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Abstract

We introduce the use of reinforcement learning for indirect
mechanisms, working with the existing class of sequential
price mechanisms, which generalizes both serial dictatorship
and posted price mechanisms and essentially characterizes
all strongly obviously strategyproof mechanisms. Learning
an optimal mechanism within this class forms a partially-
observable Markov decision process. We provide rigorous
conditions for when this class of mechanisms is more pow-
erful than simpler static mechanisms, for sufficiency or in-
sufficiency of observation statistics for learning, and for the
necessity of complex (deep) policies. We show that our ap-
proach can learn optimal or near-optimal mechanisms in sev-
eral experimental settings.

Introduction

Over the last fifty years, a large body of research in microe-
conomics has introduced many different mechanisms for re-
source allocation. Despite the wide variety of available op-
tions, “simple” mechanisms such as posted price and serial
dictatorship are often preferred for practical applications,
including housing allocation (Abdulkadiroglu and Sénmez
1998), online procurement (Badanidiyuru, Kleinberg, and
Singer 2012), or allocation of medical appointments (Klaus
and Nichifor 2019).

There has also been considerable interest in formalizing
different notions of simplicity. Li (2017) identifies mech-
anisms that are particularly simple from a strategic per-
spective, introducing the concept of obviously strategyproof
mechanisms. These are mechanisms in which it is obvious
that an agent cannot profit by trying to game the system, as
even the worst possible final outcome from behaving truth-
fully is at least as good as the best possible outcome from
any other strategy. More recently, Pycia and Troyan (2019)
introduce the still stronger concept of strongly obviously
strategyproof (SOSP) mechanisms, and show that this class
is essentially equivalent to the sequential price mechanisms,
where agents are visited in turn and offered a choice from
a menu (which may or may not include transfers). SOSP
mechanisms are ones in which an agent is not even required
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to consider her future (truthful) actions to understand that a
mechanism is obviously strategyproof.

Despite being simple to use, designing optimal sequen-
tial price mechanisms can be a hard task, even when target-
ing common objectives, such as maximum welfare or max-
imum revenue. For example, in unit-demand settings with
multiple items, the problem of computing prices that maxi-
mize expected revenue given discrete prior distributions on
buyer values is NP-hard (Chen et al. 2014). More recently,
Agrawal, Sethuraman, and Zhang (2020) showed a similar
result for the problem of determining an optimal order in
which agents will be visited when selling a single item us-
ing posted price mechanisms.

Our Contribution. In this paper, we introduce the first
use of reinforcement learning (RL) for the design of indi-
rect mechanisms, applying RL to the design of optimal se-
quential price mechanisms (SPMs), and demonstrate its ef-
fectiveness across a wide range of settings with different
economic features. We generally focus on mechanisms that
optimize expected welfare. However, the framework is com-
pletely flexible, allowing for different objectives, and in ad-
dition to welfare, we illustrate its use for max-min fairness
and revenue.

The problem of learning an optimal SPM is formulated as
a partially observable Markov decision process (POMDP).
In this POMDP, the environment (i.e., the state, transitions,
and rewards) models the economic setting, and the policy,
which observes purchases and selects the next agent and
prices based on those observations, encodes the mechanism
rules. Solving for an optimal policy is equivalent to solv-
ing the mechanism design problem. For the SPM class, we
can directly simulate agent behavior as part of the environ-
ment since there is a dominant-strategy equilibrium. We give
requirements on the statistic of the history of observations
needed to support an optimal policy and show that this statis-
tic can be succinctly represented in the number of items and
agents. We also show that non-linear policies based on these
statistics may be necessary to increase welfare. Accordingly,
we use deep-RL algorithms to learn mechanisms.

The theoretical results provide rigorous conditions for
when SPMs are more powerful than simpler static mecha-
nisms, providing a new understanding of this class of mech-
anisms. We show that for all but the simplest settings, adjust-



ing the posted prices and the order in which agents are vis-
ited based on prior purchases improves welfare outcomes.
Lastly, we report on a comprehensive set of experimental
results for the Proximal Policy Optimization (PPO) algo-
rithm (Schulman et al. 2017). We consider a range of set-
tings, from simple to more intricate, that serve to illustrate
our theoretical results as well as generally demonstrate the
performance of PPO, as well as the relative performance of
SPMs in comparison to simple static mechanisms.

Further Related Work. Economic mechanisms based on
sequential posted prices have been studied since the early
2000s. Sandholm and Gilpin (2003) study fake-it-or-leave-it
auctions for a single item, visiting buyers in turn and mak-
ing them offers. They introduced a linear-time algorithm
that, in specific settings with two buyers, computes an opti-
mal sequence of offers to maximize revenue. More recently,
building on the prophet inequality literature, Kleinberg and
Weinberg (2012), Feldman, Gravin, and Lucier (2015), and
Diitting et al. (2016) derived different welfare and revenue
guarantees for posted prices mechanisms for combinatorial
auctions. Klaus and Nichifor (2019) studied SPMs in set-
tings with homogeneous items, showing that they satisfy
many desirable properties in addition to being strategyproof.

Another related research thread is that of automated
mechanism design (AMD) (Conitzer and Sandholm 2002,
2004), which seeks to use algorithms to design mecha-
nisms. Machine learning has been used for the design of
direct mechanisms (Diitting et al. 2015; Narasimhan, Agar-
wal, and Parkes 2016; Duetting et al. 2019; Golowich,
Narasimhan, and Parkes 2018), including sample complex-
ity results (Cole and Roughgarden 2014; Gonczarowski and
Weinberg 2018, e.g). There have also been important the-
oretical advances, identifying polynomial-time algorithms
for direct-revelation, revenue-optimal mechanisms (Cai,
Daskalakis, and Weinberg 2012a,b, 2013, e.g.).

Despite this rich research thread on direct mechanisms,
the use of AMD for indirect mechanisms is less well un-
derstood. Indirect mechanisms have an imperative nature
(e.g., sequential, or multi-round), and may involve richer
strategic behaviors. Machine learning has been used to re-
alize indirect versions of mechanisms such as the VCG
mechanism, or together with assumptions of truthful re-
sponses (Lahaie and Parkes 2004; Blum et al. 2004; Brero,
Lubin, and Seuken 2020). Situated towards finding clearing
prices for combinatorial auctions, the work by Brero, La-
haie, and Seuken (2019) involves inference about the valua-
tions of agents via Bayesian approaches.

Related to RL, but otherwise quite different from our set-
ting, Shen et al. (2020) study the design of reserve prices
in repeated ad auctions, i.e., direct mechanisms, using an
MDP framework to model the interaction between pricing
and agent response across multiple instantiations of a mech-
anism (whereas, we use a POMDP, enabling value infer-
ence across the rounds of a single SPM). This use of RL
and MDPs for the design of repeated mechanisms has also
been considered for matching buyer impressions to sellers
on platforms such as Taobao (Tang 2017; Cai et al. 2018).
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Preliminaries

Economic Framework. There are n agents and m indi-
visible items. Let [n] = {1,...,n} be the set of agents
and [m] be the set of items. Agents have a valuation func-
tion v; : olml _y R that maps bundles of items to a real
value. As a special case, a unit-demand valuation is one in
which an agent has a value for each item, and the value for a
bundle is the maximum value for an item in the bundle. Let
v = (v1,...,v,) denote the valuation profile. We assume v
is sampled from a possibly correlated value distribution D.
The designer can access this distribution D through samples
from the joint distribution.

An allocation x = (x1,...,x,) is a profile of disjoint
bundles of items (z; N x; = O for every i # j € [n]), where
x; C [m] is the set of items allocated to agent i.

An economic mechanism interacts with agents and deter-
mines an outcome, i.e., an allocation x and transfers (pay-
ments) 7 = (71,...,7n), where 7; > 0 is the payment by
agent ¢. We measure the performance of a mechanism out-
come (x, 7) under valuation profile v via an objective func-
tion g(x, T;v).

Our goal: Design a mechanism whose outcome maximizes
the expected value the objective function with respect to the
value distribution.

Our framework allows for different objectives such as:
* social welfare: g(x, T;v) = >, ¢, vi(@i),

* revenue: g(X, T;V) = 3 ,c(, T and

* max-min fairness: g(X, 7;v) = min;c,) v (;).

Sequential Price Mechanisms. We study the family of
SPMs. An SPM interacts with agents across rounds, ¢ €
{1,2,...}, and visits a different agent in each round. At the
end of round ¢, the mechanism maintains the following pa-
rameters: a temporary allocation xt of the first ¢ agents vis-
ited, a temporary payment profile T, and a residual setting
pt = (pggenls’ pftems) Where pggents g [n] and pittems g [m]
are the set of agents yet to be visited and items still avail-
able, respectively. In each round ¢, (1) the mechanism picks
an agent i' € plan and posts a price p for each avail-
able item j € pf_l: (2) agent i’ selects a bundle z* from
the set of available items and is charged payment » jeat p§-;
(3) the remaining items, remaining agents, temporary allo-
cation, and temporary payment profile are all updated ac-
cordingly. Here, it is convenient to initialize with pggems =

(], P00 = [m],x" = (0,...,0) and 70 = (0,...,0).

Learning Framework. The sequential nature of SPMs,
as well as the private nature of agents’ valuations, makes
it useful to formulate this problem of automated mecha-
nism design as a partially observable Markov decision pro-
cess (POMDP). A POMDP (Kaelbling, Littman, and Cas-
sandra 1998) is an MDP (given by a state space S, an action
space A, a Markovian state-action-state transition probabil-
ity function P(s’; s,a), and a reward function r (s, a)), to-
gether with a possibly stochastic mapping from each action
and resulting state to observations o given by P(o; s', a).



For SPMs, the state corresponds to the items still unallo-
cated, agents not yet visited, a partial allocation, and valua-
tion functions of agents. An action determines which agent
to go to next and what prices to set. This leads to a new state
and observation, namely the item(s) picked by the agent. In
this way, the state transition is governed by agent strategies,
i.e., the dominant-strategy equilibrium of SPMs. A policy
defines the rules of the mechanism. An optimal policy for a
suitably defined reward function corresponds to an optimal
mechanism. Solving POMDPs requires reasoning about the
belief state, i.e., the belief about the distribution on states
given a history of observations. A typical approach is to find
a sufficient statistic for the belief state, with policies defined
as mappings from this statistic to actions.

Characterization Results

In SPMs, the outcomes from previous rounds can be used to
decide which agent to visit and what prices to set in the cur-
rent round. This allows prices to be personalized and adap-
tive, and it also allows the order in which agents are visited
to be adaptive. We next introduce some special cases.

Definition 1 (Anonymous static price (ASP) mechanisms).
Prices are set at the beginning (in a potentially random way)
and are the same across rounds and for every agent.

An example of a mechanism in the ASP class is the static
pricing mechanism in Feldman, Gravin, and Lucier (2015).

Definition 2 (Personalized static price (PSP) mechanisms).
Prices are set at the beginning (in a potentially random way)
and are the same across rounds, but each agent might face
different prices.

Beyond prices, we are also interested in the order in which
agents are selected by the mechanism:

Definition 3 (Static order (SO) mechanisms). The order is
set at the beginning (in a potentially random way) and does
not change across rounds.

We illustrate the relationship between the various mecha-
nism classes in Figure 1.

The ASP class is a subset of the PSP class, which is a sub-
set of SPM.! Serial dictatorship (SD) mechanisms are a sub-
set of ASP (all payments are set to zero) and may have adap-
tive or static order. The random serial dictatorship mecha-
nism (RSD) (Abdulkadiroglu and Sénmez 1998) lies in the
intersection of SD and static order (SO).

The Need for Personalized Prices and Adaptiveness

In this section, we show that personalized prices and adap-
tiveness are necessary for optimizing welfare, even in sur-
prisingly simple settings. This further motivates formulating
the design problem as a POMDP and using RL methods to
solve it. We return to the examples embodied in the proofs
of these propositions in our experimental work.

Define a welfare-optimal SPM to be a mechanism that op-
timizes expected social welfare over the class of SPMs.

'As with PSP mechanisms, there exist ASP mechanisms that
can take useful advantage of adaptive order (while holding prices
fixed); see Proposition 3.
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SPM

Figure 1: The Sequential Price Mechanism (SPM) Taxon-
omy.

Proposition 1. There exists a setting with one item and two
1ID agents where the welfare-optimal SPM mechanism must
use personalized prices.

Proof. Consider a setting with one item and two IID agents
where each has a valuation distributed uniformly on the set
{1, 3}. Note that it is WLOG to only consider prices of 0 and
2. One optimal mechanism first offers the item to agent 1 at
price p1 = 2. Then, if the item remains available, the mech-
anism offers the item to agent 2 at price p?> = 0. No single
price p can achieve OPT. If p = 0, the first agent visited
might acquire the item when they have value 1 and the other
agent has value 3. If p = 2, the item will go unallocated if
both agents have value 1. O

Note that an adaptive order would not eliminate the need
for personalized prices in the example used in the proof of
Proposition 1. Interestingly, we need SPMs with adaptive
prices even with IID agents and identical items.

Proposition 2. There exists a unit-demand setting with two
identical items and three IID agents where the welfare-
optimal SPM must use adaptive prices.

We provide a proof sketch, and defer the proof to the full
version of this work. The need for adaptive prices comes
from the need to be responsive to the remaining supply of
items after the decision of the first agent: (i) if this agent
buys, then with one item and two agents left, the optimal
price should be high enough to allocate the item to a high-
value agent, alternatively (ii) if this agent does not buy, sub-
sequent prices should be low to ensure both remaining items
are allocated.

The following proposition shows that an adaptive order
may be necessary, even when the optimal prices are anony-
mous and static.

Proposition 3. There exists a unit-demand setting with two
identical items and six agents with correlated valuations



where the welfare-optimal SPM must use an adaptive order
(but anonymous static prices suffice).

We defer the proof to the full version. The intuition is that
the agents’ valuations are dependent, and knowing one par-
ticular agent’s value gives important insight into the condi-
tional distributions of the other agents’ values. This “bell-
weather” agent’s value can be inferred from their decision
to buy or not, and this additional inference is necessary for
ordering the remaining agents optimally. Thus the mecha-
nism’s order must adapt to this agent’s decision.

Even when items are identical, and agents’ value distri-
butions are independent, both adaptive order and adaptive
prices may be necessary.

Proposition 4. There exists a unit-demand setting with two
identical items and four agents with independently (non-
identically) distributed values where the welfare-optimal
SPM must use both adaptive order and adaptive prices.

We defer the proof to the full version. The intuition is that
one agent has both a higher “ceiling” and higher “floor” of
value compared to some of the other agents. It is optimal
for the mechanism to visit other agents in order to deter-
mine the optimal prices to offer this particular agent, and
this information-gathering process may take either one or
two rounds. We present additional, fine-grained results re-
garding the need for adaptive ordering of agents for SPMs
in the full version.

Learning Optimal SPMs

In this section, we cast the problem of designing an opti-

mal SPM as a POMDP problem. Our discussion mainly re-

lates to welfare maximization, but we will also comment on
how our results extend to revenue maximization and max-
min fairness.

We define the POMDP as follows:

« Astate s = (v,x'"! p'~1) is a tuple consisting of the
agent valuations v, the current partial allocation x!~1 and
the residual setting p'~! consisting of agents not yet vis-
ited and items not yet allocated.

e An action a’ = (i%, p') defines the next selected agent '
and the posted prices p'.

* For the state transition, the selected agent chooses an item
or bundle of items z¢, leading to a new state stt1 where
the bundle z* is added to partial allocation x*~! to form
a new partial allocation x?, and the items and agent are
removed from the residual setting p'~! to form p’.

* The observation o'*! = z! consists of the item or set of
items x* chosen by the agent selected at round ¢.

e We only provide rewards in terminal states, when the
mechanism outcome x, 7 is available. These terminal re-
wards are given g(x, T; v); that is, the objective function
we want to maximize.

2We note that, depending on the objective at hand, one can de-
sign intermediate reward schemes (e.g., under welfare maximiza-
tion, value of agent i* for bundle z°) that may improve learning
performance. We choose to only provide final rewards in order to
support objectives that can be calculated only given the final out-
come, such as max-min fairness.
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Next, we study the information that suffices to determine
an optimal action after any history of observations. We show
the analysis is essentially tight for the case of unit-demand
valuations and the social welfare objective. We defer the
proofs to the full version of this paper.

Proposition 5. For agents with independently (non-
identically) distributed valuations, with the objective of
maximizing welfare or revenue, maintaining remaining
agents and items suffices to determine an optimal policy.

Interestingly, the statement in Proposition 5 is no longer
true when dealing with a more allocation-sensitive objective
such as max-min fairness.> The next theorem reasons about
history information for all distributions and objectives.

Theorem 1. With correlated valuations, the allocation ma-
trix along with the agents who have not yet received an offer
is sufficient to determine an optimal policy, whatever the de-
sign objective. Moreover, there exists a unit-demand setting
with correlated valuations where optimal policies must use
information of size Q (min{n, m} log (max{n, m})).

For sufficiency, the allocation matrix and remaining
agents always suffices to recover the entire history of ob-
servations of any (deterministic) policy. The result follows,
since there always exists deterministic, optimal policies for
POMDPs given the entire history of observations (this fol-
lows by the Markov property (Bellman 1957)). Since the
current allocation and remaining agents can be encoded in
O (min{n, m} log (max{n,m})) space, Theorem 1 also es-
tablishes that carrying the current allocation and remaining
agents is necessary from a space complexity viewpoint. An-
other direct corollary is that knowledge of the remaining
agents and items (linear space), and not decisions of previ-
ous agents, is not in general enough information to support
optimal policies. The problem that arises with correlated val-
uations comes from the need for inference about the valua-
tions of remaining agents.

As the next proposition shows, policies that can only ac-
cess remaining agents correspond to a special case of SPMs.

Proposition 6. The subclass of SPMs with static, possibly
personalized prices, and a static order, corresponds to poli-
cies that only have access to the set of remaining agents.

Linear Policies are Insufficient. Given access to the allo-
cation matrix and remaining agents, it is also interesting to
understand the class of policies that are necessary to support
the welfare-optimal mechanisms. Given input parameters x,
linear policies map the input to the ¢th output using a linear

3Consider an instance where some agents have already arrived
and been allocated, and the policy can either choose action a or
b. Action a leads to a max-min value of yet to arrive agents of 5
with probability 1/2, and 1 with probability 1/2. Action b leads to
a max-min value of yet to arrive agents of 10 with probability 1/2,
and 0 with probability 1/2. If the max-min value of the partial al-
location is 2, then the optimal action to take is action a. However,
if the max-min value of the partial allocation is 10, then the opti-
mal action is b. In particular, inference about the values of agents
already allocated is necessary to support optimal actions, and the
simple remaining agents/items statistic is not sufficient.



transformation z - 6], where § = {6,}, are parameters of
the policy. For the purpose of our learning framework, x is
a flattened binary allocation matrix and a binary vector of
the remaining agents. We output n 4 m output variables rep-
resenting the scores of agents (implying an order), and the
prices of items. We are able to show that linear policies are
insufficient.

Proposition 7. There exists a setting where the welfare-
optimal SPM cannot be implemented via a policy that is lin-
ear in the allocation matrix and remaining agents.

This provides support for non-linear methods for the SPM
design problem, motivating the use of neural networks.

Experimental Results

In this section, we test the ability of standard RL algorithms
to learn optimal SPMs across a wide range of settings.

RL Algorithm. Motivated by its good performance across
different domains, we report our results for the proximal pol-
icy optimization (PPO) algorithm (Schulman et al. 2017),
a policy gradient algorithm where the learning objective is
modified to prevent large gradient steps, and as implemented
in OpenAl Stable Baselines.* Similarly to Wu et al. (2017);
Mnih et al. (2016), we run each experiment using 6 seeds
and use the 3 seeds with highest average performance to plot
the learning curves in figures 2 - 4. At periodic intervals dur-
ing training, we evaluate the objective of the current policy
using a fresh set of samples. It is these evaluation curves that
are shown in our experiment figures. “Performance” means
average objective value of the three selected seeds—objective
value is welfare, revenue, or max-min fairness, depending
on the setting. The shaded regions show 95% confidence in-
tervals based on the average performances of the 3 selected
seeds. This is done to plot the benchmarks as well.

We encode the policy via a standard 2-layer multilayer
perceptron (MLP) (Bourlard and Wellekens 1989) network.
The policy takes as input a statistic of the history of obser-
vations (different statistics used are described below), and
outputs n + m output variables, used to determine the con-
sidered agent and the prices in a given round. The first n
outputs give agents’ weights, and agent i¢ is selected as the
highest-weight agent among the remaining agents using a
argmax over the weights. The other m weights give the
prices agent 4! is faced. The state transition function models
agents that follow their dominant strategy, and pick a utility-
maximizing bundle given offered prices.

At the end of an episode, we calculate the reward. For so-
cial welfare, this reflects the allocation and agent valuations;
other objectives can be captured, e.g., for revenue the reward
is the total payment collected, and for max-min fairness, the
reward is the minimum value across agents. We also employ
variance-reduction techniques, as is common in the RL lit-
erature (Greensmith, Bartlett, and Baxter 2004, e. g.).5

“We use the OpenAl Stable Baselines version v2.10.0
(https://github.com/hill-a/stable-baselines).

3For welfare and revenue, we subtract the optimal welfare from
the achieved welfare at each episode. As the optimal welfare does
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In order to study trade-offs between simplicity and robust-
ness of learned policies, we vary the statistic of the history
of observations that we make available to the policy:

1. Items/agents left, encoding which items are still available
and which agents are still to be considered. As discussed
above, this statistic supports optimal policies when agents
have independently distributed valuations for welfare and
revenue maximization.

Allocation matrix that, in addition to items/agents left, en-
codes the temporary allocation x* at each round ¢. As dis-
cussed above, this statistic supports optimal policies even
when agents’ valuations are correlated and for all objec-
tives.

Price-allocation matrix, which, in addition to
items/agents left and temporary allocation, stores an
n X m real-valued matrix with the prices the agents have
faced so far. This is a sufficient statistic for our POMDPs
as it captures the entire history of observations.

Baselines. We consider the following three baselines:

1. Random serial dictatorship, where the agents’ order is de-
termined randomly, and prices are set to zero.

Anonymous static prices, where we constrain policies
to those that correspond to ASP mechanisms (this is
achieved by hiding all history from the policy, which
forces the order and prices not to depend on past obser-
vation or the identity of the next agent).

Personalized static prices, where we constrain policies to
the family of PSP mechanisms (this is achieved by only
providing the policy with information about the remaining
agents; see Proposition 6).

Part 1: Correlated Value Experiments (Welfare). Rec-
ognizing the role of correlations in the power that comes
from the adaptivity of SPMs, we first test a setting with
multiple identical copies of an item, and agents with unit-
demand and correlated values. For this, we use parame-
ter 0 < § < 1 to control the amount of correlation. We
sample z ~ U[152, 1+2], and draw v; independently from
unif(z — 152,z + 152). For § = 0 this gives i.i.d. v; all
drawn uniformly between 0 and 1. For § = 1 this gives all
identical v; = z. For intermediary values of & we get in-
creasing correlation between the v;’s.

The results are reported in Figure 2. We vary the num-
ber of agents, items, and §, controlling the level of correla-
tion. We show results for 20 agents and 5 identical items,
and 6 = 0,0.25,0.33, and 0.5. The POMDP with the price-
allocation matrix statistic is able to substantially outperform
the best static mechanism as well as RSD. A dynamic ap-
proach using an allocation matrix or agents and items left
also outperforms a static mechanism, but learns more slowly

not depend on the policy, a policy maximizing this modified reward
also maximizes the original objective.



than an RL policy that is provided with a price history, espe-
cially for larger 4. Results for other combinations of agents
and items (up to 30 each were tested) yield similar results.°

Part 2: Theory-driven Experiments (Welfare). Second,
we look to support the theoretical results described above.
We consider five different settings, each with unit-demand
agents. We defer the full description of the settings to the
full version of this paper. In each of the settings, the optimal
SPM mechanism has different features:

* Colors: the optimal SPM is an anonymous static pricing
mechanism.

* Two worlds: the optimal SPM is a static mechanism but
requires personalized prices.

e Inventory: the optimal SPM makes use of adaptive prices,
and this outperforms the best static personalized price
mechanism, which outperforms the best static and anony-
mous price mechanism.

* Kitchen sink: both types of adaptiveness are needed by the
optimal SPM.

* [D: the statistic of remaining agents and items is not suf-
ficient to support the optimal policy.

Figure 3 shows the results for the different setups. Our ex-
periments show that (a) we are able to learn the optimal SPM
mechanism for each of the setups using deep RL algorithms;
and (b) we are able to show exactly the variation in perfor-
mance suggested by theory, and depending on the type of
statistics used as input for the policy:

* In Figure 3 (a) (Colors) we get optimal performance al-
ready when learning a static anonymous price policy.

* In Figure 3 (b) (Two worlds) a static personalized price
policy performs optimally, but not a static anonymous
price policy.

* Figure 3 (c) (Inventory) adaptive policies are able to
achieve optimal performance, outperforming personal-
ized price mechanisms, which in turn outperform anony-
mous price mechanisms.

* Figure 3 (d) (Kitchen sink) adaptive policies are able to
learn an optimal policy that requires using both adaptive
order and adaptive prices.

* Finally, Figure 3 (e) (ID) some setups require more com-
plex information, as policies that leverage allocation in-
formation outperform the policy that just access remain-
ing agents and items.

Part 3: Beyond Unit Demand, and Beyond Welfare Max-
imization. Third, we present results for more general se-
tups (see the full version of the paper for details):

* Additive-across-types under welfare objective: there are
two item types, and agents have additive valuations on
one unit of each type.

SExperiments with a small number of items, or close to as many
items as agents, yield less-interesting results, as these problems are
much easier and all approaches achieved near-optimal welfare.
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* Revenue maximization: we work in the correlated setting
from part one, with § = 0.5, but for a revenue objective.

* Max-min fairness: the goal is to maximize the minimum
value achieved by an agent in an allocation, and we con-
sider a setting where an adaptive order is required for an
optimal reward.

See Figure 4. These results show the full generality of the
framework, and show the promise in using deep-RL meth-
ods for learning SPMs for varying settings. Interestingly,
they also show different sensitivities for the statistics used
than in the unit-demand, welfare-maximization setting. For
the additive-across-types setting, price information has a still
greater effect on the learning rate. For the max-min fair-
ness setting, providing the entire allocation information has
a large effect on the learning process, as the objective is very
sensitive to specific parts of the allocation; this is also con-
sistent with the fact that agents and items left do not provide
sufficient information for this objective (see the discussion
following Proposition 5).

Conclusion

We have studied the class of SPMs, providing characteri-
zation results and formulating the optimal design problem
as a POMDP problem. Beyond studying the history statis-
tics to support optimal policies, we have also demonstrated
the practical learnability of the class of SPMs in increas-
ingly complex settings. This work points toward many in-
teresting open questions for future work. First, it will be
interesting to adopt policies with a fixed-size memory, for
instance through LSTM methods (Hochreiter and Schmid-
huber 1997), allowing the approach to potentially scale-
up to very large numbers of agents and items (dispens-
ing with large, sufficient statistics). Second, it will be in-
teresting and challenging to study settings where there is
no simple, dominant-strategy equilibrium. This will require
methods to also model agent behavior (Phelps et al. 2002;
Byde 2003; Wellman 2006; Phelps, McBurney, and Parsons
2010; Thompson and Leyton-Brown 2013; Biinz, Lubin, and
Seuken 2018; Areyan Viqueira et al. 2019; Zheng et al.
2020). Third, it is interesting to consider settings that allow
for communication between agents and the mechanism, and
study the automated design of emergent, one- or two-way
communication (c.f., Lowe et al. (2017)).
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Figure 2: Corr. Value, welfare objective. 20 agents, 5 identical items, varying corr. parameter, d. See Figure 3 for legend.
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Ethics Statement

It is important that the data employed for the purpose of au-
tomated mechanism design be representative of the relevant
population. In the setting of mechanism design, it is further
important to recognize that any preference data collected, or
implied through behavior, in a deployed mechanism, may
not reflect true preferences for various reasons (e.g., strate-
gic behavior, satisficing behavior, etc.). Thus, it is challeng-
ing to understand whether the preference distribution used
at design time reflects the true distribution, and indeed this
may change over time and depend on usage patterns. With-
out correct distributional assumptions, the designs may have
disparate impact on different groups, and it may be impor-
tant to give thought to design approaches that can try to keep
track of the true, population-level preference distribution
(and not just those who choose to participate given a cur-
rent design). As with all axiomatic approaches to the design
of the rules to govern multi-agent systems, it is important
to grapple with the appropriate choice of design objective.
In this paper, we adopt social welfare, revenue, and a par-
ticular kind of fairness— max-min fairness —as illustrative
of these considerations. But we take no position on which
is the appropriate objective to fit a particular setting, and
this is a question to be considered by appropriate stakehold-
ers and through participatory design where relevant. Lastly,
this is a research paper, and the techniques should be used
with care and applied while keeping important application-
specific and contextual considerations in mind. Computa-
tional approaches, such as those described here, may actu-
ally play a role in supporting deliberative processes, with
different parties able to train mechanisms to optimize differ-
ent objectives, allowing for a more objective discussion.
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