
A Unified Framework for Planning with
Learned Neural Network Transition Models

Buser Say
Monash University, Melbourne, Victoria, Australia

buser.say@monash.edu

Abstract

Automated planning with neural network transition models
is a two stage approach to solving planning problems with
unknown transition models. The first stage of the approach
learns the unknown transition model from data as a neural
network model, and the second stage of the approach com-
piles the learned model to either a Mixed-Integer Linear Pro-
gramming (MILP) model or a Recurrent Neural Network
(RNN) model, and optimize it using an off-the-shelf solver.
The previous studies have shown that both models have their
advantages and disadvantages. Namely, the MILP model can
be solved optimally using a branch-and-bound algorithm but
has been experimentally shown not to scale well for neural
networks with multiple hidden layers. In contrast, the RNN
model can be solved effectively using a gradient descent al-
gorithm but can only work under very restrictive assumptions.
In this paper, we focus on improving the effectiveness of solv-
ing the second stage of the approach by introducing (i) a novel
Lagrangian RNN architecture that can model the previously
ignored components of the planning problem as Lagrangian
functions, and (ii) a novel framework that unifies the MILP
and the Lagrangian RNN models such that the weakness of
one model is complemented by the strength of the other. Ex-
perimentally, we show that our unifying framework signif-
icantly outperforms the standalone MILP model by solving
80% more problem instances, and showcase the ability of our
unifying framework to find high quality solutions to challeng-
ing automated planning problems with unknown transition
models.

Introduction
Planning is the reasoning side of acting in Artificial Intelli-
gence (Nau, Ghallab, and Traverso 2004). It automates the
selection and ordering of actions to reach desired states of
the world as best as possible. An automated planning prob-
lem represents the dynamics of the world using a model,
which can either be manually encoded (Kautz and Sel-
man 1992; Hoffmann and Nebel 2001; Helmert 2006; Pom-
merening et al. 2014; Davies et al. 2015), or learned from
data (Shen and Simon 1989; Gil 1992; Bennett and DeJong
1996; Benson 1997). In this paper, we focus on the latter
where we assume the transition model that governs the state
evolution is not known but it can be accurately learned from

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

data (Say et al. 2017; Say and Sanner 2018b; Say, Sanner,
and Thiébaux 2019; Say and Sanner 2020; Say et al. 2020;
Wu, Say, and Sanner 2020; Say 2020).

Automated planning with neural network transition mod-
els is a two stage approach to solving planning problems
with unknown state transition models (Say et al. 2017). As-
suming the availability of data, the first stage of the approach
learns the unknown transition model as a neural network
model, and the second stage of the approach represents the
learned planning problem either as a Mixed-Integer Linear
Programming (MILP) model (Say et al. 2017) or a Recurrent
Neural Network (RNN) model (Wu, Say, and Sanner 2020),
and optimize it using an off-the-shelf solver. As summarized
in Table 1, it has been shown that both models have their
advantages and disadvantages (Wu, Say, and Sanner 2020).
Specifically, the MILP model can be optimally solved using
a complete and sound branch-and-bound algorithm, but has
been shown not to scale well for neural networks with multi-
ple hidden layers. In contrast, the RNN model can be solved
effectively using a gradient descent algorithm but works un-
der very restrictive assumptions which include the ommis-
sion of the important parts of a planning problem and the
availability of a good starting point.

Model (+) Advantages and (-) Disadvantages
MILP + Can be provably solved to optimality.

- Not scalable for deep neural networks.
RNN + Scalable for deep neural networks.

- Makes restrictive assumptions.
- Requires a good starting point.

Table 1: Summary of the MILP (Say et al. 2017) and the
RNN (Wu, Say, and Sanner 2020) models.

In this paper, we focus on improving the effectiveness
of solving the second stage of the learning and planning
approach with the introduction of (i) a novel Lagrangian
RNN architecture which can model the previously ignored
components of the planning problem as Lagrangian func-
tions (Kuhn and Tucker 1951), and (ii) a novel framework
which unifies the MILP and the Lagrangian RNN models
such that the weaknesses of one model is complemented by
the strengths of the other. Specifically, our unified frame-
work is implemented as an algorithm which solves the MILP

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

5016

model using branch-and-bound and calls the Lagrangian
RNN model as a primal heuristic (i.e., a heuristic for find-
ing feasible solutions). We conduct two sets of computa-
tional experiments to test the effectiveness of our contribu-
tions. First, we test the effectiveness of our unified frame-
work to solve the learned planning problem. Here, we show
that our unifying framework significantly outperforms the
standalone MILP model by solving 80% more learned plan-
ning problem instances, and can significantly improve its
solution quality (i.e., upto 40%) over time. Then, we test
the effectiveness of our unified framework to solve the plan-
ning problem with an unknown transition model. Here, we
first verify the plans found in the first set of experiments us-
ing a domain simulator and show that around 95% of those
solutions are also plans for the respective planning prob-
lem instances. Finally, we test the quality of those verified
plans using the duality information obtained from solving
the Mixed-Integer Nonlinear Programming model of the re-
spective planning problem instances. We finalize our experi-
ments by showing that our unifying framework can find high
quality plans (i.e., with at most 4% duality gap) to the auto-
mated planning problem instances without having direct ac-
cess to their transition models. We conclude our paper with
a discussion of our experimental results in relation to the
literature with the purpose of starting new areas for future
work.

Planning with Learned Neural Network
Transition Models

We begin by presenting the definition of the learned auto-
mated planning problem and the two previous models for
solving the learned automated planning problem.

Problem Definition
A fixed-horizon learned deterministic automated plan-
ning problem (Say et al. 2017) is a tuple Π̃ =
〈S,A,C, T̃ , V,G,R,H〉, where S = {s1, . . . , sn} and A =
{a1, . . . , am} are sets of state and action variables with do-
mains Ds1 , . . . , Dsn and Da1 , . . . , Dam for positive inte-
gers n,m, C : Ds1 × · · · × Dsn × Da1 × · · · × Dam →
{true, false} is the global constraint function, T̃ : Ds1 ×
· · · × Dsn × Da1 × · · · × Dam → Ds1 × · · · × Dsn de-
notes the learned state transition function, and R : Ds1 ×
· · · × Dsn × Da1 × · · · × Dam → R is the reward func-
tion. Moreover, V is a tuple of constants 〈V1, . . . , Vn〉 ∈
Ds1 × · · · × Dsn that denotes the initial values of all state
variables, G : Ds1 × · · · ×Dsn → {true, false} is the goal
state function, and H ∈ Z+ is the planning horizon.

A solution to Π̃ is a tuple of values Āt = 〈āt1, . . . , ātm〉 ∈
Da1 × · · · ×Dam for all action variables A over time steps
t ∈ {1, . . . ,H} such that T̃ (〈s̄t1, . . . , s̄tn, āt1, . . . , ātm〉) =
〈s̄t+1

1 , . . . , s̄t+1
n 〉 and C(〈s̄t1, . . . , s̄tn, āt1, . . . , ātm〉) = true

for time steps t ∈ {1, . . . ,H}, Vi = s̄1i for all si ∈
S and G(〈s̄H+1

1 , . . . , s̄H+1
n 〉) = true . Similarly, an opti-

mal solution to Π̃ is a solution such that the total reward∑H
t=1R(〈s̄t+1

1 , . . . , s̄t+1
n , āt1, . . . , ā

t
m〉) is maximized.

It is assumed that the functions C,G,R and T̃ are known,
that C,G can be equivalently represented by a finite set of
piecewise linear constraints IC and IG, thatR is a piecewise
linear expression and that T̃ is a densely-connected (Huang
et al. 2017a) learned neural network with Rectified Linear
Units (ReLUs) (Nair and Hinton 2010) and linear units.
Next, we review two models; (i) a Mixed-Integer Linear Pro-
gramming (MILP) model (Say et al. 2017) and (ii) a Recur-
rent Neural Network (RNN) model (Wu, Say, and Sanner
2020), for solving the learned planning problem Π̃.

Mixed-Integer Linear Programming Model for the
Learned Planning Problem
In this section, we present the Mixed-Integer Linear Pro-
gramming (MILP) model (Say et al. 2017) to solve the
learned planning problem Π̃.

Parameters. The MILP model uses the following param-
eters:

• L is the number of layers of the neural network T̃ .

• Wl is the width of layer l ∈ [1, L] where [1, L] denotes
the set {1, . . . , L}.

• J(l) = {u1,l, . . . , uWl,l} is the set of neurons in layer
l ∈ [1, L]. For notational simplicity, we assume neurons
u1,1, . . . , un,1 ∈ J(1) represent the state variables S and
neurons un+1,1, . . . , un+m,1 ∈ J(1) represent the action
variablesA. Similarly, we assume u1,L, . . . , un,L ∈ J(L)
represent the state variables S.

• wi,j,k,l is the value of the learned weight between neurons
ui,k ∈ J(k) and uj,l ∈ J(l) in layers k ∈ [1, L − 1] and
l ∈ [2, L] where k < l.

• B(j, l) is the bias of neuron uj,l ∈ J(l) in layer l ∈ [2, L].

• M is a large constant used in the linearization of indicator
constraints (i.e., big-M constraints).

Decision Variables. The MILP model uses the following
decision variables:

• Xi,t ∈ Dai encodes the value of action variable ai ∈ A
at time step t ∈ [1, H].

• Yi,t ∈ Dsi encodes the value of state variable si ∈ S at
time step t ∈ [1, H + 1].

• Pi,l,t ∈ R encodes the value of the output of neuron ui,l ∈
J(l) in layer l ∈ [1, L] at time step t ∈ [1, H].

• Zi,l,t ∈ {0, 1} encodes whether neuron ui,l ∈ J(l) in
layer l ∈ [2, L − 1] is activated (i.e., when its input is
positive) at time step t ∈ [1, H] or not.

Constraints. The MILP model has the following con-
straints:

5017

Yi,1 = Vi ∀si∈S (1)
G(〈Y1,H+1, . . . , Yn,H+1〉) = true (2)
C(〈Y1,t, . . . , Yn,t, X1,t, . . . , Xm,t〉) = true ∀t∈[1,H] (3)

Yi,t = Pi,1,t ∀si∈S,t∈[1,H] (4)

Xi,t = Pi+n,1,t ∀ai∈A,t∈[1,H] (5)

Yi,t+1 = Pi,L,t ∀si∈S,t∈[1,H] (6)

0 ≤ Pj,l,t ∀uj,l∈J(l),l∈[2,L−1],[1,H] (7)

In(j, l, t) ≤ Pj,l,t ∀uj,l∈J(l),l∈[2,L−1],t∈[1,H] (8)

In(j, l, t) ≤MZj,l,t ∀uj,l∈J(l),l∈[2,L−1],t∈[1,H] (9)

In(j, l, t) ≥−M
(
1−Zj,l,t

)
+ Pj,l,t

∀uj,l∈J(l),l∈[2,L−1],t∈[1,H] (10)

where the input expression In(j, l, t) for neuron uj,l ∈ J(l)
in layer l ∈ [2, L] at time step t ∈ [1, H] is equal to∑
ui,k∈J(k),k∈[1,l−1] wi,j,k,l · Pi,k,t + B(j, l). In the above

MILP model, constraints (1) set the initial value of every
state variable. Constraints (2)–(3) encode the global con-
straint function C and the goal state function G as a set
of piecewise linear constraints. Constraints (4)–(6) map the
input and output layers of the learned neural network T̃ to
the corresponding state and action variables. Note that con-
straints (6) assume that the predicted state variables have
real-valued domains (i.e., Dsi ⊆ R for all si ∈ S). Finally,
constraints (7)–(10) model the activation of each ReLU in
the learned neural network.

Objective Function. The MILP model has the objective
function

max
H∑
t=1

R(〈Y1,t+1, . . . , Yn,t+1, X1,t, . . . , Xm,t〉) (11)

which maximizes the total reward accumulated over time
steps t ∈ [1, H].

Optimization. The MILP model is solved using the
branch-and-bound algorithm to find an optimal solution to
the learned automated planning problem Π̃.

Experimentally, it has been shown that solving the MILP
model using the branch-and-bound algorithm does not scale
well with the increasing number of hidden layers in the
learned deep neural network T̃ (i.e., for L ≥ 4). As an al-
ternative, a Recurrent Neural Network (RNN) model (Wu,
Say, and Sanner 2020) has been introduced to approximately
solve the learned automated planning problem, which we de-
scribe next.

Recurrent Neural Network Model for the Learned
Planning Problem
In this section, we present the Recurrent Neural Network
(RNN) model (Wu, Say, and Sanner 2017, 2020) to approx-
imately solve the learned planning problem Π̃.

Parameters. The RNN model uses the following parame-
ters in addition to the set of parameters that are previously
described for the MILP model:

• J is the total number of optimization instances.

• α is the optimization rate.

Decision Variables. The RNN model uses the same set of
decision variables as the MILP model previously described.
We extend the notation Yi,t andXi,t to Y ji,t andXj

i,t for each
optimization instance j ∈ [1, J].

Recurrent Neural Network Architecture. The RNN has
the following architecture:

• Each optimization instance j ∈ [1, J] at time step t ∈
[1, H] is represented by an RNN cell with input and out-
put vectors (Y j1,t, . . . , X

j
m,t) and (Y j1,t+1, . . . , Y

j
n,t+1, r

j
t),

respectively, where the reward output rjt is equal to
R((Y j1,t+1, . . . , X

j
m,t)).

• Given the initial values Vi of state variables si ∈
S, the architecture of the learned neural network T̃
is used to build the directed acyclic graph such that
T̃ ((Y j1,t, . . . , X

j
m,t)) = (Y j1,t+1, . . . , Y

j
n,t+1) for all op-

timization instances j ∈ [1, J] and time steps t ∈ [1, H].

• The total loss function Q is defined over all optimiza-
tion instances j ∈ [1, J] such that Q = −

∑
j∈[1,J](Q

j)2

where the loss function Qj of instance j is defined over
all time steps t ∈ [1, H] such that Qj =

∑
t∈[1,H] r

j
t .

Optimization. The total loss function Q is minimized
given some initial values of all action variables ai ∈ A, op-
timization instances1 j ∈ [1, J] and time steps t ∈ [1, H]
using the gradient descent algorithm such that:

X ←X − α ∂Q
∂X

(12)

where notation X denotes the vector of all action decision
variables X = (X1

1,1, . . . , X
J
m,H).

Additional Assumptions. As highlighted in Table 1, the
previously introduced RNN model further assumes that the
global constraint function C can be encoded as a set of lin-
ear bound constraints (i.e., box constraints) on each action
variable ai ∈ A. Moreover, it assumes the goal state func-
tion G is satisfied for all values of state variables, and the
knowledge on some initial values of all action variables.

Next, we present our first contribution which extends the
previous RNN model to relax the restrictive assumptions
placed on functions C and G.

1We run a batch of multiple action optimizations simultane-
ously where each is referred to as an optimization instance.

5018

Lagrangian Recurrent Neural Network Model
for the Learned Planning Problem

In this section, we present a novel Lagrangian RNN model
to solve the learned planning problem Π̃. The Lagrangian
RNN model introduced in this section extends the previous
RNN model (Wu, Say, and Sanner 2020) with real-valued
Lagrangian functions to encode the violation of constraints
that represent functions C and G.2

Parameters. The Lagrangian RNN model uses the follow-
ing parameters in addition to the set of parameters that are
previously described for the MILP model and the previous
RNN model:

• λC is the Lagrangian multiplier for the global constraint
function C.

• λG is the Lagrangian multiplier for the goal state function
G.

Decision Variables. The Lagrangian RNN model uses the
same set of decision variables as the RNN model previously
described.

Lagrangian Recurrent Neural Network Architecture.
The Lagrangian RNN has the following architecture:

• Each optimization instance j ∈ [1, J] at time step
t ∈ [1, H − 1] is represented by an RNN cell
with input and output vectors (Y j1,t, . . . , X

j
m,t) and

(Y j1,t+1, . . . , Y
j
n,t+1, r

j
t , c

j
t), respectively, where the La-

grangian output cjt measures the violation of the set of
piecewise linear constraints that represent function C
(i.e., when function C evaluates to false). Similarly, each
optimization instance j ∈ [1, J] at time step t = H is
represented by an RNN cell with input and output vectors
(Y j1,t, . . . , X

j
m,t) and (Y j1,t+1, . . . , Y

j
n,t+1, r

j
t , c

j
t , g

j), re-
spectively, where the Lagrangian output gj measures the
violation of the set of piecewise linear constraints that rep-
resent function G.
• The directed acyclic graph is built similarly to the previ-

ous RNN model using the learned neural network T̃ .
• The total loss function Q is defined similarly to the previ-

ous RNN model except the loss function Qj of optimiza-
tion instance j is defined over all time steps t ∈ [1, H]

such that Qj =
∑
t∈[1,H](r

j
t − c

j
t)− gj .

Lagrangian Outputs. The Lagrangian outputs cjt and gj
penalize the total violation of the set of constraints that rep-
resent functions C and G, respectively. Given each con-
straint i ∈ IC is piecewise linear and is in the form of:∑n
k=1 ei,k · Y

j
k,t +

∑n+m
k=1+n ei,k · X

j
k,t ≤ fi for some

2Cf. previous work (Song 2019) has used Boolean-valued
functions with user-specified Lagrangian multipliers to approxi-
mate function C and has shown limited success for model-based
discrete-time planning (Wu, Say, and Sanner 2017).

known constants ei,1, . . . , ei,n+m, fi ∈ R, we define the La-
grangian output cjt as:

λC ·
∑
i∈IC

max
(n∑
k=1

ei,k · Y jk,t +
n+m∑
k=1+n

ei,k ·Xj
k,t − fi, 0

)
(13)

for some Lagrangian multiplier 0 ≤ λC ∈ R. Similarly,
given each constraint i ∈ IG is piecewise linear and is in the
form of:

∑n
k=1 ei,k ·Y

j
k,H+1 ≤ fi for some known constants

ei,1, . . . , ei,n, fi ∈ R, we define the Lagrangian output gj
as:

λG ·
∑
i∈IG

max
(n∑
k=1

ei,k · Y jk,H+1 − fi, 0
)

(14)

for some Lagrangian multiplier 0 ≤ λG ∈ R. Finally, we
encode all max operators as ReLUs in the RNN cell.

Optimization. The modified total loss function Q is min-
imized using gradient descent similar to the optimization of
the previous RNN model.

Additional Assumptions. The Lagrangian RNN model
assumes the values of Lagrangian multipliers λC and λG
to be known a priori. For sufficiently large values of λC and
λG, the Lagrangian RNN model can find feasible solutions
to the learned planning problem Π̃. However, setting these
values to arbitrarily large constants can result in both theo-
retical (e.g., suboptimality of the solution found) and practi-
cal (e.g., exploding gradient) problems.

Next, we will describe how to obtain the values of the
Lagrangian multipliers and the action variables to solve the
Lagrangian RNN model with gradient descent, and use the
solution of the Lagrangian RNN model to increase the ef-
fectiveness of branch-and-bound to solve the MILP model.
To this end, we present our second contribution which com-
bines the strengths of the MILP model and the Lagrangian
RNN model under a unified framework to effectively solve
the learned planning problem Π̃.

Unified Framework for the Learned Planning
Problem

In this section, we present a unified framework that com-
bines the MILP model and the Lagrangian RNN model to
effectively solve the learned planning problem Π̃. The uni-
fied framework solves the MILP model using the branch-
and-bound algorithm and calls the Lagrangian RNN model
as a primal heuristic. The gradient descent algorithm is (i)
initialized with the values of action decision variables Xi,t

that are obtained from solving the linear relaxation of the
MILP model, and (ii) the Lagrangian multipliers λC and λG
are updated based on a measure of solution feasibility. Next,
we present Algorithm 1 that implements the unified frame-
work for solving the learned planning problem.

5019

Algorithm 1 Unified Algorithm

1: Optimization rate: α = hinitialα (Π̃)

2: Lagrangian multipliers: λC = hinitialλC
(Π̃), λG = hinitialλG

(Π̃)

3: Callback frequency: β ∈ Z+

4: Incumbent: π̃ = ()
5: Branch-and-bound callback: B&B(β, π̃)→ 〈X̄, π̃〉

where X̄ ∈ {(), . . . , (X̄1
1,1, . . . , X̄

β
m,H)}

6: Gradient descent: SG(α, λC , λG, X̄)→ Z̄
where Z̄ = (Z̄1,2,1, . . . , Z̄WL−1,L−1,H)

7: Simplex: LP(Z̄)→ X̄LP

where X̄LP ∈ {(), (X̄1,1, . . . , X̄m,H)}
8: 〈X̄, π̃〉 ← B&B(β, π̃)
9: while X̄ 6= () do

10: Z̄ ← SG(α, λC , λG, X̄)
11: X̄LP ← LP(Z̄)
12: if X̄LP 6= () and X̄LP has greater reward than π̃ then
13: π̃ ← X̄LP

14: β ← hupdateβ (π̃)

15: λC ← hupdateλC
(X̄LP), λG ← hupdateλG

(X̄LP)

16: 〈X̄, π̃〉 ← B&B(β, π̃)
17: return π̃

Parameters and Definitions. Lines 1-7 initialize the pa-
rameters and provides high-level algorithmic definitions as
follows. Lines 1-2 set the values of the optimization rate α
and Lagrangian multipliers λC , λG according to the param-
eters of the learned automated planning problem Π̃. Line
3 initializes the value of the callback frequency β, which
determines how frequently the gradient descent algorithm
should be called as a primal heuristic. Line 4 initializes the
incumbent solution π̃ to an empty vector. Lines 5-7 provide
high-level definitions of the algorithms that are used in Al-
gorithm 1 in terms of their inputs and outputs. Line 5 defines
the callback to the branch-and-bound algorithm B&B(β, π̃)
which maintains (i.e., initalizes or updates) a single branch-
and-bound tree throughout the execution of Algorithm 1.
B&B(β, π̃) inputs the incumbent solution π̃ and the call-
back frequency β, and returns a vector of action variable
values obtained from solving j ∈ [0, β] number of linear
relaxations and the best incumbent solution π̃ found. Line
6 defines the gradient descent algorithm SG for solving the
Lagrangian RNN model previously described. Note that SG
returns the value of each decision variable Zi,l,t ∈ {0, 1},
which models the activation of ReLU ui,l ∈ J(l) in layer
l ∈ [2, L − 1] at time step t ∈ [1, H]. Finally, Line 7
defines the simplex algorithm which solves a linear pro-
gramming model for given values of binary decision vari-
ables Z̄. This linear programming model is equivalent to the
MILP model such that the vector of binary decision vari-
ables (Z1,2,1, . . . , ZWL−1,L−1,H) are substituted by their re-
spective values Z̄.

Control Flow. Lines 8-17 describe the control flow of
Algorithm 1. Line 8 runs the branch-and-bound algorithm
B&B upto β number of nodes, and returns the values of ac-
tion variables that are obtained from solving the linear re-
laxation at nodes j ∈ [0, β] as well as the best incumbent

solution π̃ found. Line 9 terminates Algorithm 1 only when
B&B terminates (i.e., denoted by an empty vector). Line 10
runs the gradient descent algorithm SGwith initial values of
action variables, and returns the values of decision variables
Zi,l,t. Line 11 solves a linear relaxation of the MILP model
for fixed values of ReLU activations. Lines 12-13 update the
incumbent if solving the linear relaxation results in an in-
cumbent with greater total reward. Lines 14-15 update the
values of the callback frequency β, and the Lagrangian mul-
tipliers λC and λG according to the information about the
incumbent solution π̃ and the solution of the linear program-
ming model, respectively. Line 16 continues the branch-and-
bound algorithm with the updated value of the callback fre-
quency β and the best incumbent solution π̃. Line 17 returns
π̃ as the optimal solution to the learned planning problem Π̃.
The details of β, λC and λG will be provided in Table 3.

Before we test the experimental performance of Algo-
rithm 1, we remark that it preserves both soundness and the
completeness properties of the branch-and-bound algorithm
since the incumbent solution π̃ can only be updated by (i) the
branch-and-bound algorithm itself (i.e., lines 8 and 16), and
(ii) the optimal solution of the simplex algorithm if it yields
an incumbent with greater total reward (i.e., lines 11-13).

Experimental Results
In this section, we present results of two sets of experiments.
In the first set of experiments, we test the effectiveness of
using Algorithm 1 to solve the learned planning problem Π̃.
We compare Algorithm 1 against the only model that is also
capable of solving the learned planning problem Π̃, namely
the existing MILP model (Say et al. 2017) over multiple in-
stances of the learned planning problem Π̃. We report de-
tailed comparative results on the solution quality of both ap-
proaches over time and show Algorithm 1 significantly out-
performs the standalone MILP model. In the second set of
experiments, we test the effectiveness of using Algorithm 1
to solve the planning problem Π = 〈S,A,C, T, V,G,R,H〉
with a known transition function T . Here, we verify the abil-
ity of Algorithm 1 to find a plan for the underlying planning
problem Π using a domain simulator. Then, we compare Al-
gorithm 1, which only has access to the learned transition
function T̃ , against the Mixed-Integer Nonlinear Program-
ming (MINLP) model of Π, which can be solved using a spa-
tial branch-and-bound algorithm to bounded optimality.3 We
report results on the solution quality of Algorithm 1 to solve
the planning problem Π using the dual bounds obtained from
the spatial branch-and-bound algorithm, and showcase the
ability of Algorithm 1 to find high quality solutions to Π
without having access to the transition function T .

Experimental Domains and Setup
Three challenging domains are selected from the litera-
ture to be used in both sets of experiments, namely: Nav-
igation (Faulwasser and Findeisen 2009), Reservoir Con-
trol (Yeh 1985) and Inventory Control (Mann and Mannor

3We assume function T can be equivalently represented by a
finite set of nonlinear constraints.

5020

2014).4 These domains have been modified mainly with the
addition of a goal state function G to produce a total of 64
new instances of the automated planning problem Π. We
provide a brief summary of these domains in Table 2.

Domain n, m Brief Description
Navigation 2,2 A navigation task for an agent

in a two-dimensional maze
with exponential function T .
A and S have real domains.

Reservoir 8,8 Safely controlling n reservoirs
and with trigonometric function T .

10,10 A and S have real domains.
Inventory 17,8 Inventory management of n

and products with demand cycles
21,10 with trigonometric function T .

A and S have integer domains.

Table 2: Summary of the domains.

We followed the methodology outlined for data genera-
tion and neural network training to select the final neural net-
work architectures (Wu, Say, and Sanner 2020). We found
that neural networks with two hidden layers (i.e., L = 4)
and 32 width (i.e., W2 = W3 = 32) most accurately pre-
dicted the data for all three domains. All experiments were
run on the CPU of a MacBookPro with 2.8 GHz Intel Core i7
16GB memory, using a single thread with one hour total time
limit per problem instance. We used CPLEX 12.10 as the
branch-and-bound solver, Tensorflow (Abadi et al. 2016) as
the gradient descent optimizer and SCIP 7.0 (Vigerske and
Gleixner 2018) as the spatial branch-and-bound solver. In
Table 3, we present the initial value of parameter β and the
definitions of functions hinitialα , hinitialλC

, hinitialλG
, hupdateβ ,

hupdateλC
, hupdateλG

. Given the information presented in Ta-
ble 3, we implemented Algorithm 1 using the HeuristicCall-
back interface of CPLEX.

Parameter / Function Initialization / Definition
β 1000
hinitialα 0.01 times the absolute value

of the largest coefficient in R.
hinitialλC

, hinitialλG
100 times the absolute value

of the largest coefficient in R.
hupdateβ if π̃ 6= () then 2 · β else β
hupdateλC

, hupdateλG
if X̄LP = () then 2 · λ else λ/2

Table 3: Initializations and definitions for Algorithm 1.

Experiment 1: Solving Learned Planning Problems
In the first set of experiments, we compare the effective-
ness of solving the learned planning problem Π̃ using Al-

4In Inventory Control, we predicted the integer domains of state
variables with linear units, replaced constraints (6) with Yi,t+1 +
0.5 ≥ Pi,L,t and Yi,t+1−0.5 ≤ Pi,L,t ∀si∈S,t∈[1,H], and enforced
the domains of state and action variables, si ∈ S and aj ∈ A, to
be integer for all time steps t ∈ [1, H] such that Yi,t+1, Xj,t ∈ Z.

gorithm 1 against the standalone MILP model. Figure 1 vi-
sualizes the runtime behaviour of Algorithm 1 (red) and the
MILP model (blue) as a function of time. Figure 1 is orga-
nized such that the subfigures on the left (i.e., subfigures 1a,
1c and 1e) represent the cumulative number of problem in-
stances for which an incumbent solution is found over time
and the subfigures on the right (i.e., subfigures 1b, 1d and
1f) represent the improvement of solution quality over time,
and each row represents a unique domain.

Problem Coverage. In Figure 1, the inspection of the sub-
figures on the left highlights the clear benefit of using Algo-
rithm 1 over the standalone MILP model. Overall, we ob-
serve that Algorithm 1 covers around 80% more problem in-
stances within the time limit compared to the MILP model.
Moreover we observe that for the majority (i.e., around 80%)
of problem instances, Algorithm 1 finds its first incumbent
solution under 500 seconds. A closer study of subfigures 1a
and 1e shows that the MILP model cannot find a single solu-
tion to a problem instance in Navigation or Inventory Con-
trol, respectively. Similarly, the subfigure 1c shows that the
MILP model covers around 30% of the problem instances
in Reservoir Control. In contrast to the MILP model, Algo-
rithm 1 finds incumbent solutions to all problem instances in
Reservoir Control and Inventory Control, and covers more
than 60% of the problem instances in Navigation.

Solution Quality. In Figure 1, the inspection of the sub-
figures on the right highlights the ability of Algorithm 1 to
improve its solution quality over time. The study of subfig-
ures 1b and 1f shows that Algorithm 1 improves its solution
quality by around 5% and 20% on average in Navigation and
Inventory Control, respectively. Note that the MILP model is
not represented in the same subfigures since it cannot find a
single feasible solution to the respective problem instances.
The study of subfigure 1d reveals that the MILP model can
improve its solution quality in Reservoir Control by around
30% on average. Interestingly, Algorithm 1 shows a similar
performance to the MILP model over all problem instances
in Reservoir Control, which showcases the robustness of Al-
gorithm 1 to the variations in the problem instances.

Experiment 2: Solving Planning Problems

In the second set of experiments, we test the effectiveness
of solving the automated planning problem Π using Algo-
rithm 1. We begin with the verification of plans found by
Algorithm 1 using a simulator.5 Then, we compare the solu-
tion quality of Algorithm 1 to the best dual bounds found by
solving the MINLP model of Π using a spatial branch-and-
bound algorithm, and summarize both results in Table 4.

5The domain simulator predicts the values S̄t of state variables
si ∈ S for time steps t ∈ [2, H + 1] given their initial values Vi
and the values Āt of action variables A for time steps t ∈ [1, H]
using the transition function T , and outputs the potential violation
of constraints that represent functions C and G.

5021

(a) Navigation Cumulative (b) Navigation Quality

(c) Reservoir Cumulative (d) Reservoir Quality

(e) Inventory Cumulative (f) Inventory Quality

Figure 1: Visualization of Experiment 1 which compares Al-
gorithm 1 (red) to the MILP model (Say et al. 2017) (blue)
over all instances of the learned automated planning problem
Π̃ within one hour time limit. The subfigures are organized
such that the left column represents the cumulative number
of problem instances for which a solution is found and the
right column represents the normalized solution qualities,
for each domain that is represented by a unique row.

Domain Total Verif. Max. Violation Max. Gap
Navigation 7/10 x < 0.3 x ≤ 4%
Reservoir 24/24 - -
Inventory 24/24 - -

Table 4: Summary of plan verification and solution quality
results for Algorithm 1. We report the total number of prob-
lem instances verified, the maximum violation of constraints
that represent function C or G, and the maximum duality
gap found by solving the MINLP model of Π.

Plan Verification. The inspection of Table 4 highlights the
ability of Algorithm 1 to find plans for the automated plan-
ning problem Π without having direct access to the transi-
tion function T . We observe that Algorithm 1 finds plans
for all problem instances in Reservoir Control and Inven-
tory Control, and 70% of the problem instances in Naviga-
tion. Among the three violated problem instances, the do-
main simulator identified constraints that represent function
G to be violated by relatively small amounts (i.e., less than

0.3 for constraint 6 ≤ Yi,H+1 ≤ 7).

Solution Quality. We report the quality of plans found by
Algorithm 1 using the dual bounds obtained from solving the
MINLP model of the automated planning problem Π. Here,
we report results on the only domain that can be solved by
the current implementation of the spatial branch-and-bound
solver SCIP 7.0 (Vigerske and Gleixner 2018) (i.e., due to
the trigonometric functions involved in functions T). Over-
all as presented in Table 4, the plans found by Algorithm 1
are at most 4% worse than the best computed dual solution.
With these results, we experimentally validate the ability of
Algorithm 1 to compute high quality solutions to automated
planning problems with unknown transition models.

Discussion and Related Work
In this section, we discuss the importance of our contribu-
tions and experimental results in relation to the literature
with the purpose of opening new areas for future work.

In Experiment 1, we demonstrated the ability of our
contributions to effectively solve a variety of challenging
learned automated planning problems. Our results suggest
that these novel contributions have potential applications
to related tasks such as model-based discrete-time plan-
ning (Wu, Say, and Sanner 2017), model-based continuous-
time planning (Say and Sanner 2018a, 2019), hindsight op-
timization for model-based planning (Raghavan et al. 2017),
probabilistic goal recognition using deep neural network
models (Pereira et al. 2019) and automated planning with
learned binarized neural networks (Say and Sanner 2018b,
2020), which all rely on effective decision making over mod-
els that can be represented as acyclic directed graphs.

In Experiment 2, we demonstrated the ability of our uni-
fying framework to effectively solve a variety of challeng-
ing automated planning problems with unknown transition
models. Similar to the previous work (Say et al. 2017), we
learned models of the world from data using deep neural net-
works. An important area of future work here is to study how
to learn deep neural network models with formal guarantees
for the task of automated planning. To this end, the literature
on formal methods for deep neural networks including veri-
fication (Katz et al. 2017; Ehlers 2017; Huang et al. 2017b;
Anderson et al. 2019), robustness evaluation (Tjeng, Xiao,
and Tedrake 2019), defenses to adversarial attacks (Wong
and Kolter 2018) and robust training (Gowal et al. 2019)
present important ideas for safe automated planning with
formally robust deep neural network models.

Conclusion
In this paper, we studied the important problem of auto-
mated planning with learned deep neural networks. We in-
troduced (i) a novel Lagrangian RNN model to encode the
full specifications of a planning problem and (ii) a unify-
ing framework that combines the scalable Lagrangian RNN
model with the sound and complete MILP model. We ex-
perimentally demonstrated the effectiveness of our contri-
butions to solve challenging automated planning problems
with unknown transition models using deep neural networks.

5022

References
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; Kudlur,
M.; Levenberg, J.; Monga, R.; Moore, S.; Murray, D. G.;
Steiner, B.; Tucker, P.; Vasudevan, V.; Warden, P.; Wicke,
M.; Yu, Y.; and Zheng, X. 2016. TensorFlow: A System
for Large-Scale Machine Learning. In Proceedings of the
Twelfth USENIX Symposium on Operating Systems Design
and Implementation, 265–283.

Anderson, R.; Huchette, J.; Tjandraatmadja, C.; and Vielma,
J. P. 2019. Strong Mixed-Integer Programming Formula-
tions for Trained Neural Networks. In Lodi, A.; and Na-
garajan, V., eds., Integer Programming and Combinatorial
Optimization, 27–42. Cham: Springer International Publish-
ing. ISBN 978-3-030-17953-3.

Bennett, S. W.; and DeJong, G. F. 1996. Real-World
Robotics: Learning to Plan for Robust Execution. In Ma-
chine Learning, volume 23, 121–161.

Benson, S. S. 1997. Learning Action Models for Reactive
Autonomous Agents. Ph.D. thesis, Stanford University, Stan-
ford, CA, USA.

Davies, T. O.; Pearce, A. R.; Stuckey, P. J.; and Lipovet-
zky, N. 2015. Sequencing Operator Counts. In Proceedings
of the Twenty-Fifth International Conference on Automated
Planning and Scheduling, 61–69. AAAI Press. ISBN 978-
1-57735-731-5.

Ehlers, R. 2017. Formal Verification of Piece-Wise Lin-
ear Feed-Forward Neural Networks. In D’Souza, D.; and
Narayan Kumar, K., eds., Automated Technology for Verifi-
cation and Analysis, 269–286. Cham: Springer International
Publishing. ISBN 978-3-319-68167-2.

Faulwasser, T.; and Findeisen, R. 2009. Nonlinear Model
Predictive Path-Following Control. In Nonlinear Model Pre-
dictive Control - Towards New Challenging Applications,
335–343. Berlin, Heidelberg: Springer.

Gil, Y. 1992. Acquiring Domain Knowledge for Planning by
Experimentation. Ph.D. thesis, Carnegie Mellon University,
USA.

Gowal, S.; Dvijotham, K. D.; Stanforth, R.; Bunel, R.; Qin,
C.; Uesato, J.; Arandjelovic, R.; Mann, T.; and Kohli, P.
2019. Scalable Verified Training for Provably Robust Im-
age Classification. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, ICCV.

Helmert, M. 2006. The Fast Downward Planning System.
In Journal Artificial Intelligence Research, volume 26, 191–
246. USA: AI Access Foundation. ISSN 1076-9757.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. In Jour-
nal of Artificial Intelligence Research, volume 14, 253–302.
USA: AI Access Foundation. ISSN 1076-9757.

Huang, G.; Liu, Z.; Maaten, L. v. d.; and Weinberger, K. Q.
2017a. Densely Connected Convolutional Networks. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition, 2261–2269. ISSN 1063-6919.

Huang, X.; Kwiatkowska, M.; Wang, S.; and Wu, M. 2017b.
Safety Verification of Deep Neural Networks. In Majumdar,
R.; and Kunčak, V., eds., Computer Aided Verification, 3–29.
Cham: Springer International Publishing. ISBN 978-3-319-
63387-9.

Katz, G.; Barrett, C.; Dill, D.; Julian, K.; and Kochenderfer,
M. 2017. Reluplex: An Efficient SMT Solver for Verifying
Deep Neural Networks. In Proceedings of the Twenty-Ninth
International Conference on Computer Aided Verification,
CAV.

Kautz, H.; and Selman, B. 1992. Planning as Satisfiability.
In Proceedings of the Tenth European Conference on Artifi-
cial Intelligence, ECAI’92, 359–363.

Kuhn, H. W.; and Tucker, A. W. 1951. Nonlinear Program-
ming. In Proceedings of the Second Berkeley Symposium on
Mathematical Statistics and Probability, 481–492. Berkeley,
California: University of California Press.

Mann, T.; and Mannor, S. 2014. Scaling Up Approximate
Value Iteration with Options: Better Policies with Fewer
Iterations. In Xing, E. P.; and Jebara, T., eds., Proceed-
ings of the Thirty-First International Conference on Ma-
chine Learning, volume 32 of Machine Learning Research,
127–135. Bejing, China: PMLR.

Nair, V.; and Hinton, G. E. 2010. Rectified Linear Units
Improve Restricted Boltzmann Machines. In Proceedings
of the Twenty-Seventh International Conference on Interna-
tional Conference on Machine Learning, ICML, 807–814.
USA: Omnipress. ISBN 978-1-60558-907-7.

Nau, D.; Ghallab, M.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc. ISBN 1558608567.

Pereira, R. F.; Vered, M.; Meneguzzi, F.; and Ramı́rez, M.
2019. Online Probabilistic Goal Recognition over Nom-
inal Models. In Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence, IJCAI,
5547–5553. International Joint Conferences on Artificial In-
telligence Organization.

Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-Based Heuristics for Cost-Optimal Planning. In
Proceedings of the Twenty-Fourth International Conference
on Automated Planning and Scheduling, ICAPS’14, 226–
234. AAAI Press.

Raghavan, A.; Sanner, S.; Tadepalli, P.; Fern, A.; and
Khardon, R. 2017. Hindsight Optimization for Hybrid State
and Action MDPs. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, AAAI. San Francisco,
USA.

Say, B. 2020. Optimal Planning with Learned Neural Net-
work Transition Models. Ph.D. thesis, University of Toronto,
Toronto, ON, Canada.

Say, B.; Devriendt, J.; Nordström, J.; and Stuckey, P. 2020.
Theoretical and Experimental Results for Planning with
Learned Binarized Neural Network Transition Models. In
Simonis, H., ed., Proceedings of the Twenty-Sixth Interna-
tional Conference on Principles and Practice of Constraint

5023

Programming, 917–934. Cham: Springer International Pub-
lishing. ISBN 978-3-030-58475-7.
Say, B.; and Sanner, S. 2018a. Metric Nonlinear Hybrid
Planning with Constraint Generation. In PlanSOpt 2018,
19–25. 28th ICAPS Workshop on Planning, Search and Op-
timization (PlanSOpt).
Say, B.; and Sanner, S. 2018b. Planning in Factored State
and Action Spaces with Learned Binarized Neural Network
Transition Models. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJ-
CAI, 4815–4821. ISBN 978-0-9992411-2-7.
Say, B.; and Sanner, S. 2019. Metric Hybrid Factored Plan-
ning in Nonlinear Domains with Constraint Generation. In
Proceedings of the Sixteenth International Conference on
the Integration of Constraint Programming, Artificial Intel-
ligence, and Operations Research, CPAIOR, 502–518.
Say, B.; and Sanner, S. 2020. Compact and Efficient En-
codings for Planning in Factored State and Action Spaces
with learned Binarized Neural Network Transition Models.
Artificial Intelligence 285: 103291. ISSN 0004-3702.
Say, B.; Sanner, S.; and Thiébaux, S. 2019. Reward Poten-
tials for Planning with Learned Neural Network Transition
Models. In Schiex, T.; and de Givry, S., eds., Proceedings
of the Twenty-Fifth International Conference on Principles
and Practice of Constraint Programming, 674–689. Cham:
Springer International Publishing. ISBN 978-3-030-30048-
7.
Say, B.; Wu, G.; Zhou, Y. Q.; and Sanner, S. 2017. Nonlinear
Hybrid Planning with Deep Net Learned Transition Models
and Mixed-integer Linear Programming. In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI, 750–756. ISBN 978-0-9992411-0-3.
Shen, W.-M.; and Simon, H. A. 1989. Rule Creation and
Rule Learning through Environmental Exploration. In Pro-
ceedings of the Eleventh International Joint Conference on
Artificial Intelligence, IJCAI’89, 675—-680. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.
Song, Z. 2019. Extending TensorFlow-based Planner to
Constrained State and Action Spaces. Undergraduate the-
sis, University of Toronto, Toronto, ON, Canada.
Tjeng, V.; Xiao, K.; and Tedrake, R. 2019. Evaluating Ro-
bustness of Neural Networks with Mixed Integer Program-
ming. In Proceedings of the Seventh International Confer-
ence on Learning Representations, ICLR.
Vigerske, S.; and Gleixner, A. 2018. SCIP: Global Opti-
mization of Mixed-Integer Nonlinear Programs in a Branch-
and-cut Framework. Optimization Methods and Software
33(3): 563–593.
Wong, E.; and Kolter, Z. 2018. Provable Defenses Against
Adversarial Examples via the Convex Outer Adversarial
Polytope. In Proceedings of the Thirty-Fifth International
Conference on Machine Learning, ICML.
Wu, G.; Say, B.; and Sanner, S. 2017. Scalable Planning
with Tensorflow for Hybrid Nonlinear Domains. In Proceed-
ings of the Thirty-First International Conference on Neural

Information Processing Systems, NIPS, 6276–6286. USA:
Curran Associates Inc. ISBN 978-1-5108-6096-4.
Wu, G.; Say, B.; and Sanner, S. 2020. Scalable Planning with
Deep Neural Network Learned Transition Models. Journal
of Artificial Intelligence Research 68: 571–606.
Yeh, W. G. 1985. Reservoir Management and Operations
Models: A State-of-the-art Review. In Water Resources re-
search, volume 21,12, 1797–1818.

5024

