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Abstract

We consider the classical cake-cutting problem where we
wish to fairly divide a heterogeneous resource, often mod-
eled as a cake, among interested agents. Work on the subject
typically assumes that the cake is represented by an interval.
In this paper, we introduce a generalized setting where the
cake can be in the form of the set of edges of an undirected
graph, allowing us to model the division of road networks.
Unlike in the canonical setting, common fairness criteria such
as proportionality cannot always be satisfied in our setting if
each agent must receive a connected subgraph. We determine
the optimal approximation of proportionality that can be ob-
tained for any number of agents with arbitrary valuations,
and exhibit a tight guarantee for each graph in the case of
two agents. In addition, when more than one connected piece
per agent is allowed, we establish the best egalitarian welfare
guarantee for each total number of connected pieces. We also
study a number of variants and extensions, including when
approximate equitability is considered, or when the item to
be divided is undesirable (also known as chore division).

1 Introduction
Cake cutting refers to the problem of fairly allocating a di-
visible resource, often modeled as a cake, among agents with
varying preferences. The problem dates back to shortly af-
ter the end of World War II (Steinhaus 1948) and, not sur-
prisingly given its wide range of applications, still enjoys
significant attention in mathematics, computer science, eco-
nomics, and political science to this day (Brams and Taylor
1996; Robertson and Webb 1998; Procaccia 2016).

What does it mean for an allocation to be fair? Steinhaus
(1948) proposed the following definition of fairness: if the
cake is divided between n agents, each agent should receive
a part that she values at least 1/n of the entire cake. This def-
inition became known as proportionality, and is one of the
most fundamental notions in the literature of fair division.
In his seminal article, Steinhaus showed that a proportional
allocation can be found for any number of agents with arbi-
trary preferences over the cake—Steinhaus’ method, which
he attributed to Knaster and Banach, was later formulated
as a moving-knife procedure by Dubins and Spanier (1961).
The procedure works by having a referee move a knife over
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the cake from left to right. Whenever the left part has value
1/n of the entire cake for one of the agents, the agent takes
that part of the cake and leaves; the procedure is then re-
peated among the remaining agents. In addition to ensuring
proportionality, the Dubins-Spanier protocol has the impor-
tant property that it always allocates to every agent a con-
nected piece of the cake. Without this property, it may well
be that an agent is presented with—in the famous words of
Stromquist (1980)—a “union of crumbs”.

The proportionality guarantee of the Dubins-Spanier pro-
tocol holds for a variety of resources that one may wish to
divide, since a resource of any shape or form can be “pro-
jected” onto a line, which we can then run the protocol
on. However, the connectivity property does not necessar-
ily translate from the line back to the original shape. A sim-
ple illustrating example is when the resource has the shape
of a ring (e.g., a donut or a ring road): projecting the ring
onto a line and applying Dubins-Spanier may result in an
agent receiving disconnected pieces of the ring. For this ex-
ample, the difficulty can be circumvented by cutting the ring
at an arbitrary point, stretching it into a line, and running the
protocol to achieve proportionality. Nevertheless, one may
already begin to suspect that this type of fix no longer works
when the shapes get more complex.

In this paper, we consider a natural setting where the cake
is represented by the set of edges of an arbitrary undirected
graph. The graph corresponds to a resource in the form of a
network, such as a road network to be divided among con-
struction companies. Each company has its own preference
on different parts of the network, and it is desirable for ev-
ery company to receive a single connected component, or
not too many such components. The canonical cake-cutting
setting—where the cake is assumed to be an interval—is a
special case of our setting, with the graph consisting of a
single edge. We show that proportionality cannot always be
attained in our generalized setting if connectivity is required.
Therefore, our goal in this work is to provide the best pos-
sible approximation of proportionality that can be achieved
for arbitrary graphs and agents’ preferences. Furthermore,
we study a number of variants and extensions, including
when each agent can get more than one connected piece—
we show that better guarantees can indeed be obtained as the
number of permitted pieces increases—or when the item to
be divided is undesirable (often referred to as a chore).
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1.1 Our Results
We assume throughout the paper that the agents are endowed
with valuation functions that are additive and normalized
with each agent having value 1 for the entire cake; these
assumptions are standard in the cake-cutting literature (Pro-
caccia 2016). We also assume that the pieces of cake that
different agents receive may intersect in a finite number of
points. Our formal model is described in Section 2.

In Section 3, we provide general guarantees for any num-
ber of agents. For n agents with arbitrary valuations and any
graph, we establish the existence of a connected allocation
that gives every agent a utility of at least 1

2n−1 . We also show
that this bound is tight even when the agents have identical
valuations and the graph is a star with 2n−1 edges. In addi-
tion, for every specific star graph, we determine the optimal
utility that can be guaranteed for each number of agents.

In Section 4, we delve deeper into the case of two agents.
While we know from Section 3 that both agents can be guar-
anteed a utility of 1/3 in general, for certain graphs it is
possible to do better. Perhaps surprisingly, we show that
the optimal guarantee for each graph is always either 1/3
or 1/2; the latter case corresponds to a proportional allo-
cation. The classification depends on a graph property that
we call almost bridgeless—a graph satisfies this property if
we can add an edge so that the resulting graph contains no
“bridges”, where a bridge refers to an edge that is not con-
tained in any cycle. We show that a guarantee of 1/2 can be
obtained if the graph is almost bridgeless, while 1/3 is the
best possible guarantee otherwise. Moreover, we consider
allocating more than one connected piece to each agent in
arbitrary graphs: we show that for any positive integer k,
both agents can be guaranteed a utility of 1

2 −
1

2·3k if we al-
low the agents to receive a total of k + 1 connected pieces,
and this is tight. We also study approximate equitability and
prove the existence of a connected allocation for which the
agents’ utilities differ by no more than 1/3; we again estab-
lish the tightness of the bound.

Finally, in Section 5, we turn our attention to chore divi-
sion. In the case of two agents there is a simple reduction
between the settings of cake and chores, so all of our results
in Section 4 carry over to chore division. By contrast, when
there are more than two agents, the relationship between the
two settings is much less clear. We show that there exists a
connected allocation that incurs cost at most 2

n+1 for n ≤ 5,
and that no better bound can be obtained for any n.

We remark that all of our positive results are construc-
tive: for each result, we exhibit a moving-knife protocol that
achieves the desired guarantee. Moreover, one can make
these protocols discrete, so that they only use the cut and
evaluation queries allowed by the Robertson-Webb query
model in order to access the valuation functions of the agents
(Robertson and Webb 1998).

1.2 Further Related Work
While our graphical cake model is new to the best of our
knowledge, graphs have been studied in the context of allo-
cating indivisible items. In particular, the items correspond
to vertices of an undirected graph, and each agent must be

allocated a connected subgraph of the graph. A line of work
has explored existence and complexity questions for sev-
eral fairness notions, both in the case of goods (Bouveret
et al. 2017; Lonc and Truszczynski 2018; Bilò et al. 2019;
Igarashi and Peters 2019; Suksompong 2019; Bei et al.
2021) and chores (Bouveret, Cechlárová, and Lesca 2019).

Connectivity constraints are commonly considered in the
cake-cutting literature, where each agent is allocated a single
subinterval of the interval cake (Stromquist 1980, 2008; Su
1999; Bei et al. 2012; Cechlárová and Pillárová 2012; Au-
mann, Dombb, and Hassidim 2013; Cechlárová, Doboš, and
Pillárová 2013; Aumann and Dombb 2015). Segal-Halevi
et al. (2017) studied the fair division of land and introduced
geometric constraints to the setting by requiring that allo-
cated pieces be of certain shape—such requirements are im-
portant since a long but narrow piece of land is likely to be
of little practical use. Similarly to our setting, a proportional
allocation does not always exist in the presence of these
constraints, and the authors examined the approximations of
proportionality that can be obtained.

A related line of work also considers a graphical model
of resource allocation, but uses graphs to model the relation-
ship between agents instead of the resource (Abebe, Klein-
berg, and Parkes 2017; Bei, Qiao, and Zhang 2017; Cheva-
leyre, Endriss, and Maudet 2017; Aziz et al. 2018). Specif-
ically, a graph represents the acquaintance relationship be-
tween the agents, and agents only evaluate their shares rela-
tive to those of other agents with whom they are acquainted.

2 Preliminaries
Let N = {1, 2, . . . , n} be the set of agents, and G = (V,E)
be a finite and connected undirected graph representing the
cake, with no loops but possibly with multiple edges joining
the same pair of vertices.1 Denote bym the number of edges.
Each edge in E can be viewed as an interval of the cake. For
any points x, y on an edge, we write [x, y] or [y, x] to de-
note the interval of the cake between x and y; we sometimes
identify a vertex v ∈ V with the corresponding endpoint of
the edges adjacent to v.

A piece of cake is a finite union of disjoint intervals, where
each interval is a subinterval of an edge and the intervals in
the piece may belong to different edges. As is commonly
done in cake cutting, we assume that all intervals are closed
intervals. Two intervals are said to be disjoint if they inter-
sect in at most one point, and two pieces of cake are said to
be disjoint if they intersect in a finite number of points.2 A
piece of cake is connected if for any two points in the piece,
it is possible to get from one point to the other along the
graph G by only traversing this piece of cake. Each agent

1A loop can be represented in our model by adding a new vertex
inside the loop, thereby breaking the loop into two edges joining
the same pair of vertices.

2If we adopt the stricter convention that each point can only
be allocated to one agent (so intervals can be open, half-open, or
closed) and two intervals are “disjoint” only if their intersection
is empty, there are strong negative results. For example, on a star
graph, at most one agent would be able to receive intervals from
more than one branch in a connected allocation.
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i has a nonnegative valuation function (or utility function)
fi, which specifies the agent’s value for each piece of cake.
An instance consists of the graph G, the agents, and their
valuation functions. We assume that the valuation functions
are
• normalized: the value of an agent for the entire cake is 1;
• divisible: for each interval [x, y] and 0 ≤ λ ≤ 1, there is

a point z ∈ [x, y] such that fi([x, z]) = λ · fi([x, y]);
• additive: the value of an agent for a piece of cake is the

sum of her values for the intervals in the piece.
These assumptions are standard in the cake-cutting literature
(Procaccia 2016).

An allocation of the cake is denoted by a vector A =
(A1, . . . , An), where each Ai is a piece of cake, and Ai and
Aj are disjoint for all i 6= j. An allocation is said to be
complete if the entire cake is allocated, and connected if each
Ai is a connected piece of cake. The egalitarian welfare of
an allocation is defined as mini∈N fi(Ai). An allocation is
proportional if its egalitarian welfare is at least 1/n. The
inequity of an allocation is defined as maxi,j∈N |fi(Ai) −
fj(Aj)|; an allocation with inequity 0 is said to be equitable.

We make analogous assumptions for chore division (Sec-
tion 5). Each agent has a nonnegative cost function fi
for the chore, which is normalized, divisible, and addi-
tive. The egalitarian cost of an allocation is defined as
maxi∈N fi(Ai). Naturally, we require the entire chore to be
allocated, so we restrict our attention to complete allocations
of the chore.

All omitted proofs can be found in the full version of this
paper (Bei and Suksompong 2019).

3 Any Number of Agents
In this section, we present an egalitarian welfare guarantee
that holds for any number of agents and arbitrary graphs, and
derive improved guarantees when the graph is a star.

We begin by showing that it is always possible to give ev-
ery agent a utility of at least 1

2n−1 , and this bound is tight.
Similarly to the Dubins-Spanier protocol, our algorithm pro-
ceeds by identifying a piece that is valuable enough for one
agent but at the same time not too valuable for the other
agents, allocating such a piece to the former agent, and re-
cursing on the latter agents.
Theorem 3.1. For any graphG, there exists a connected al-
location with egalitarian welfare at least 1

2n−1 . On the other
hand, there exists a graph G and identical valuations of the
agents such that any connected allocation yields egalitarian
welfare at most 1

2n−1 .

Proof. Let α := 1
2n−1 . To show the second part of the theo-

rem, let G be a star with 2n− 1 edges such that every agent
values each edge exactly α, and the value is distributed uni-
formly within the edge. Assume for contradiction that there
is a connected allocation with egalitarian welfare strictly
greater than α. Consider any agent i. The agent must re-
ceive intervals from at least two edges, and these intervals
must be connected via the center vertex. Note that the un-
allocated parts of these edges cannot be allocated to other

agents, since any agent who receives an interval from such
a part cannot receive intervals from other edges and would
therefore obtain value less than α. Hence, at least two edges
are only allocated to agent i. However, this means that there
must be at least 2n edges in total, a contradiction.

We now prove the first part of the theorem. Let G be an
arbitrary graph. We will show that there exists a moving-
knife algorithm that produces a connected allocation with
egalitarian welfare at least α. We proceed by induction on n;
the statement trivially holds for n = 1 since we can simply
allocate the entire cake to the only agent. Assume that the
statement holds for n − 1 agents, and consider an instance
with n agents.

First, we claim that we can turnG into a tree. As long asG
contains at least one cycle, pick an edge uv that belongs to a
cycle, add a new vertex v′, and replace this edge by an edge
uv′ while keeping the remaining edges of the graph as before
(see Figure 1). Since at least one cycle is removed by this
operation and no new cycle is created,G eventually becomes
a tree. Note that any connected allocation of the modified
graph is a connected allocation in the original graph with
the same value for every agent, so it suffices to prove the
theorem for the modified graph.

u

v

u

v
v′

Figure 1: The cycle-removing operation

Choose an arbitrary vertex u of the tree G as its root. Let
v be a vertex such that the subtree rooted at v yields value
at least α to some agent, and the same does not hold for
the subtree rooted at any child of v. Let w1, . . . , wk be the
children of v. We consider two cases:

• Case 1: At least one of the k branches of v along with
the corresponding subtree yields value at least α to some
agent. Assume without loss of generality that the branch
containing w1 is one such branch. By our assumption, the
subtree rooted at w1 yields value less than α to all agents.
Hence, by moving a knife from w1 to v, we can find the
point x closest to w1 such that some agent i values the
interval [w1, x] together with the subtree rooted at w1 ex-
actly α, and all other agents value this piece of cake at
most α. We allocate this piece of cake to agent i, and make
x a new vertex in the remaining graph, which has value at
least 1−α for each of the remaining agents. By the induc-
tive hypothesis, there exists a connected allocation of the
remaining graph to the n− 1 agents such that every agent
receives value at least 1

2n−3 · (1−α) = 1
2n−3 ·

2n−2
2n−1 > α,

as desired.
• Case 2: Every branch of v along with the correspond-

ing subtree yields value less than α to all agents. Let
t ∈ {1, 2, . . . , k} be the smallest number such that the
first t branches and their subtrees together yield value at
least α to some agent i. We allocate this piece of cake to
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agent i. For every other agent, the first t − 1 branches
are worth less than α and the tth branch is also worth
less than α, so the piece of cake allocated to agent i is
worth less than 2α. By the inductive hypothesis, there ex-
ists a connected allocation of the remaining graph to the
n − 1 agents such that every agent receives value at least

1
2n−3 · (1− 2α) = 1

2n−1 = α, as desired.

The two cases together complete the induction.

For certain graphs, it is possible to improve upon the guar-
antee provided by Theorem 3.1—an obvious example is the
graph consisting of a single edge, for which the Dubins-
Spanier protocol yields an egalitarian welfare of at least 1/n.
We derive the optimal egalitarian welfare guarantee in the
case where the graph is a star. For integers n ≥ 2 and k ≥ 3,
define

f(n, k) =


1

n+ dk/2e − 1
for k < 2n− 1;

1

2n− 1
for k ≥ 2n− 1.

Theorem 3.2. Let n ≥ 2 and k ≥ 3, and let G be a star
with k edges. There exists a connected allocation with egali-
tarian welfare at least f(n, k). Moreover, the bound f(n, k)
is tight.

4 Two Agents
In this section, we focus on the case of two agents. We es-
tablish the optimal egalitarian welfare that can be obtained
for each graph. In addition, we explore the extent to which
our guarantees can be improved if we allow more than one
connected piece per agent, and also consider approximate
equitability.

First, we make a general observation that the well-known
“cut-and-choose” protocol allows us to find an allocation
that gives utility 1/2 to the first agent and 1/3 to the sec-
ond agent; this strengthens the case n = 2 of Theorem 3.1.
Theorem 4.1. For n = 2 and any graph G, there exists a
connected allocation such that the first agent receives value
at least 1/2 and the second agent receives value at least 1/3.

Proof. By Theorem 3.1, there exists a partition of the cake
into two connected pieces such that the second agent values
both pieces at least 1/3. The first agent can then choose the
piece that she prefers and obtain value at least 1/2.

4.1 Graph-Specific Guarantees
Before we can state our results for specific graphs, we need
some graph-theoretic terminology. Recall that a bridge of a
graph is an edge that is not contained in any cycle. A graph
is said to be bridgeless if it contains no bridges.
Definition 4.2. A graph is said to be almost bridgeless if we
can add an edge so that the resulting graph is bridgeless.

Note that according to this definition, every connected
bridgeless graph with at least two vertices is also almost
bridgeless, since we can add a copy of an existing edge. A
single edge is almost bridgeless, and so is a cycle of any
length, whereas a star with at least three edges is not.

Next, we define an oriented labeling of a graph.

Definition 4.3. An oriented labeling of a graph with m
edges is a labeling of the edges with numbers 1, 2, . . . ,m,
using each number exactly once, together with a labeling of
one endpoint of each edge i with i− and the other endpoint
with i+ (so each vertex receives a number of labels equal to
the number of edges adjacent to it). An oriented labeling is
said to be contiguous if:
• For each 2 ≤ i ≤ m, the edges labeled 1, 2, . . . , i−1 form

a connected subgraph, and the vertex labeled i− belongs
to one of these edges.

• For each 1 ≤ i ≤ m − 1, the edges labeled i + 1, i +
2, . . . ,m form a connected subgraph, and the vertex la-
beled i+ belongs to one of these edges.

An example is illustrated in Figure 2.

1− 1 1+2−
2

2+

3−

3
3+

4−

4
4+

5−
5

5+

6− 6 6+

Figure 2: Example of an oriented labeling

As the following lemma shows, it turns out that a graph
admitting a contiguous oriented labeling is equivalent to it
being almost bridgeless.
Lemma 4.4. A graph is almost bridgeless if and only if it
admits a contiguous oriented labeling.

Given a graph G with k vertices, a bipolar numbering of
G is a labeling of the vertices with numbers 1, 2, . . . , k, with
each number used exactly once, such that every vertex with
label greater than 1 has a neighbor with a smaller label and
each vertex with label smaller than k has a neighbor with
a larger label. Bilò et al. (2019) characterized the class of
graphs that admit a bipolar numbering as the graphs with
the property that if the vertices of the graph represent indi-
visible items of possibly different values to the two agents,
then there always exists a connected “envy-free up to one
item” allocation. We show that the class of graphs that ad-
mit a bipolar numbering forms a strict subclass of the almost
bridgeless graphs (which, by Lemma 4.4, is equivalent to the
class of graphs that admit a contiguous oriented labeling).
Proposition 4.5. Any graph that admits a bipolar number-
ing is almost bridgeless, but the converse does not hold.

We are now ready to show our classification result: the
optimal egalitarian welfare that can always be obtained for
a graph is 1/2 if the graph is almost bridgeless, and 1/3
otherwise. The former is shown in Theorem 4.6, while the
latter follows from Theorems 3.1 and 4.8.
Theorem 4.6. For n = 2 and any almost bridgeless graph
G, there exists a connected proportional allocation.

Proof. Suppose that G is almost bridgeless. By Lemma 4.4,
it admits a contiguous oriented labeling. We move a knife
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over the edges ofG in increasing order of the label. For each
edge with label i, the knife goes from vertex i− to vertex i+.
If the knife is currently on edge i, we stop when the piece
of cake containing edges 1, 2, . . . , i − 1, together with the
interval of edge i between i− and the current position of
the knife, yields value exactly 1/2 to one of the agents. We
allocate this piece of cake to the agent who receives value
1/2, and the remainder of the cake to the other agent. Both
agents receive value at least 1/2 and, by definition of the
labeling, obtain a connected allocation of the cake.

Lemma 4.7. Let F be a nonempty set of bridges in a graph.
If no path contains all bridges in F , there exist three bridges
in F such that no path contains all three bridges.

Theorem 4.8. For n = 2 and any graphG that is not almost
bridgeless, there exist identical valuation functions of the
two agents such that any connected allocation yields egal-
itarian welfare at most 1/3.

Proof. Suppose that G is not almost bridgeless. Then no
path can contain all bridges of G: if there exists such a path,
we can eliminate all bridges by adding an edge that connects
the endpoints of this path. By Lemma 4.7, there exist three
bridges ofG such that no path contains all three bridges. For
each of the three bridges, the other two bridges must lie on
the same side of it, since otherwise we can construct a path
that contains all three bridges. See Figure 3.

Figure 3: Illustration for the proof of Theorem 4.8. The cir-
cles denote components and the edges correspond to the
three bridges.

Assume that both agents value each of the three bridges
exactly 1/3 (and every other edge 0), and the value is dis-
tributed uniformly within each bridge. Suppose for contra-
diction that there exists a connected allocation with egalitar-
ian welfare strictly greater than 1/3. This means that each
agent must receive intervals from at least two bridges. How-
ever, when an agent receives intervals from two bridges,
each interval must contain the endpoint of the bridge that
is on the same side as the other two bridges. This is impos-
sible since there are only three bridges, yielding the desired
contradiction.

4.2 Beyond One Connected Piece
As we mentioned in the introduction, an important motiva-
tion for considering connected allocations is to avoid situa-
tions where an agent receives a “union of crumbs”. In light
of this motivation, it is interesting to explore whether we
can obtain improved guarantees if we allow the agents to re-
ceive a small number of connected pieces. We demonstrate

in this subsection that such improvements are indeed pos-
sible by presenting a tight bound of 1

2 −
1

2·3k on the egali-
tarian welfare that can be guaranteed when a total of k + 1
connected pieces are permitted. We first establish the lower
bound. Note that by following the algorithm in the proof of
Theorem 3.1, we obtain the following lemma, which we will
use in the proof of the lower bound.
Lemma 4.9. Let H be a connected piece of cake in a graph
G, and suppose that all agents have value exactly x for H .
For any α ≤ x, there exists a partition of H into two con-
nected pieces such that one of the agents has value at least
α for the first piece, while all of the remaining agents have
value at most 2α for this piece.

Theorem 4.10. Let k be a positive integer. For n = 2 and
any graph G, there exists an allocation in which the two
agents receive a total of at most k+ 1 connected pieces and
the egalitarian welfare is at least 1

2 −
1

2·3k .

Proof. Let G be an arbitrary graph. It suffices to show that
there exists a partition ofG into two parts with at most k+1
connected pieces in total such that both parts yield value at
least 1

2−
1

2·3k to the first agent. Indeed, given such a partition,
we can let the second agent choose the part that she prefers
and obtain value at least 1/2. We therefore consider only the
first agent from now on.

We proceed by induction on k; the base case k = 1 fol-
lows from Theorem 4.1. Suppose that the statement holds
for k − 1, i.e., there exists a partition of G into two parts
with at most k connected pieces in total such that both parts
yield value at least 1

2 −
1

2·3k−1 to the agent. Assume without
loss of generality that the second part has value at least 1/2,
so the first part has value 1

2 − x for some 0 ≤ x ≤ 1
2·3k−1 .

Since the second part consists of at most k − 1 connected
pieces, it contains a connected piece of value at least 1

2k−2 .
Denote this piece by H .

Since 2k−2 ≤ 3k, we have 2x
3 ≤

1
3k
≤ 1

2k−2 . By creating
a duplicate of our agent and applying Lemma 4.9 with α =
2x/3, we can partitionH into two connected pieces in such a
way that our agent has value in the range [ 2x3 ,

4x
3 ] for the first

piece. Move this piece from the second part of our partition
of G to the first part. The resulting partition of G consists
of at most k + 1 connected pieces in total, and the first part
of this partition has value in the range [ 12 −

x
3 ,

1
2 + x

3 ]. This
implies that both parts of the partition yield value at least
1
2 −

x
3 ≥

1
2 −

1
2·3k , completing the induction.

Next, we show that the bound established in Theo-
rem 4.10 is tight for every k. First we need the following
technical lemma.
Lemma 4.11. Let t be a positive integer, and let
a1, a2, . . . , at be (not necessarily distinct) integers and
ε1, ε2, . . . , εt ∈ {±1,±2}. Then∣∣∣∣ε1 · 3a1 + ε2 · 3a2 + · · ·+ εt · 3at − 1

2

∣∣∣∣ ≥ 1

2 · 3t
.

Theorem 4.12. Let k be a positive integer. There exists an
instance with n = 2 and identical valuations such that any
allocation in which the two agents receive a total of at most
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k + 1 connected pieces yields egalitarian welfare at most
1
2 −

1
2·3k .

Figure 4: The graph in the proof of Theorem 4.12 for k = 2.

Proof. Let G be a rooted tree with k + 2 layers, where the
first layer consists only of the root of the tree. The root has
one child, and every vertex in subsequent layers up to the
(k+1)st layer has three children. In particular, the (k+2)nd
layer consists of 3k leaves. The tree G for the case k = 2 is
shown in Figure 4. Suppose that both agents value each edge
adjacent to a leaf exactly 1/3k with the value distributed uni-
formly within the edge, and do not value any other edge.

Consider an arbitrary allocation in which the two agents
receive a total of at most k + 1 connected pieces. We will
show that the egalitarian welfare is at most 1

2 −
1

2·3k . If
there are unallocated parts of the cake, we arbitrarily allo-
cate these parts so that the number of connected pieces that
each agent receives does not increase; this does not lower
the egalitarian welfare of the allocation. Hence we may as-
sume that the entire cake is allocated (i.e., the allocation is
complete). Denote by X1, . . . , Xp the connected pieces that
agent 1 receives, and Y1, . . . , Yq the connected pieces that
agent 2 receives, where p + q ≤ k + 1. We assume that
each edge has length 1, and refer to the distance along the
(unique) path between two points inG simply as the distance
between these two points. Note that every connected piece
has a unique point closest to the root: if there are two such
points, they must be connected via a point that is strictly
closer to the root than both of them. For every connected
piece Z, denote by wz the unique point in Z closest to the
root and u(Z) the utility of the piece Z. We will define a
connected piece Z∗ as follows:

• If wz is not a vertex of G, let Z∗ be the set of points w
such that the path from w to the root goes through wz . In
other words, Z∗ is the part of the tree “below” wz .

• If wz is a vertex of G, let Z∗ be the set of points w
such that the intersection of Z and the path from w to
the root has nonzero measure. Equivalently, Z∗ consists
of the edges adjacent to wz that have a nontrivial overlap
with Z, along with everything “below” these edges.

Assume without loss of generality that agent 1 receives
a piece containing the root of the tree. We claim that
u(X1)+ · · ·+u(Xp) = [u(X∗1 )+ · · ·+u(X∗p )]− [u(Y ∗1 )+
· · · + u(Y ∗q )]. First, note that for each Z∗ where Z ∈
{X1, . . . , Xp, Y1, . . . , Yq}, every connected piece Xi and
Yi is either contained in Z∗ in its entirety or not at all.

Hence u(Z∗) can be written as a sum of distinct u(Xi)’s
and u(Yi)’s. Moreover, one can verify from the definition
that a connected piece Z is contained in W ∗ if and only if
Z = W or the path from wz to the root has a nontrivial
overlap with W . This path alternates between pieces Xi and
Yi and ends with a piece Xi. Therefore, each u(Xi) is con-
tained in u(X∗1 ) + · · · + u(X∗p ) exactly once more than in
u(Y ∗1 ) + · · · + u(Y ∗q ), while each u(Yi) is contained in the
two sums an equal number of times. This yields the claimed
equality.

Next, observe that each u(Z∗) can be written as 3s/3k

for some nonnegative integer s ≤ k, or 2 · 3s/3k for some
nonnegative integer s ≤ k − 1, or δ/3k for some δ ∈ [0, 1].
Note also that since agent 1 receives a piece containing the
root of the tree, for this piece Xi we have u(X∗i ) = 1. It
follows that [u(X∗1 )+ · · ·+u(X∗p )]− [u(Y ∗1 )+ · · ·+u(Y ∗q )]
can be written as 1− (S+∆), where S is a sum of a number
of terms (say, r terms, where r ≤ k) of the form ε · 3a with
ε ∈ {±1,±2} and a an integer, and |∆| ≤ (k − r)/3k.
Hence, letting d :=

∣∣u(X1) + · · ·+ u(Xp)− 1
2

∣∣, we have

d =

∣∣∣∣∣
p∑

i=1

u(X∗i )−
q∑

i=1

u(Y ∗i )− 1

2

∣∣∣∣∣
=

∣∣∣∣(S + ∆)− 1

2

∣∣∣∣ ≥ ∣∣∣∣S − 1

2

∣∣∣∣− |∆|
≥ 1

2 · 3r
− k − r

3k
=

3k−r − 2(k − r)
2 · 3k

≥ 1

2 · 3k
,

where the first inequality follows from the triangle inequal-
ity, the second inequality follows from Lemma 4.11, and the
last inequality holds since 3b ≥ 2b+1 for any integer b ≥ 0.
This implies that the egalitarian welfare is at most 1

2 −
1

2·3k ,
as claimed.

Recall that the height of a rooted tree is the length of the
longest path from the root to a leaf vertex. For example, a
star rooted at the center vertex has height 1. Our next theo-
rem shows that for graphs that can be represented as a tree of
height at most 2, we can obtain full proportionality provided
that we allow two connected pieces per agent.
Theorem 4.13. For n = 2 and any graph G that can be
represented as a rooted tree of height at most 2, there exists
a proportional allocation such that each agent receives at
most two connected pieces.

4.3 Equitability
We end this section by briefly considering another well-
established fairness notion: equitability. Interestingly, while
for approximate proportionality it is useful to consider the
maximum among the agents’ values for the current piece
(Theorem 3.1), for approximate equitability in the case of
two agents, the appropriate quantity to consider is the sum
of these values. Note that an empty allocation is always eq-
uitable but yields the lowest possible welfare of zero, so we
are interested in complete allocations.
Theorem 4.14. For n = 2 and any graph G, there exists
a complete and connected allocation with inequity at most
1/3. Moreover, the bound 1/3 is tight.
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Proof. To show tightness, let G be a star with three edges
such that every agent values each edge exactly 1/3, and the
value is distributed uniformly within the edge. In any com-
plete and connected allocation, one of the agents must re-
ceive two full edges (and possibly part of the third). This
implies that the inequity in such an allocation is at least 1/3.

We now prove the first part of the theorem. Let G be an
arbitrary graph. Our goal is to find a complete, connected
allocation (A1, A2) such that |f1(A1) − f2(A2)| ≤ 1/3.
Since the allocation is complete, we may write f2(A2) =
1−f2(A1). The desired condition can be rewritten as 2/3 ≤
f1(A1) + f2(A1) ≤ 4/3. We use a similar procedure as in
Theorem 3.1, turning the graph into a tree and considering
a minimal subtree that has value at least 2/3 with respect to
f1 + f2. We stop either when the knife cuts a subtree A1

such that f1(A1) + f2(A1) = 2/3 (Case 1), or when a set of
branches A1 satisfies f1(A1) + f2(A1) ≥ 2/3 for the first
time (Case 2). An analogous argument shows that we must
have f1(A1) + f2(A1) ≤ 2/3 + 2/3 = 4/3, which yields
the desired inequality.

5 Chore Division
In this section, we assume in contrast to the previous sec-
tions that the graph represents a chore, i.e., an item that
yields negative value to the agents. This models, for exam-
ple, a situation where we wish to divide the responsibilities
of maintaining a road network among relevant organizations.

For the case of two agents, all results in cake cutting (Sec-
tion 4) can be translated to analogous results in chore divi-
sion using a simple reduction. The idea is that given a chore
instance, we can turn it into a cake instance by pretending
that the cost functions are cake valuation functions, apply-
ing a result in the cake setting to obtain an initial alloca-
tion of the chore, and having the agents swap their assigned
pieces to arrive at the final allocation. This reduction works
for translating positive results to the chore setting. For neg-
ative results, we can use the reduction in the opposite direc-
tion, starting from a chore instance and reducing it to a cake
instance. As an illustrating example, we show how to deduce
an analogue of Theorem 4.1 in the chore setting.

Theorem 5.1. In chore division, for n = 2 and any graphG,
there exists a connected allocation such that the first agent
incurs cost at most 1/2 and the second agent incurs cost at
most 2/3.

Proof. Consider an arbitrary chore division instance. If we
treat the chore valuations as cake valuations, then by Theo-
rem 4.1, there exists a (complete) connected allocation such
that the first agent receives value at least 1/2 and the second
agent receives value at least 1/3. Let the agents swap their
assigned pieces in this allocation. In the resulting allocation,
which is also connected, the first agent incurs cost at most
1 − 1/2 = 1/2 and the second agent incurs cost at most
1− 1/3 = 2/3.

When there are more than two agents, the relationship be-
tween the cake and the chore settings becomes much less
clear, and we do not know how to translate results from one

setting to the other. In the chore setting, we show that for
each n, the egalitarian cost may need to be as high as 2

n+1 .

Proposition 5.2. In chore division, there exists a graph G
and identical valuations of the agents such that any con-
nected allocation yields egalitarian cost at least 2

n+1 .

The bound 2
n+1 is tight for n = 2 due to Theorem 5.1.

The following theorem shows that it remains tight as long as
n ≤ 5.

Theorem 5.3. In chore division, for n ≤ 5 and any graph
G, there exists a connected allocation with egalitarian cost
at most 2

n+1 .

The proof of Theorem 5.3 involves some elaborate analy-
sis and is left to the full version (Bei and Suksompong 2019).
Here we give a simpler protocol for the case n = 3, yield-
ing egalitarian cost at most 1/2. First, pick two arbitrary
agents. By Theorem 5.1, there exists a connected allocation
to the two agents such that the first agent incurs cost at most
1/2 and the second agent incurs cost at most 2/3. Fix the
piece assigned to the first agent, and divide the piece as-
signed to the second agent further between the second and
third agents. By Theorem 5.1 again, there exists a connected
allocation of the latter piece such that the third agent incurs
cost at most 1/2 and the second agent incurs cost at most
(2/3) ·(2/3) = 4/9 < 1/2. Hence the egalitarian cost of the
resulting allocation is at most 1/2.

We conjecture that the bound 2
n+1 is tight for all n, and

leave it as an intriguing open question.

6 Conclusion and Future Work
In this paper, we introduce and study a generalized version
of the classical cake-cutting problem, where the cake can be
represented by an arbitrary graph instead of an interval. We
establish bounds on the utilities that can be guaranteed to the
agents for various classes of graphs, both for cake cutting
and chore division, and demonstrate in several cases that our
guarantees are tight. We also show that better guarantees are
possible if we allow more connected pieces per agent, and
exhibit an algorithm that computes an approximately equi-
table allocation.

Our work opens up a number of new directions for future
research. Besides proportionality and equitability, another
prominent fairness notion is envy-freeness, which stipulates
that no agent prefers another agent’s bundle to her own in
the allocation. In the case of two agents, envy-freeness and
proportionality are equivalent, and approximate proportion-
ality bounds readily translate to corresponding approximate
envy-freeness results. However, this equivalence ceases to
hold when there are more than two agents. If the graph con-
sists of a single edge, a connected envy-free allocation al-
ways exists for any number of agents (Stromquist 1980).
It would be interesting to see whether one can obtain (ap-
proximate) envy-freeness guarantees for different classes of
graphs. Furthermore, one could consider dividing a mixture
of goods and chores (Bogomolnaia et al. 2017; Segal-Halevi
2018; Aziz et al. 2019) in our model as well.
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