of
alternatives with the highest MoV in a random tournament?
If two alternatives dominate the same number of other al-
ternatives, for which tournament solutions is it the case that
the MoV of both alternatives must be equal? If an alternative
“covers” another (i.e., the former alternative dominates the
latter along with all alternatives that the latter dominates),
for which tournament solutions is it always true that the
MoV of the former alternative is at least that of the latter?
In this paper, we provide a comprehensive answer to these
questions for several common tournament solutions using
axiomatic and probabilistic analysis (Section 3) as well as
through experiments (Section 4).

1.1 Related Work
Despite their origins in social choice theory, tournament so-
lutions have found applications in a wide range of areas in-
cluding game theory (Fisher and Ryan 1995), webpage rank-
ing (Brandt and Fischer 2007), dueling bandit problems (Ra-
mamohan, Rajkumar, and Agarwal 2016), and philosophical
decision theory (Podgorski 2020). As is the case for social
choice theory in general, early studies of tournament solu-
tions were primarily based on the axiomatic approach. With

1In our previous paper (Brill et al. 2020b), we considered a
more general setting where each pairwise comparison can have a
weight representing the cost of reversing it, but here we will focus
on the unweighted setting.
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the rise of computational social choice in the past fifteen
years or so, tournament solutions have also been thoroughly
examined from an algorithmic perspective. For an overview
of the literature, we refer to the surveys of Laslier (1997),
Hudry (2009), and Brandt, Brill, and Harrenstein (2016).

While we introduced the MoV concept for tournament so-
lutions (Brill et al. 2020b), similar concepts have been ap-
plied to a large number of settings, perhaps most notably
voting. In addition, various forms of bribery and manipula-
tion have been considered for both elections and sports tour-
naments. We refer to our previous paper for relevant refer-
ences, but note here that the MoV continues to be a popular
concept in recent work, for example in the context of sports
modeling (Kovalchik 2020), election control (Castiglioni,
Ferraioli, and Gatti 2020), and political and educational dis-
tricting (Stoica et al. 2020). Yang and Guo (2017) gave a
parameterized complexity result for the decision version of
computing the MoV with respect to the uncovered set.

The discriminative power of tournament solutions has
been studied both analytically and experimentally. As we
mentioned earlier, Fey (2008) showed that in a large tour-
nament drawn uniformly at random, the top cycle, the un-
covered set, and the Banks set are unlikely to exclude any
alternative. Scott and Fey (2012) established an analogous
result for the minimal covering set, while Fisher and Ryan
(1995) proved that the bipartisan set selects half of the alter-
natives on average. Saile and Suksompong (2020) extended
some of these results to more general probability distribu-
tions, and Brandt and Seedig (2016) performed experiments
using both stochastic models and empirical data.

2 Preliminaries
A tournament T = (V,E) is a directed graph in which ex-
actly one directed edge exists between any pair of vertices.
The vertices of T , denoted by V (T ), are often referred to
as alternatives, and their number n := |V (T )| is referred
to as the size of T . The set of directed edges of T , denoted
by E(T ), represents an asymmetric and connex dominance
relation between the alternatives. An alternative x is said
to dominate another alternative y if (x, y) ∈ E(T ) (i.e.,
there is a directed edge from x to y). When the tournament
is clear from the context, we often write x � y to denote
(x, y) ∈ E(T ). By definition, for each pair x, y of distinct
alternatives, either x dominates y (x � y) or y dominates
x (y � x), but not both. The dominance relation can be ex-
tended to sets of alternatives by writing X � Y if x � y for
all x ∈ X and all y ∈ Y .

For a given tournament T and an alternative x ∈ V (T ),
the dominion of x, denoted by D(x), is the set of alterna-
tives y such that x � y. Similarly, the set of dominators of x,
denoted by D(x), is the set of alternatives y such that y � x.
The outdegree of x is denoted by outdeg(x) = |D(x)|, and
the indegree of x by indeg(x) = |D(x)|. For any x ∈ V (T ),
it holds that outdeg(x) + indeg(x) = n− 1. An alternative
x ∈ V (T ) is said to be a Condorcet winner in T if it domi-
nates every other alternative (i.e., outdeg(x) = n−1), and a
Condorcet loser in T if it is dominated by every other alter-
native (i.e., outdeg(x) = 0). A tournament is regular if all

alternatives have the same outdegree. A regular tournament
exists for every odd size, but not for any even size.

2.1 Tournament Solutions
A tournament solution is a function that maps each tour-
nament to a nonempty subset of its alternatives, usually re-
ferred to as the set of winners or the choice set. A tournament
solution must not distinguish between isomorphic tourna-
ments; in particular, if there is an automorphism that maps
an alternative x to another alternative y in the same tour-
nament, any tournament solution must either choose both x
and y or neither of them. The set of winners of a tourna-
ment T with respect to a tournament solution S is denoted
by S(T ). The tournament solutions considered in this paper
are as follows:

• The Copeland set (CO) is the set of alternatives with the
largest outdegree. The outdegree of an alternative is also
referred to as its Copeland score.

• The top cycle (TC ) is the (unique) nonempty smallest set
X of alternatives such that X � V (T ) \X . Equivalently,
TC is the set of alternatives that can reach every other
alternative via a directed path.

• The uncovered set (UC ), is the set of alternatives that are
not “covered” by any other alternative. An alternative x
is said to cover another alternative y if D(y) ⊆ D(x).
Equivalently, UC is the set of alternatives reaching every
other alternative via a directed path of length at most two.

• The set of k-kings, for an integer k ≥ 3, is the set of alter-
natives that can reach every other alternative via a directed
path of length at most k.

• The Banks set (BA) is the set of alternatives that appear
as the Condorcet winner of some transitive subtournament
that cannot be extended.2

All of these tournament solutions satisfy Condorcet-
consistency, meaning that whenever a Condorcet winner ex-
ists, it is chosen as the unique winner.

It is clear from the definitions that UC (the set of “2-
kings”) is contained in the set of k-kings for any k ≥ 3,
which is in turn a subset of TC (the set of “(n− 1)-kings”,
as any directed path has length at most n − 1). Moreover,
both CO and BA are contained in UC (Laslier 1997).

Given a tournament T and an edge e = (x, y) ∈ E(T ),
we let e := (y, x) denote its reversal. Denote by T e the
tournament that results from T when reversing e. A tour-
nament solution S is said to be monotonic if for any edge
e = (y, x) ∈ E(T ),

x ∈ S(T ) implies x ∈ S(T e).

In other words, a tournament solution is monotonic if a win-
ner remains in the choice set whenever its dominion is en-
larged (while everything else is unchanged). Equivalently,
monotonicity means that a non-winner remains outside of
the choice set whenever it becomes dominated by an addi-
tional alternative.

2We say that an alternative x ∈ V (T ) \ V (T ′) extends a tran-
sitive subtournament T ′ if x dominates all alternatives in T ′.
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2.2 Margin of Victory
For a set of edges R ⊆ E(T ) of a tournament T , we define
R := {e : e ∈ R}. Denote by TR the tournament that results
from T when reversing all edges in R, i.e., V (TR) = V (T )
and E(TR) = (E(T ) \R) ∪R.

Fix a tournament solution S and consider a tournament T .
An edge set R ⊆ E(T ) is called a destructive reversal set
(DRS) for x ∈ S(T ) if x /∈ S(TR). Analogously, R is called
a constructive reversal set (CRS) for x ∈ V (T ) \ S(T ) if
x ∈ S(TR). The margin of victory of x ∈ S(T ) is given by

MoVS(x, T ) = min{|R| : R is a DRS for x in T},

and for x 6∈ S(T ) it is given by

MoVS(x, T ) = −min{|R| : R is a CRS for x in T}.

By definition, MoVS(x, T ) is a positive integer if x ∈
S(T ), and a negative integer otherwise.3

It follows from the definition of MoV that edge rever-
sals have limited effects on the MoV value of alternatives:
If a single edge e of a tournament T is reversed, then
MoVS(x, T ) and MoVS(x, T

e) differ by at most 1, unless
x is a winner in exactly one of the two tournaments T and
T e (in which case |MoVS(x, T )−MoVS(x, T

e)| = 2).
Furthermore, MoV values behave monotonically with re-

spect to edge reversals, provided the underlying tournament
solution is monotonic.
Proposition 1. Let S be a monotonic tournament solu-
tion and consider two tournaments T and T e, where e =
(y, x) ∈ E(T ). Then, MoVS(x, T

e) ≥ MoVS(x, T ).
All omitted proofs can be found in the full version of this

paper (Brill, Schmidt-Kraepelin, and Suksompong 2020a).

3 Structural Results
In this section we provide a number of results relating the
MoV notion to structural properties of the tournament in
question. In particular, we identify conditions on tournament
solutions ensuring that the corresponding MoV values are
consistent with the covering relation (Section 3.1) and we
examine the relationship between MoV values and Copeland
scores (Sections 3.2 and 3.3). Our results are summarized in
Table 1.

3.1 Cover-Consistency
Recall from Section 2 that an alternative x covers another al-
ternative y if D(y) ⊆ D(x). In particular, this implies that x
dominates y (as otherwise x ∈ D(y)). The covering relation,
which forms the basis for defining the uncovered set UC , is
transitive and has a close connection to Pareto dominance in
voting settings (Brandt, Geist, and Harrenstein 2016).

Intuitively, if x covers y, there is a strong argument that
x is preferable to y. We show that for all of the tournament

3The only exception is the degenerate case where S selects all
alternatives for all tournaments of some size n; in this case we de-
fine MoVS(x, T ) =∞ for all alternatives x and all tournaments T
of that size. For ease of exposition, we will assume for the rest of
the paper that the degenerate case does not occur, but all of our
results still hold even when this case occurs.

cover-
cons.

strong
deg.-cons.

degree-
cons.

equal-
deg.-cons.

MoVCO 3 7 3 7
MoVTC 3 3 3 3
MoVUC 3 7 7 7
MoVk-kings 3 7 7 7
MoVBA 3 7 7 7

Table 1: Consistency properties of the margin of victory for
the tournament solutions CO , TC , UC , k-kings, and BA.

solutions that we consider, their corresponding MoV values
are indeed consistent with this intuition.

Definition 2. For a tournament solution S, we say that
MoVS is cover-consistent if, for any tournament T and any
alternatives x, y ∈ V (T ), x covers y implies MoVS(x, T ) ≥
MoVS(y, T ).

We introduce a new property that will be useful for show-
ing that a tournament solution is cover-consistent.

Definition 3. A tournament solution S is said to be transfer-
monotonic if for any edges (y, z), (z, x) ∈ E(T ),

x ∈ S(T ) implies x ∈ S(T ′),

where T ′ is the tournament obtained from T by reversing
edges (y, z) and (z, x).

In other words, if an alternative x is chosen, then it remains
chosen when an alternative z is “transferred” from the do-
minion D(y) of another alternative y to its dominion D(x).

We show that monotonicity and transfer-monotonicity to-
gether imply cover-consistency of the margin of victory.

Lemma 4. If a tournament solution S is monotonic and
transfer-monotonic, then MoVS satisfies cover-consistency.

Proof. Let S be a monotonic and transfer-monotonic tour-
nament solution, and suppose that alternative x covers an-
other alternative y in a tournament T . We will show that
MoVS(x, T ) ≥ MoVS(y, T ).

If x ∈ S(T ) and y 6∈ S(T ), the statement holds trivially
since MoVS(x, T ) > 0 > MoVS(y, T ). Suppose for contra-
diction that x 6∈ S(T ) and y ∈ S(T ). Consider the tourna-
ment T ′ obtained from T by reversing the edge (x, y) as well
as edges (x, z), (z, y) for each z ∈ D(x)\ (D(y)∪{y}). By
monotonicity and transfer-monotonicity, y ∈ S(T ′). How-
ever, tournaments T and T ′ are isomorphic, and there is an
isomorphism that maps x ∈ T to y ∈ T ′. Since x 6∈ S(T ),
we must have y 6∈ S(T ′), a contradiction.

The remaining two cases are x, y ∈ S(T ) and x, y 6∈
S(T ); both can be handled in an analogous manner, so let
us focus on the latter case. It suffices to show that given
any CRS for y of minimum size, we can construct a CRS
of smaller or equal size for x. Let Ry be a CRS for y of
minimum size; we will construct a CRS Rx for x such that
|Rx| ≤ |Ry|.

Let A = V (T ) \ {x, y}, and partition A into three sets
A1 = D(y), A2 = D(x) \ (D(y) ∪ {y}), and A3 = D(x);
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A2

A1

x

y

A3

Figure 1: Illustration of the proof of Lemma 4.

see Figure 1 for an illustration. For any edge in Ry between
two alternatives of A, we add the same edge to Rx. We do
not add the edge (x, y) regardless of whether it is present
in Ry . Each remaining edge in Ry is between an alternative
in A and one of x, y. Note that (y, a) 6∈ Ry for any a ∈ A—
otherwise, by monotonicity, removing such an edge would
keep Ry a CRS for y, contradicting the minimality of Ry .
For each a ∈ A, we add further edges to Rx as follows.

• For a ∈ A1:
– If (x, a) ∈ Ry , add (y, a) to Rx.

• For a ∈ A2:
– If (x, a) ∈ Ry but (a, y) 6∈ Ry , add (x, a) to Rx.
– If (x, a) 6∈ Ry but (a, y) ∈ Ry , add (a, y) to Rx.
• For a ∈ A3:

– If (a, x) ∈ Ry , add (a, y) to Rx.
– If (a, y) ∈ Ry , add (a, x) to Rx.

Clearly, |Rx| ≤ |Ry|, and we have y ∈ S(TRy ) by defi-
nition of Ry . From TRy , we reverse the edge (x, y) if it is
present, and for a ∈ A2 such that both (x, a), (a, y) 6∈ Ry ,
we reverse (x, a) and (a, y). Let T ′ be the resulting tourna-
ment. By monotonicity and transfer-monotonicity, we have
y ∈ S(T ′). However, one can verify that there exists an iso-
morphism from T ′ to TRx that maps x to y, y to x, and every
other alternative a to itself. Since y ∈ S(T ′), we must have
x ∈ S(TRx), meaning that Rx is indeed a CRS for x.

In the full version (Brill et al. 2020a), we show that nei-
ther monotonicity nor transfer-monotonicity can be dropped
from the condition of Lemma 4. This also means that neither
of the two properties implies the other.

We now show that all tournament solutions we consider in
this paper satisfy both monotonicity and transfer monotonic-
ity, thereby implying that their MoV functions are cover-
consistent.

Proposition 5. CO , UC , TC , k-kings, and BA satisfy
monotonicity.

Proof. It is already known that CO , UC , TC , and BA
are monotonic (Laslier 1997; Brandt, Brill, and Harrenstein
2016); hence, it remains to establish the monotonicity of k-
kings. Let x be a k-king in tournament T , and suppose that
T ′ is the tournament obtained by reversing an edge (y, x).
Since any path of length at most k from x to another alter-
native in T cannot contain the edge (y, x), the same path is
also present in T ′. Hence x is also a k-king in T ′.

Proposition 6. CO , UC , TC , k-kings, and BA satisfy
transfer-monotonicity.

Proof. We prove the statement for CO ; the other tourna-
ment solutions are handled in the full version. If x ∈ CO(T )
and edges (y, z) and (z, x) are reversed, then the outdegree
of x increases by 1, that of y decreases by 1, while all other
alternatives have the same outdegree as before. Hence x is
in the Copeland set of the new tournament.

Lemma 4 and Propositions 5 and 6 together imply the fol-
lowing:

Theorem 7. For each S ∈ {CO ,TC ,UC , k-kings,BA},
MoVS satisfies cover-consistency.

In light of Theorem 7, one may wonder whether a stronger
property, in which x covers y implies the strict inequality
MoVS(x) > MoVS(y), can also be achieved. However, the
answer is negative for all Condorcet-consistent tournament
solutions, including all solutions that we consider. Indeed,
in a transitive tournament x � y � z of size 3, such a solu-
tion only selects x. But since all three alternatives are chosen
when they form a cycle (due to symmetry), both y and z can
be brought into the winner set by reversing only one edge,
so MoVS(y) = −1 = MoVS(z) even though y covers z.

3.2 Degree-Consistency
Given a tournament solution S and a tournament T , the
MoVS values yield a natural ranking (possibly including
ties) of the alternatives in T , where alternative x is ranked
higher than y whenever MoVS(x, T ) > MoVS(y, T ). We
are interested in how closely this ranking by MoV values re-
sembles the ranking by Copeland scores, according to which
x is ranked higher than y if outdeg(x) > outdeg(y).

Definition 8. For a tournament solution S, we say that
MoVS is

• degree-consistent if, for any tournament T and any alter-
natives x, y ∈ V (T ), outdeg(x) > outdeg(y) implies
MoVS(x, T ) ≥ MoVS(y, T );

• equal-degree-consistent if, for any tournament T and any
alternatives x, y ∈ V (T ), outdeg(x) = outdeg(y) im-
plies MoVS(x, T ) = MoVS(y, T ); and

• strong degree-consistent if, for any tournament T and any
alternatives x, y ∈ V (T ), outdeg(x) ≥ outdeg(y) im-
plies MoVS(x, T ) ≥ MoVS(y, T ).

It follows from the definitions that MoVS is strong
degree-consistent if and only if it is both degree-consistent
and equal-degree-consistent. Observe also that cover-
consistency is implied by degree-consistency.

We remark that these properties are not necessarily de-
sirable from a normative perspective: Whereas the rank-
ing implied by a strongly degree-consistent MoV function
merely represents a coarsening of the straightforward rank-
ing by outdegree, we are often interested in tournament solu-
tions that take more structure of the tournament into account
and, as a consequence, have MoV functions that may violate
(equal-)degree-consistency. Indeed, since degree-consistent
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MoV functions are in line with Copeland scores, their sig-
nificance is somewhat limited and there would be little addi-
tional value derived from the MoV computations, which in
some cases are much more involved than simply calculating
Copeland scores.

We start by assessing the degree-consistency of MoVCO .
Proposition 9. MoVCO satisfies degree-consistency, but not
equal-degree-consistency.

Next, we consider the top cycle. Recall that, for a given
tournament T of size n, TC coincides with k-kings for k =
n− 1. In order to show that MoVTC satisfies strong degree-
consistency, we need two lemmas (one of which is already
known). We first introduce some notation.

Given a tournament T and distinct alternatives x, y ∈
V (T ), an edge set R ⊆ E(T ) is said to be a k-length
bounded x-y-cut if, once R is removed, every path from
x to y has length strictly greater than k. Denote by
min-cutk(x, y) the size of a smallest k-length bounded x-
y-cut. A set R is said to be a k-length bounded x-cut if it is
a k-length bounded x-y-cut for some y ∈ T .
Lemma 10 (Lemma 4 by Brill et al. (2020b)). For any k ∈
{2, 3, . . . , n − 1}, a set R ⊆ E(T ) is a minimum DRS for
x with respect to k-kings if and only if R is a minimum k-
length bounded x-cut in T .

The next lemma establishes a surprisingly succinct re-
lation between the sizes of the minimum cuts with re-
spect to a pair of alternatives, and can be shown using
the max-flow min-cut theorem. Define min-cut(x, y) =
min-cutn−1(x, y).
Lemma 11. Let T be a tournament and x, y ∈ V (T ). Then,

min-cut(x, y)−min-cut(y, x) = outdeg(x)− outdeg(y).

Theorem 12. MoVTC satisfies strong degree-consistency.

Proof. Fix a tournament T and let x, y ∈ V (T ) with
outdeg(x) ≥ outdeg(y). First, we show that x, y ∈ TC (T )
constitutes the only non-trivial case. Since all alternatives
in TC (T ) dominate all alternatives outside, it cannot be
that x 6∈ TC (T ) and y ∈ TC (T ). If x, y 6∈ TC (T ),
Brill et al. (2020b) showed that MoVTC (x, T ) = −1 =
MoVTC (y, T ). If x ∈ TC (T ) and y 6∈ TC (T ), then
MoVTC (x) > 0 > MoVTC (y).

Assume now that x, y ∈ TC (T ). Let R be a minimum
DRS for x. By Lemma 10 with k = n − 1, we know that
R is a minimum x-t-cut for some t ∈ V (T ). We consider
two cases. First, assume that R is also a y-t-cut. Then, a
minimum y-t-cut R′ ⊆ E(T ) satisfies |R′| ≤ |R|, proving
that MoVTC (x, T ) = |R| ≥ |R′| ≥ MoVTC (y, T ). For
the second case, assume that R is not a y-t-cut. Then, R
needs to be an x-y-cut (since otherwise x can reach t via y),
and therefore it must be a minimum x-y-cut. By Lemma 11,
since outdeg(x) ≥ outdeg(y), for a minimum y-x-cut R′
it holds that |R| ≥ |R′|. Hence MoVTC (x, T ) = |R| ≥
|R′| ≥ MoVTC (y, T ).

On the other hand, we show in the next three propositions
that UC , BA, and k-kings do not satisfy any of the degree-
consistency properties.

Proposition 13. MoVUC , MoVBA, and MoVk-kings (for
constant k ≥ 3) satisfy neither degree-consistency nor
equal-degree-consistency.
Corollary 14. MoVCO ,MoVUC ,MoVk-kings (for constant
k ≥ 3), and MoVBA do not fulfill strong degree-consistency.

3.3 A Probabilistic Result
In this section, we establish a simple formula for the MoV
of TC and k-kings for k ≥ 4 that works “with high proba-
bility”, i.e., the probability that the formula holds converges
to 1 as n grows. We assume that the tournament is gener-
ated using the uniform random model, where each edge is
oriented in either direction with equal probability indepen-
dently of other edges; this model has been studied, among
others, by Fey (2008) and Scott and Fey (2012).
Theorem 15. Let S ∈ {TC , k-kings}, where 4 ≤ k ≤
n − 1. Assume that a tournament T is generated according
to the uniform random model. Then, with high probability,
the following holds for all x ∈ V (T ) simultaneously:

MoVS(x, T ) = min

(
outdeg(x), min

y∈V (T ):y 6=x
indeg(y)

)
.

Theorem 15 suggests that when tournaments are gener-
ated according to the uniform random model, MoVTC and
MoVk-kings for k ≥ 4 can likely be computed by a simple
formula based on the degrees of the alternatives. In partic-
ular, even though the problem is computationally hard for
MoVk-kings for any constant k ≥ 4 (Brill et al. 2020b), there
exists an efficient heuristic that correctly computes the MoV
value in most cases. In the full version (Brill et al. 2020a),
we give an example showing that the heuristic is not always
correct. More precisely, for any positive integer `, we con-
struct a tournament such that {MoVTC (x, T ) | x ∈ V (T )}
contains the values 1, 2, . . . , ` whereas the formula in Theo-
rem 15 predicts that all alternatives have the same (arbitrar-
ily large) MoVTC value.

At a high level, to prove this theorem, we first observe
that by a result of Fey (2008), it is likely that S(T ) = V (T ),
i.e., all alternatives are chosen by S. In order to remove al-
ternative x from the winner set, one option is to make it a
Condorcet loser—this requires outdeg(x) reversals—while
another option is to make another alternative y a Condorcet
winner—this requires indeg(y) reversals. Hence, the left-
hand side is at most the right-hand side. To establish that
both sides are equal with high probability, we need to show
that the aforementioned options are the best ones for mak-
ing x a non-winner—by Lemma 10, this requires making
some y unreachable from x in four steps. The intuition be-
hind this claim is that the tournament resulting from the uni-
form random model is highly connected, with many paths of
length at most four from x to y. Thus, if we want to make y
unreachable from x, it is unlikely to be beneficial to destroy
intermediate edges instead of edges adjacent to x or y.

4 Experiments
In order to better understand how MoV values of tourna-
ment solutions behave in practice, we conducted computa-
tional experiments using randomly generated tournaments.
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Figure 2: The illustrations show the average number of alternatives with maximum MoV value for the uniform random model
(left) and the urn model (right), for different tournament solutions and sizes. For comparison, the average size of the entire
winning set of the corresponding original tournament solution is depicted by a lighter shade.

For the sake of diversity of the generated instances, we im-
plemented six different stochastic models to generate tour-
naments. To make our study comparable to the experiments
presented by Brandt and Seedig (2016), we selected a simi-
lar set of stochastic models and parameterizations.

Given a tournament solution S and a tournament T , we
are interested in
• the number | argmaxx∈V (T ) MoVS(x, T )| of alternatives

with maximum MoVS value, and
• the number |{MoVS(x, T ) : x ∈ V (T )}| of different
MoV values taken by all alternatives in the tournament.

The first value directly measures the discriminative power
of the refinement of S that only selects alternatives with a
maximal MoVS value, whereas the second value measures
more generally the ability of the MoV notion to distinguish
between the alternatives in a tournament.

Set-up We used six stochastic models to generate prefer-
ences: the uniform random model (which was used in Sec-
tion 3.3), two variants of the Condorcet noise model (with
and without voters), the impartial culture model, the Pólya-
Eggenberger urn model, and the Mallows model. Detailed
descriptions of these models can be found in the full version
of our paper (Brill et al. 2020a).

For each stochastic model and each number of alterna-
tives n ∈ {5, 10, 15, 20, 25, 30}, we sampled 100 tourna-
ments. Using the methods described by Brill et al. (2020b),
we implemented algorithms to calculate the MoV values for
CO , UC , 3-kings, and TC . Due to their computational in-
tractability, we did not implement procedures to calculate
the MoV values for BA and k-kings for k ≥ 4.

The experiments were carried out on a system with 1.4
GHz Quad-Core Intel Core i5 CPU, 8GB RAM, and macOS
10.15.2 operating system. The software was implemented
in Python 3.7.7 and the libraries networkx 2.4, matplotlib

3.2.1, numpy 1.18.2, and pandas 1.0.3 were used. For im-
plementing the Mallows and urn models, we utilized im-
plementations contributed by Mattei and Walsh (2013). The
code for our implementation can be found at http://github.
com/uschmidtk/MoV.

Results For two representative stochastic models (uniform
random and urn), Figure 2 depicts the average size of the
set of alternatives with maximum MoV value, and Figure 3
shows the average number of unique MoV values. Results on
the other four models (impartial culture, Mallows, and two
variants of Condorcet noise) can be found in the full version
(Brill et al. 2020a).

Observations The first observation we make is that
MoV3-kings behaves rather similarly to MoVTC : the aver-
age number of alternatives with maximum MoV grows with
increasing n, and this number is on average slightly less
than half of the number of 3-kings and TC winners, respec-
tively. However, this ratio becomes smaller for tournaments
where the number of 3-kings or TC winners is already large.
For example, when we only consider tournaments where the
number of TC winners is greater than 10, only one-third of
the TC winners have a maximum MoVTC value on aver-
age; the same holds for 3-kings. However, a more detailed
look at the experimental results show that for both 3-kings
and TC , the set of alternatives with maximum MoV con-
sists of only one alternative in around 73% of all instances,
while in the remaining instances this set is typically large.
This particular behavior for TC and the uniform random
model can be explained by Theorem 15: With high prob-
ability, the MoV values for TC winners follow a specific
formula based on the degrees, which leads to the set of al-
ternatives with maximum MoV containing either a single al-
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Figure 3: The illustrations show the average number of unique MoV values for the uniform random model (left) and the urn
model (right), for different tournament solutions and sizes. For comparison, the average number of unique Copeland scores is
shown in violet.

ternative or a large number of alternatives in most cases.4
Our experiments show that this behavior is also present in
tournaments generated by other stochastic models as well
as for 3-kings; formalizing the behavior theoretically is an
interesting future direction.

Our second main observation is that MoVUC behaves
quite differently from MoV3-kings and MoVTC . Most impor-
tantly, the number of UC winners with maximum MoVUC

does not increase with a growing number of alternatives, but
remains more or less constant for each stochastic model. For
the uniform random model and the Condorcet noise mod-
els, this value is around 2, while it is roughly 1.4 for Mal-
lows, the urn model, and the impartial culture model. As
can be seen in Figure 2, the set of alternatives maximizing
MoVUC is almost as discriminative as the Copeland set (all
of whose alternatives maximize MoVCO ). However, we ob-
serve in Figure 3 that the number of unique values of the
Copeland score is notably higher than that of MoVUC . The
latter is particularly low for models which tend to create
tournaments with small UC , including Mallows, impartial
culture and the urn model. Both of these effects can be ex-
plained by the observation that MoVUC is significantly bet-
ter at distinguishing between UC winners than it is at dis-
tinguishing between UC non-winners.5 As a consequence,
tournaments with a small uncovered set generally give rise
to a small number of unique MoVUC values.

4Indeed, if there is a unique Copeland winner, that winner will
be the unique alternative with the largest MoV according to the for-
mula. Otherwise, for several alternatives (including the Copeland
winners), it can be the case that their MoV is equal to indeg(y) for
a Copeland winner y.

5Brill et al. (2020b) showed that the smallest MoVUC value
in a tournament is bounded below by −dlog2(n)e, and that this
bound is asymptotically tight. In our experiments, we observed that
in most generated tournaments, the smallest MoVUC value is much
higher than this lower bound, namely either −1 or −2.

5 Discussion
The recently introduced notion of margin of victory (MoV)
provides a generic framework for refining any tournament
solution. In this paper, we have contributed to the under-
standing of the MoV by providing not only structural in-
sights but also experimental evidence regarding the extent to
which it refines winner sets in stochastically generated tour-
naments. We established that the MoV is consistent with the
covering relation for all considered tournament solutions.
Moreover, we have identified a number of tournament so-
lutions, including the uncovered set and the Banks set, for
which the corresponding MoV values give insights into the
structure of the tournament that go beyond simply compar-
ing the outdegrees of alternatives, as witnessed by the fact
that these MoV functions do not satisfy degree-consistency.

In our experiments, the MoV function corresponding to
the uncovered set (UC ) stands out for its discriminative
power: not only is the set max-MoVUC (containing all al-
ternatives with maximal MoVUC score) consistently small,
but the number of distinct MoVUC scores is also relatively
high in general. It is consequently tempting to suggest max-
MoVUC as a new tournament solution. Besides its discrim-
inative power and structural appeal, it can be computed ef-
ficiently (Brill et al. 2020b) and inherits Pareto optimality
from the uncovered set, which it refines (Brandt, Geist, and
Harrenstein 2016). However, a thorough axiomatic analysis
of max-MoVUC , as well as max-MoVS for other tournament
solutions S, is still outstanding.

For tournaments with several highest-scoring alternatives
(i.e., several alternatives whose minimal destructive reversal
sets are of the same maximal size), the number of distinct
destructive reversal sets may serve as a further criterion for
distinguishing between winners. It would therefore be inter-
esting to determine the complexity of computing such num-
bers, and also to study the size of the resulting refined winner
set experimentally in future work.
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