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Abstract

Participatory budgeting (PB) is a democratic paradigm
whereby voters decide on a set of projects to fund with a lim-
ited budget. We consider PB in a setting where voters report
ordinal preferences over projects and have (possibly) asym-
metric weights. We propose proportional representation ax-
ioms and clarify how they fit into other preference aggre-
gation settings, such as multi-winner voting and approval-
based multi-winner voting. As a result of our study, we also
discover a new solution concept for approval-based multi-
winner voting, which we call Inclusion PSC (IPSC). IPSC
is stronger than proportional justified representation (PJR),
incomparable to extended justified representation (EJR), and
yet compatible with EJR. The well-studied Proportional Ap-
proval Voting (PAV) rule produces a committee that satisfies
both EJR and IPSC; however, both these axioms can also be
satisfied by an algorithm that runs in polynomial-time.

1 Introduction

Participatory budgeting (PB) provides a grassroots and
democratic approach to selecting a set of public projects to
fund within a given budget (Aziz and Shah 2020). It has been
deployed in several cities all over the globe (Shah 2007). In
contrast to standard political elections, PB requires consid-
eration of the (heterogeneous) costs of projects and must re-
spect a budget constraint. When examining PB settings for-
mally, standard voting axioms and methods that ignore bud-
get constraints and differences in each project’s cost need to
be reconsidered. In particular, it has been discussed in policy
circles that the success of PB partly depends on how well it
provides representation to minorities (Bhatnaga et al. 2003).
We take an axiomatic approach to the issue of proportional
representation in PB.

In this paper, we consider PB with weak ordinal prefer-
ences. Ordinal preferences provide a simple and natural in-
put format whereby participants rank candidate projects and
are allowed to express indifference. A special class of or-
dinal preferences are dichotomous preferences (sometimes
referred to as approval ballots); this input format is used
in most real-world applications of PB. However, in recent
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years, some PB applications have shifted to requiring linear
order inputs. For example, in the New South Wales state of
Australia, participants are asked to provide a partial strict
ranking over projects.! The PB model we consider encom-
passes both approval ballots and linear order inputs.

In most of the PB settings considered, the participants are
assumed to have the same weight. However, in many sce-
narios, symmetry may be violated. For example, in liquid
democracy or proxy voting settings, a voter could be voting
on behalf of several voters so may have much more voting
weight. Similarly, asymmetric weights may naturally arise if
PB is used in settings where voters have contributed differ-
ent amounts to a collective budget or voters are affected by
the PB outcome to different extents. Therefore, we consider
PB where voters may have asymmetric weights.

While there is much discussion on fairness and repre-
sentation issues in PB, there is a critical need to formal-
ize reasonable axioms to capture these goals. We present
two new axioms that relate to the proportional representa-
tion axiom, proportionality for solid coalitions (PSC), ad-
vocated by Dummett for multi-winner elections (Dummett
1984). PSC has been referred to as “a sine qua non for a
fair election rule”(Woodall 1994) and the essential feature
of a voting rule that makes it a system of proportional rep-
resentation (Tideman 1995). We use the key ideas underly-
ing PSC to design new axioms for PB settings. Our axioms
provide yardsticks against which existing and new rules and
algorithms can be measured. We also provide several justifi-
cations for our new axioms.

Contributions We formalize the setting of PB with weak
ordinal preferences. Previously, only restricted versions of
the setting, such as PB with approval ballots, have been ax-
iomatically studied (Aziz, Lee, and Talmon 2018). We then
propose two new axioms Inclusive PSC (IPSC) and Com-
parative PSC (CPSC) that are meaningful proportional rep-
resentation and fairness axioms for PB with ordinal prefer-
ences. In contrast to previous fairness axioms for PB with
approval ballots (see, e.g., Aziz, Lee, and Talmon 2018),
both IPSC and CPSC imply exhaustiveness (i.e., no addi-
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Approval Ballots Ordinal Prefs
Divisible (e.g. Bogomolnaia, Moulin, and Stong 2005)  (e.g. Aziz and Stursberg 2014)
Indivisible  (e.g. Goel et al. 2019) This paper

Table 1: Classification of the literature on fair participatory budgeting with ordinal preferences.

tional candidate can be funded without exceeding the budget
limit).

We show that an outcome satisfying Inclusive PSC is
always guaranteed to exist and can be computed in poly-
nomial time. The concept appears to be the “right” con-
cept for several reasons. First, it is stronger than the
local-BPJR-L concept proposed for PB when voters have
dichotomous preferences (Aziz, Lee, and Talmon 2018).
Second, it is also stronger than generalised PSC for multi-
winner voting with ordinal preferences (Aziz and Lee 2020).
Third, when voters have dichotomous preferences, it implies
the well-studied concept PJR for multi-winner voting, is in-
comparable to the EJR axiom (Aziz et al. 2018), and yet
is compatible with EJR. In particular, the well-studied pro-
portional approval voting rule (PAV) computes an outcome
that satisfies both IPSC and EJR; however, there also exists
polynomial-time algorithms that can achieve this. Even for
this restricted setting, it is of independent interest. To show
that there exists a polynomial-time algorithm to compute an
outcome satisfying IPSC, we present the PB Expanding Ap-
provals Rule (PB-EAR) algorithm.

We also show that the CPSC is equivalent to the gener-
alised PSC axiom for multi-winner voting with weak pref-
erences, to Dummett’s PSC axiom for multi-winner voting
with strict preferences, and to PJR for multi-winner voting
with dichotomous preferences.

2 Related Work

PB with ordinal preferences can be classified across differ-
ent axes. One axis concerns the input format. Voters either
express dichotomous preferences or general weak or linear
orders. Along another axis, either the projects are divisi-
ble or indivisible. When the inputs are dichotomous prefer-
ences, there has been work both for divisible (Bogomolnaia,
Moulin, and Stong 2005; Aziz, Bogomolnaia, and Moulin
2019) as well as indivisible projects (Aziz, Lee, and Tal-
mon 2018; Faliszewski and Talmon 2019). When the input
concerns rankings, then there is work where the projects are
divisible (see, e.g., Aziz and Stursberg 2014; Airiau et al.
2019). Some of the work is cast in the context of probabilis-
tic voting but is mathematically equivalent to PB for divisi-
ble projects.

To the best of our knowledge, fairness axioms for PB for
discrete projects have not been studied deeply when the in-
put preferences are general ordinal preferences. Therefore,
this paper addresses an important gap in the literature. Ta-
ble 1 provides a classification of the literature.

Aziz, Lee, and Talmon (2018), Faliszewski and Talmon
(2019), and Baumeister, Boes, and Seeger (2020) focused
on PB with discrete projects where the input preference for-
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mat is approval ballots. We show that our general axioms
have connections with proportional representation axioms
proposed by Aziz, Lee, and Talmon (2018) for the case of
approval-ballots. We will also show how our approach has
additional merit even for the case of approval-ballots. For
example, in contrast to previously proposed axioms in Aziz,
Lee, and Talmon (2018), our axioms imply a natural prop-
erty called exhaustiveness.

Fluschnik et al. (2017) consider the discrete PB model
and study the computational complexity of maximizing var-
ious notions of social welfare, including Nash social wel-
fare. Benade et al. (2017) study issues surrounding prefer-
ence elicitation in PB with the goal of maximizing utilitarian
welfare. In their model, they also consider input formats in
which voters express ordinal rankings. However, their focus
is not on proportional representation. Fain, Goel, and Mu-
nagala (2016) considered PB both for divisible settings as
well as discrete settings. However, their focus was on car-
dinal utilities. In particular, they focus on a demanding but
cardinal-utility centric concept of core fairness. Our ordinal
approach caters to many settings in which voters only ex-
press rankings over projects. Other works on cardinal utili-
ties include Fain, Munagala, and Shah (2018) and Bhaskar,
Dani, and Ghosh (2018). In recent work, Rey, Endriss, and
de Haan (2020) study an end-to-end model of participatory
budgeting and focus primarily on strategic behaviour.

The paper is also related to a rapidly growing literature
on multi-winner voting (Aziz et al. 2017a; Faliszewski et al.
2017; Aziz et al. 2017b; Elkind et al. 2017; Janson 2016;
Schulze 2002; Tideman 2006). PB is a strict generalization
of multi-winner voting. Our axiomatic approach is inspired
by the PSC axiom in multi-winner voting. The axiom was
advocated by Dummett (1984). PSC has been referred to as
the most important requirement for proportional representa-
tion in multi-winner voting (Woodall 1994, 1997; Tideman
and Richardson 2000; Woodall 1994; Tideman 1995). Fig-
ure 1 provides an overview of which model reduces to which
other model. We dedicate a separate section to multi-winner
voting because one of our axioms gives rise to a new and
interesting axiom for the restricted setting of multi-winner
voting.

3 Preliminaries
A PB setting is a tuple (N,C, 7z, b,w, L) where N is the

I ~?
set of n voters, C is the set of candidate projects (candi-
dates), and L is the total budget limit. In the context of PB, it
makes sense to refer to C' as the set of projects. However,
we will also refer to them as candidates especially when
making connections with multi-winner voting. The function

w : C — RT specifies the cost w(c) of each candidate
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Figure 1: Relations between properties. An arrow from (A) to (B) denotes that (B) is more general than (A).

¢ € C. We will more generally refer to w(c) as the weight of
the candidate project c. The function b : N — R™T specifies
a voter weight b; for each © € N. We assume that ZiEN b;
is | N'|. For any set of voters S C N, we will denote ) -, _ ¢ b;
by b(.S). Therefore b(IN) = n. Abusing notation slightly, for
any set of candidates C' C C, we will denote ) ., w(c)
by w(C"). An outcome, denoted by W, is a set of candidates.
A set of candidates (or outcome) W C C'is feasible with re-
spect to L if w(W) < L. The preference profile - specifies
for each voter ¢ € N, her ordinal preference relation over C.
In the terminology of Benade et al. (2017), the input format
can be viewed as ‘rank by value’ so that voters rank projects
according to how they value them without taking costs into
account.

We write a ~; b to denote that voter ¢ values candidate a
at least as much as candidate b and use >; for the strict part
of 7=;,i.e., a >; bif and only if @ Z; b but not b =; a. Fi-
nally, ~; denotes i’s indifference relation, i.e., a ~; b if and
only if both a 7Z; b and b =; a. The relation 7; results in
(non-empty) equivalence classes E}, EZ, ..., E" for some
m; such that a >; o’ if and only if € E! and o/ € E!
for some [ < I’. Often, we will use these equivalence classes
to represent the preference relation of a voter as a preference
list. If each equivalence class is of size 1, then the preference
will be a called strict preference. If for each voter, the num-
ber of equivalence classes is at most two, the preferences
are referred to as dichotomous preferences. When the pref-
erences of the voters are dichotomous, the voters can be seen
as approving a subset of voters. In this case, for each voter
i € N, the first equivalence class E} is also referred to as an
approval ballot and is denoted by A; C C. Note that in this
special case, where a voter ¢ has dichotomous preferences,
the approval set A; contains all information about voter 7’s
preference. The vector A = (Ay,..., A,) is referred to as
the approval ballot profile. If a voter is indifferent between
all candidates, then voter ¢’s approval ballot could be inter-
preted to be either A; = () or A; = C'; our results and axioms
are independent of this interpretation.

Multi-winner voting can be viewed as a special kind of PB
setting in which w(c) = 1 forall ¢ € C and b; = 1 for all
1 € N. The budget limit L is typically denoted by commit-
tee size k. Any setting that allows for weak preferences can
be viewed as encapsulating the corresponding setting with
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approval ballots. The reason is that approval ballots can be
viewed as dichotomous preferences.

It will be useful to distinguish between two types of PB
outcomes: exhaustive and maximal cost outcomes. These
concepts do not rely on the preferences of voters and, in-
stead, are defined solely in terms of the cost of candidates,
w(c), and the budget, L.

Definition 1 (Exhaustive outcomes). An outcome W is said
to be exhaustive w.r.t. L ifw(W) < Land w(W U{c}) > L
forallce C\W.

Definition 2 (Maximal cost outcomes). An outcome W
is said to be a maximal cost outcome w.rt. L if W €
argmaxc {w(C’) : C' C Cand w(C') < L}.

Note that a maximal cost outcome is always exhaustive
but an exhaustive outcome need not be maximal cost. In
multi-winner voting, since we only consider outcomes that
use up the budget limit of &, it means that all feasible out-
comes are both exhaustive and maximal cost.

4 Proportional Representation in PB with
Ordinal Preferences

Before we develop and formally define our concepts, we
give some simple examples to provide intuition behind our
main ideas.

We first warm up with an example that captures the pro-
portionality for solid coalitions (PSC) concept of Dummett
(1984). The example concerns a context in which multi-
winner voting coincides with PB.

Example 1 (Motivating example I). Suppose there are 9 vot-
ers and 4 projects: a, b, c, d. The budget limit is 3 dollars and
each project costs 1 dollar. Hence, three projects are to be
selected. Suppose the preferences of the voters are as fol-
lows.

1-6: a=b=c>=d
7—8: d=c+-b>a
9: ¢=ax=b>=d

PSC requires that both a and b are selected among the three
selected projects. Informally speaking, the rationale is that
two-thirds of the voters most prefer a and then b, and if they
are assumed to have control over two-thirds of the budget,
then they have the ability to afford both a and b.



Following the original PSC axiom for multi-winner elec-
tions, our concepts are based on the idea that if a group of
voters is large, and cohesively most prefers a certain set of
projects, then sufficient funding should be given to projects
within the set.

Example 2 (Motivating example II). Let voter preferences
be

1-30: a=b=c+d
31-100: d>=c>b»>a.

Suppose the total budget limit is 100, and the weights of the
projects are w(a) = 50, w(b) = 30, w(c) = 30, w(d) = 40.
The first group of voters (1-30) have 30/100 of the voter
population size. Our concepts can be motivated by suppos-
ing that all the voters have equal control of the budget. Thus,
the first group of voters can be viewed as controlling 30
units of the total budget limit of 100. However, these vot-
ers cannot “afford” their most preferred project, a, as its
weight of 50 is more than 30 units of the budget that they
control. Yet, the first group of voters’ second most preferred
project, b, is affordable, having weight of only 30 units. Ac-
cordingly, the first group of voters can be thought of as hav-
ing a justified demand that a project no worse than their
second-most preferred project is selected, i.e., either project
a or b. By a similar argument, the second group of voters
have a justified demand that both project d and c are se-
lected, since w(c) + w(d) < 70. However, they do not have
a justified demand that projects d, c and b are selected, since
w(c) + w(d) + w(b) > 70. Notice that a key difference
between multi-winner elections and the PB setting is that
projects may have heterogeneous weights.

The concepts become more complicated when ties are
considered in the preference lists.
Example 3 (Motivating example III). Consider a modifi-
cation of Example 2 such that the first group of voters are
indifferent between b and c as follows.

1-30: a=b~c>d,
31-100: d>=c>=b>a.

Then, the voters in the first group would not care if c is se-
lected or b is selected.

More generally, our concepts do not require voters in a
single group to have perfectly aligned preferences.

Example 4 (Motivating example IV). Consider a modifica-
tion of Example 2 such that the first group of voters are split
into two subgroups as follows.

1-15: a-b=c-d
16—-30: b=a=c>d
31—-100: d>=c>=b»a.

In this case, the first group (1-15) and the second group (16-
30) of voters do not agree on which project is most pre-
ferred but they are cohesive in the sense that they unani-
mously agree that the two-most preferred projects are a and

e, there is a set of projects that all voters of the group unan-
imously prefer to all other projects; as will be shown below, this
does not require voters to have perfectly aligned preferences.
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b. Since none of the groups can afford their respective most-
preferred project with the budget they control, our concepts
require that these two groups are allowed to combine their
budgets to make a justified demand for either project a or b.

Reasoning about proportional representation becomes,
yet again, more complicated when a group of voters can be
combined with many different groups.

Example 5 (Motivating example V). Let voter preferences
be

1-14: a=b=c~d
15—-30: a=c=b>=d
31—100: c=a>b+d,

the total budget limit 100, and the weights of the projects
w(a) = 90, w(b) = 30, w(c) = 80, w(d) = 40. Here,
the second group of voters (15-30) share a most-preferred
project (project a) with the first group of voters (1-14) but
also share their two-most preferred projects, a and c, with
the third group of voters (31-100). However, the first and
second group combined cannot afford project a, which has
weight 90. Yet, the second and third group can afford project
¢, which has weight 80.

The last example highlights an additional and key chal-
lenge presented by the PB setting that is not present in the
multi-winner setting. When groups of voters are combined,
their justified demand for projects depends not only on the
size of the groups (i.e., the size of the budget that they con-
trol), but also the weight of the projects that they prefer. The
concepts that we introduce and develop are flexible enough
to capture all of the variants of the example described above.

Before presenting our main concepts in the next section,
we introduce the notion of a generalised solid coalition and
some technical notation. The notion of a generalised solid
coalition is central to the PSC of Dummett axioms (Dum-
mett 1984) and the related concepts that we develop. Intu-
itively, a set of voters N/ forms a generalised solid coali-
tion for a set of candidate projects C” if every voter in N’
weakly prefers every candidate project in C” to any candi-
date project outside of C’. Importantly, voters that form a
generalised solid coalition for a candidate-project-set C” are
not required to have identical preference orderings over can-
didate projects within C' nor C\C".

Definition 3 (Generalised solid coalition). Suppose voters
have weak preferences. A set of voters N’ is a generalised
solid coalition for a set of candidates C' if every voter in
N’ weakly prefers each candidate in C' to each candidate
in C\C'. That is, for all i € N’ and for any ¢’ € C’, Ve €
C\C" ¢ 7, c. The candidates in C' are said to be solidly
supported by the voter set N', and conversely the voter set
N’ is said to solidly support the candidate set C'.

Like Dummett’s PSC axioms (Dummett 1984), our ax-
ioms will capture intuitive features of proportional represen-
tation by ensuring that minority groups of voters are repre-
sented in the PB outcome so long as they share similar pref-
erences over candidates, i.e., they form a generalised solid
coalition, and the amount of representation given to a group



of voters that form a generalised solid coalition is (approxi-
mately) in proportion to their size.

Lastly, we introduce some technical notation and termi-
nology that is required for our main concepts. Let (/) de-
note voter ¢’s j-th most preferred candidate or one such can-
didate if indifferences are present. To attain such a candidate
¢(®3) in the presence of indifferences the following proce-
dure can be used: (1) break all ties in voter ¢’s preferences
temporarily to get an artificial strict order and (2) identify
the j-th candidate ¢(*7) in the artificial strict order. If a set
of voters N’ supports a set of candidates C’, we will refer to
{c:3i e N'st.c iz ¢BICDY\ C as the periphery of the
set of candidates C” with respect to voter set N'.

Main New Concepts

We now present our key concepts for proportional represen-
taton. The concepts are inspired by the PSC concept that
was proposed by Dummett (1984) for multi-winner voting
for strict preferences. The PSC concept requires that if a set
of voters N’ solidly supports a set of candidates C’, then a
proportional number of candidates should be selected from
(' especially if C’ is large enough.

Although the PSC is quite intuitive and natural, extending
it for our general PB settings needs to be done with care.
In particular, the presence of candidate weights, budget lim-
its, and indifference cause several complications so we need
to define the concepts for the general PB setting carefully.
The concepts are based on the requirements put forth on the
outcome W. Each requirement corresponds to set of voters
N’ C N solidly supporting a set of candidates C’. Since
these voters solidly support C’, the proportional represen-
tation concepts require that sufficient amount of weight in
W should come from either candidates in C’ or candidates
in the periphery of the set of candidates C’ with respect to
voter set N’ .3

When formally defining these requirements of the weight
composition of W, we also need to take care that voters in
N’ do not require very heavy weight candidates to be in-
cluded in the outcome. Another guiding principle while for-
malizing the concepts is that the existence of an outcome
satisfying the concepts is not ruled out because of previous
insights on subdomains of PB such as multi-winner voting.
Next, we use the ideas mentioned above to formally intro-
duce our first key solution concept.

Definition 4 (Comparative PSC (CPSC) for PB with gen-
eral preferences). A budget W satisfies Comparative PSC
(CPSC) if there exists no set of voters N' C N such that N’
solidly supports a set of candidates C' and there is a subset
of candidates C" C C' such that

w({c:3i € N' s.t. ¢ =; DI < w(C”) < b(N')L/n.

The intuition for CPSC is that if a set of voters N’ solidly
supports a subset C” then it may start to think that at least
weight b(N’)L/n worth of candidates should be selected

3 Allowing for the weight representation to come from the pe-
riphery is essential because otherwise even for multi-winner voting,
an outcome satisfying the requirements may not exist.
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from C" or its periphery especially if there is enough weight
present. At the very least it should not be the case that there
is a feasible subset of C"" C C" of weight at most b(N")L/n
but the weight of {¢: 3i € N'st.c = cBICD} N W is
strictly less.

Inclusion PSC is defined similarly to Comparative PSC.

Definition 5 (Inclusion PSC for PB with general prefer-
ences). An outcome W satisfies Inclusion PSC (IPSC) if
there exists no set of voters N' C N who have a solidly
supported set of candidates C' such that there exists some
candidate ¢* € C'\ ({¢:3i € N’ s.t. ¢ 7=y ¢HICDY W)
such that

w(cU({c:Fi e N st c = HCDYnW)) < b(N')L/n.

The intuition for IPSC is that if a set of voters N’ solidly
supports a subset C’ then it may start to think that a weight
b(N')L/n should be selected from C”’ or its periphery espe-
cially if there is enough weight present. At the very least it
should not be the case that weight of {c:3i € N's.t.c 7;
@D} N W does not exceed b(N')L/n even if some un-
selected candidate in ¢* € C’ can be added to {c: 3 €
N sit.c iy 9Dy N,

For both IPSC and CPSC, we avoid violation if for N’
solidly supporting candidates in C’, the weight of {c¢: 3i €
N'stc =; 9Dy 0 W is large enough. That is, we
only impose representation requirements for sets of voters
who solidly support a set of candidates. If, instead, rep-
resentation requirements were enforced for all sets of vot-
ers, regardless of whether they solidly supported a set of
candidates or not, then it may not be possible to satisfy
either axiom. This observation has already been made in
the context of multi-winner voting (see, e.g., Aziz et al.
2017a). Similarly, both axioms focus on whether the weight
{c:3i e N'st.c iz ¢®ICD} AW is large enough. If we
only care about the weight of C’ N W, then, again, it can
be impossible to satisfy the requirements for all solid coali-
tions (Aziz et al. 2017a).

Next, we show that IPSC and CPSC are independent. The
intuition is as follows. CPSC is stronger than IPSC in one re-
spect: it cares about the maximum weight of candidates that
are preferred by a coalition of voters whereas IPSC cares
about set inclusion. On the other hand, IPSC is stronger in
the following respect. For a violation of CPSC, we restrict
ourselves to a subset of the solidly supported set of candi-
dates C” C C’. For a violation of IPSC, we even allow for
inclusion of a candidate c¢ that is not in the set of solidly
supported set of candidates.

Proposition 1. For PB with ordinal preferences, IPSC does
not imply CPSC and CPSC does not imply IPSC.

Both IPSC and CPSC imply exhaustiveness as shown in
the proposition below.

Proposition 2 (CPSC and IPSC are exhaustive). Any out-
come W that satisfies CPSC or IPSC is exhaustive.

CPSC implies the stronger maximal cost property. As will
be shown within the proof of Proposition 1, an IPSC out-
come need not be a maximal cost outcome.



Proposition 3 (CPSC implies maximal cost). Any outcome
W that satisfies CPSC is a maximal cost outcome.

Concepts with Approval Ballots

We revisit our central concepts in the special but well-
studied domain of approval ballots. We provide character-
izations of both CPSC and IPSC when the voters have di-
chotomous preferences. At the end of this section, we show
that these characterizations highlight connections between
our axioms (CPSC, IPSC) and axioms that have previously
been established in the PB literature. The following propo-
sition provides a characterization of CPSC in this domain.

Proposition 4 (Comparative PSC (CPSC) for PB with ap-
proval preferences). Suppose voters have dichotomous pref-
erences. An outcome W satisfies Comparative PSC (CPSC)
if and only if the following two conditions hold:

(i) there exists no set of voters N' C N such that there is a
subset of candidates C"' C [,y Ai such that w(C") <
b(N")L/n but w(W N J,;cnr Ai) < w(C"), and

(ii) the outcome W is a maximal cost outcome.

We also obtain a characterization of IPSC under approval
ballots.

Proposition 5 (Inclusion PSC for PB with approval prefer-
ences). Suppose voters have dichotomous preferences. An
outcome W satisfies Inclusion PSC (IPSC) if and only if the
following two conditions hold:

(i) there exists no set of voters N' C N such that
w(Us;en'A; N W) < b(N')L/n and there exists some
¢ € (Nien'Ai) \ (Uien'A; N W) such that w({c} U
(Uien'A; NW)) < b(N'")L/n, and

(ii) the outcome W is exhaustive.

PB with approval ballots has been considered by Aziz,
Lee, and Talmon (2018). For example, they proposed the
concept BPJR-L. In the restricted setting studied by Aziz,
Lee, and Talmon (2018), CPSC for PB with approval pref-
erences is equivalent to the combination of the B-PJR-L and
the maximal cost concepts. BPJR-L is weaker than CPSC
because BPJR-L does not imply maximal cost.

Remark 1. In the standard multi-winner setting, outcomes
are required to have maximal cost (and hence are exhaus-
tive). Thus, condition (ii) in Proposition 4 and 5 are always
satisfied in the multi-winner setting.

IPSC for PB with approval preferences is stronger than
the Local-BPJR-L proposed by Aziz, Lee, and Talmon
(2018).

S Computing Proportional Outcomes

In this section, we focus on the computational aspects of pro-
portionally representative outcomes. Our first observation is
that computing a CPSC outcome is computationally hard,
even for one voter. The reduction is from the knapsack prob-
lem.

Proposition 6. Computing a CPSC outcome is weakly NP-
hard even for the case of one voter.
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Next, we show that even for one voter with strict prefer-
ences, a CPSC outcome may not exist.

Example 6. Consider the following PB instance with one
voter and 4 candidate projects. The voters’ preferences are
as follows. 1 : a = b = ¢ = d. The limit L is 4 and the
weights are: w(a) = 3,w(b) = w(c) = w(d) = 2. CPSC
requires that project a must be selected. It also requires that
{b, ¢} should be selected. Therefore, a CPSC outcome does
not exist.

Later, we will show that in a more restrictive setting
(multi-winner approval voting) a CPSC outcome always ex-
ists, can be computed in polynomial-time, and coincides
with a well-established proportional representation axiom,
called PJR.

Algorithm 1 PB Expanding Approvals Rule (PB-EAR)

Input: (N,C,7,b,L,w) {7 can contain weak prefer-
ences; if a voter 7 expresses her preferences over a subset
C’' C C, then C'\ C’ is considered the last equivalence
class of the voter.}

Output: W C C such that w(W) < L.

L j+— 1, W<«—10
2: while w(W) < L and no other candidate can be added
to W without exceeding budget limit L do
for: € N do

3:

4: AgJ) —{ceC: ey}

5.  end for

6 " {c€ O\W = Ty, ety bi 2 nlay

7. if C* = () then

8: J—J+1

9: else

10: Select a candidate ¢* from C* and add it to W

1: N« {i: AV}

12: Modify the weights of voters in N’ so the total
weight of voters in N’, i.e., >, b;, decreases
by exactly n@

13:  endif

14: end while

15: return W

In contrast to CPSC, we show that an IPSC outcome is
not only guaranteed to exist but it can be computed in poly-
nomial time via Algorithm 1, which we refer to as PB-EAR.
The algorithm is a careful generalization of the EAR algo-
rithm of Aziz and Lee (2020). In the algorithm, W is initially
empty. Some most preferred candidate c is selected (i.e.,
added into the set W) if it has sufficient support n- (w(c))/L
from the voters. If ¢ is selected, then n - (w(c))/L voting
weight of the voters who most prefer c is decreased; it does
not matter which of these voters’ weight is decreased nor
by how much — so long as a total of n - (w(c))/L voting
weight is reduced. If no such candidate exists, candidates
further down in the preference lists of all voters are consid-
ered. It is clear that PB-EAR runs in polynomial time. The
argument for PB-EAR satisfying IPSC does not depend on
what way candidate c* is selected is Step 10.

Proposition 7. PB-EAR satisfies Inclusion PSC for PB.



We note here that not all IPSC outcomes are possible out-
comes of PB-EAR even for the restricted setting of multi-
winner voting.

6 Special Focus on Multi-winner Voting

In this section, we dive into the well-studied setting of multi-
winner voting, which is also referred to as committee voting.
In this setting, k candidates are to be selected from the set of
candidates. Note that PB reduces to multi-winner voting if
the weight of each candidate is 1 and the budget limit is set
to k.

We uncover some unexpected relations between fair-
ness concepts for this particular setting. We also show that
whereas CPCS does not give rise to a new fairness concept,
IPSC gives rise to a new fairness concept even for the setting
concerning approval ballots. When discussing concepts for
PB, we will assume that voters have equal voter weight of 1.
This will make it possible to form connections with concepts
for multi-winner voting in which all the voters are typically
treated equally.

Let us first introduce generalised PSC, which was pro-
posed by Aziz and Lee (2020) and applies to multi-winner
settings with ordinal preferences. Aziz and Lee (2020)
showed that generalised PSC extends the PJR concept for
multi-winner voting with approval ballots.

Definition 6 (Generalised PSC (Aziz and Lee 2020)). A
committee W satisfies generalised PSC if for every positive
integer {, and for all generalised solid coalitions N' sup-
porting candidate subset C' with size |N'| > In/k, there
exists a set C* C W with size at least min{{, |C"|} such
that foralld' € C*, 3 e N' . " =; c@IC)

In the multi-winner setting, our axioms have connections
with previously studied axioms related to PSC. In particular,
we show that CPSC is equivalent to generalised PSC, and
IPSC implies generalised PSC. The latter result implies that
IPSC is a stronger concept than CPSC. This is, perhaps, sur-
prising given that in more general settings CPSC appears to
be a more demanding concept than IPSC because computing
a CPSC outcome is NP-hard and a CPSC outcome may may
not exist.

Proposition 8. For multi-winner voting,

(i) CPSC is equivalent to Generalised PSC, and
(ii) IPSC implies Generalised PSC (or CPSC).

As another corollary, we note that since testing PJR is
coNP-complete (Aziz et al. 2018), testing CPSC is coNP-
complete.

Approval-based multi-winner voting

In this subsection, we explore our axioms in the well-studied
setting of approval-based multi-winner elections. We begin
by stating two established PR axioms: Proportional Justified
Representation (PJR) (Sanchez-Fernandez et al. 2017) and
Extended Justified Representation (EJR) (Aziz et al. 2017a).

Definition 7 (PJR). Suppose all voters have dichotomous
preferences. A committee W with |W| = k satisfies PJR
Sor an approval ballot profile A = (Ai,...,A,) over a
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candidate set C' if for every positive integer { < k there
does not exists a set of voters N* C N with |N*| > (7 such
that the following two conditions hold:

(M) | Nicn- Ai| > ¢ and
(i) |(Ujen-4s) NW| <L

Definition 8 (EJR). Suppose all voters have dichotomous
preferences. A committee W with |W| = k satisfies EJR
Sor an approval ballot profile A = (Ay,...,A,) over a
candidate set C' if for every positive integer { < k there
does not exists a set of voters N* C N with |N*| > (3 such
that the following two conditions hold:

(ii) |A; NW| < Lforeachi e N*.

Our first result is a corollary of Proposition 8. It states that,
in the special case of approval-based multi-winner voting,
CPSC, PJR and Generalised PSC are all equivalent.

Corollary 1. For multi-winner voting with approval ballot,
CPSC, PJR, and Generalised PSC are equivalent.

Proof. Aziz and Lee (2020) proved that, for multi-winner
voting with approval ballot, PJR and generalised PSC are
equivalent.* We have shown that, for multi-winner voting,
CPSC and generalised PSC are equivalent. O

Although the focus of the present paper has been on gen-
eralising the multi-winner PSC concept of Dummett (Dum-
mett 1984) to the PB setting, Proposition 10 provides a sur-
prising discovery in the reverse direction. In the special case
of approval-based multi-winner voting, IPSC is a new PSC
axiom that is closely related — albeit stronger — than PJR.
In recent years, PJR and its related axioms have been in-
tensely studied by the computational social choice commu-
nity (see, e.g., Aziz et al. 2018, 2017a; Faliszewski et al.
2017; Aziz et al. 2017b; Elkind et al. 2017). Given Propo-
sition 10 and the community’s interest in PJR-like axioms,
we formalise the IPSC axiom for the approval-based multi-
winner setting. We also establish a number of results that il-
lustrate the connection between IPSC and other axioms such
as PJR, EJR and PAV.

Proposition 9 (Inclusion PSC (IPSC) for multi-winner vot-
ing with approval preferences). Suppose voters have di-
chotomous preferences. A committee W of size k satisfies
Inclusion PSC (IPSC) if and only if there exists no set of
voters N' C N such that the following two conditions hold.:
@ |N'| > (|Uien' AN W]+ 1)n/k, and
(ii) there exists some c* € Nien' Ai\(Uien' A; "W).
Proof. Follows from Proposition 5 by setting b(N') = |N'|,
L =k, w(C") =|C’|forall C' C C, and simplifying. [
Proposition 10. For multi-winner voting with approvals,
(i) IPSC implies PJR,
(ii) PJR does not imply IPSC,

“Unlike the present paper, Aziz and Lee’s (2020) model as-

sumes that no voter is indifferent between all candidates; however,
this assumption is not required to show the equivalence.



PB with PB with PB with Multi-winner Multi-winner Multi-winner with
Ordinal Prefs Approvals  Strict Pref with Ordinal Prefs  with Approvals  Strict Prefs

CPSC BPJR-L(#)  CPSC generalised PSC*)  PJR(*) PSC()

IPCS IPCS IPCS IPCS IPCS IPCS

Table 2: Equivalent fairness concepts for social choice settings. The concepts and settings in bold are from this paper. ()
implies that, for the given social choice setting, the fairness concept is equivalent to CPSC. (#) implies that, for the given
social choice setting, the fairness concept combined with the maximal cost property is equivalent to CPSC.

(iii) IPSC and EJR are incomparable.

We next show that the well-studied voting rule Propor-
tional Approval Voting (PAV) produces a committee that sat-
isfies IPSC. Under PAV, a voter ¢ that has j of their approved
candidates elected, i.e., 7 = |W N A;|, is assumed to attain

utility r(5) = >, % if j > 0 and 0 otherwise.

Given an outcome W, the PAV-score of W is the sum of
voter utilities, i.e., Y, 7(|A; N W]). The output of PAV
is an outcome W* that has maximal PAV-score, i.e., W* €
argmax{) ,.n (|4 NW][) : W CCand|W|=k}.
Proposition 11. PAV satisfies IPSC.

Given that PAV implies IPSC, the above proposition
shows that EJR and IPSC are compatible axioms. This fol-
lows immediately from combining the above result with the
fact that PAV also implies EJR (Aziz et al. 2017a); however,
IPSC and EJR do not characterize PAV. That is, there exists
committees that satisfy both EJR and IPSC but are not PAV.

Proposition 12.

(i) IPSC and EJR are compatible. That is, there always ex-
ists a committee outcome that satisfies both IPSC and
EJR. In particular, the output of the PAV rule is such a
commiittee.

(ii) A committee satisfying both EJR and IPSC need not be
a PAV outcome.

Part (ii) of Proposition 12 is a double-edged sword. On
one hand, IPSC and EJR are insufficient in characterizing
PAV. On the other hand, since PAV is computationally in-
tractable, it suggests that computing committee outcomes
that satisfy both axioms may be computationally tractable.
Indeed, the following proposition proves that an outcome
satisfying both axioms can be computed in polynomial-time.
Interestingly, the algorithm that produces this outcome is a
special case of the EAR algorithm (Aziz and Lee 2020) ap-
plied to dichotomous preferences. The algorithm in question
is studied by Peters and Skowron (2020) who call it “Rule-

Proposition 13. A committee satisfying both EJR and IPSC
can be computed via a polynomial-time algorithm.

Finally, we conclude by noting that there is no ranking
that can be applied to EJR and IPSC in terms of PAV scores.
That is, there are instances where an IPSC outcome provides
higher PAV-score than an EJR outcome and vice-versa.

To summarize the results of this subsection, we provide
a schematic illustration of the relationship between our ax-
ioms, PJR, EJR and PAV in Figure 2.
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PJIR=CPSC=Gen-PSC

Figure 2: Schematic illustration of PJR, EJR, IPSC, CPSC
and PAV for the approval-based multi-winner setting.

7 Conclusion

In this paper, we undertook a formal study of PB with ordi-
nal preferences. Table 2 summarizes how some of the con-
cepts are equivalent to each other in particular settings. We
propose two axioms (CPSC and IPSC) that capture impor-
tant aspects of the proportional representation. One of the
concepts (IPSC) leads to a new concept even for the re-
stricted setting of multi-winner voting. If voters have ad-
ditive separable utilities over projects, the cardinal utility
information can be used to derive the underlying ordinal
preferences. Therefore, our axioms and rules also apply to
settings where voters have additive separable utilities over
projects. The formal study of PB from a (computational) so-
cial choice perspective is still in its infancy. We envisage
further work on axioms and algorithms for fair participatory
budgeting.
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