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Abstract

For prediction of interacting agents’ trajectories, we propose
an end-to-end trainable architecture that hybridizes neural
nets with game-theoretic reasoning, has interpretable inter-
mediate representations, and transfers to downstream deci-
sion making. It uses a net that reveals preferences from the
agents’ past joint trajectory, and a differentiable implicit layer
that maps these preferences to local Nash equilibria, forming
the modes of the predicted future trajectory. Additionally, it
learns an equilibrium refinement concept. For tractability, we
introduce a new class of continuous potential games and an
equilibrium-separating partition of the action space. We pro-
vide theoretical results for explicit gradients and soundness.
In experiments, we evaluate our approach on two real-world
data sets, where we predict highway drivers’ merging trajec-
tories, and on a simple decision-making transfer task.

1 Introduction
Prediction of interacting agents’ trajectories has recently
been advanced by flexible, tractable, multi-modal data-
driven approaches. But it remains a challenge to use them
for safety-critical domains with additional verification and
decision-making transfer requirements, like automated driv-
ing or mobile robots in interaction with humans. Towards
addressing this challenge, the following seem sensible inter-
mediate goals: (1) incorporation of well-understood princi-
ples, prior knowledge and reasoning of the multiagent do-
main, allowing to generalize well and to transfer to robust
downstream decision making; (2) interpretability of models’
latent variables, allowing for verification beyond just testing
the final output; (3) theoretical analysis of soundness.

In this paper, we take a step towards addressing mul-
tiagent trajectory prediction including these intermediate
goals, while trying to keep as much as possible of the prac-
tical strength of data-driven approaches. For this, we hy-
bridize neural learning with game-theoretic reasoning – be-
cause game theory provides well-established explanations of
agents’ behavior based on the principle of instrumental ra-
tionality, i.e., viewing agents as utility maximizers. Roughly
speaking, we “fit a game to the observed trajectory data”.

Along this hybrid direction one major obstacle – and a
general reason why game theory often remains in abstract
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settings – lies in classic game-theoretic solution concepts
like the Nash equilibrium (NE) notoriously suffering from
computational intractability. As one way to overcome this,
we build on local NE (Ratliff, Burden, and Sastry 2013,
2016). We combine this with a specific class of games –
(continuous) potential games (Monderer and Shapley 1996)
– for which local NE usually coincide with local optima
of a single objective function, simplifying search. Another
challenge lies in combining game theory with neural nets
in a way that makes the overall model still efficiently train-
able by gradient-based methods. To address this, we build
on implicit layers (Amos and Kolter 2017; Bai, Kolter, and
Koltun 2019). Implicit layers specify the functional relation
between a layer’s input and its output not in closed form, but
only implicitly, usually via an equation. Nonetheless they
allow to get exact gradients by “differentiating through” the
equation, based on the implicit function theorem.

Main contributions and outline. We propose a modu-
lar architecture that outputs a multi-modal prediction of in-
teracting agents’ joint trajectory (where modes are inter-
pretable as local Nash equilibria), from their past trajec-
tory as input (Sec. 3). The architecture is depicted in Fig. 1,
alongside the motivating example of highway drivers’ merg-
ing trajectories. It builds on the following components:
• a tractable, differentiable game solver implicit layer

(Sec. 3.1) with explicit gradient formula, mapping game pa-
rameters to local Nash equilibria (Thm. 1). It is based on a
new class of continuous-action trajectory games that allow
to encode prior knowledge on agents’ preferences (Def. 4).
We prove that they are potential games (Lem. 1). And it
builds on an equilibrium-separating concave partition of the
action space that we introduce to ensure tractability (Def. 5).
• Furthermore, the architecture contains a neural net that

reveals the agents’ preferences from their past, and a net that
learns an equilibrium refinement concept (Sec. 3.2).

This architecture forms a model class where certain latent
representations have clear game-theoretic interpretations
and certain layers encode game-theoretic principles that
help induction (also towards strategically-robust decision-
making). At the same time, it has neural net-based capacity
for learning, and is end-to-end trainable with analytic gradi-
ent formula. Furthermore:
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Figure 1: Bottom: Our full architecture (Sec. 3.2). Top: Example: highway merging scenario, where reliable models of (human)
driver interaction are key for safe automated driving. Top left: input x: initial trajectories of drivers. Top right: prediction of
future trajectory y: depicted are two modes 1ŷ, 2ŷ corresponding to two local Nash eq. 1a∗, 2a∗: red going first vs. yellow first.

• In Sec. 4, we give two concrete example scenarios that
provably satisfy our approach’s conditions (Prop. 1, etc.).
• In the experiments reported in Sec. 5, we apply our

architecture to prediction of real-world highway on-ramp
merging driver interaction trajectories, on one established
and one new data set we publish alongside this paper. We
also apply it to a simple decision-making transfer task.

Keep in mind that proofs are available in Sec. A of the
extended version including appendix (Geiger and Straehle
2021) of this paper. In what follows, we first discuss related
work and introduce setting and background (Sec. 2).

Closest related work. Regarding general multiagent
model learning from observational behavioral data with
game-theoretic components: closest related is work by Ling,
Fang, and Kolter (2018, 2019), who use game solvers as dif-
ferentiable implicit layers, learning these layers’ input (i.e.,
agents’ preferences) from covariates. They focus on discrete
actions while we address continuous trajectory prediction.
And they use different solution concepts, and do not con-
sider equilibrium refinement. There is further work more
broadly related in this direction (Kita 1999; Kita, Tanimoto,
and Fukuyama 2002; Liu et al. 2007; Kang and Rakha 2017;
Tian et al. 2018; Li et al. 2018; Fox et al. 2018; Camara
et al. 2018; Ma et al. 2017; Sun, Zhan, and Tomizuka 2018),
sometimes also studying driver interaction, but they have no
or little data-driven aspects (in particular no implicit lay-
ers) and/or use different approximations to rationality than
our local NE, such as level-k reasoning, and often are less
general than us, often focusing on discrete actions. More
broadly related is multiagent inverse reinforcement learning
(Wang and Klabjan 2018; Reddy et al. 2012; Zhang et al.
2019; Etesami and Straehle 2020), usually discrete-action.

For multiagent trajectory prediction, there generally is a
growing number of papers on the machine learning side, of-
ten building on deep learning principles and allowing multi-
modality – but without game-theoretic components. With-

out any claim to completeness, there is work using long-
short term memories (LSTMs) (Alahi et al. 2016; Deo and
Trivedi 2018; Salzmann et al. 2020), generative adversarial
networks (GANs) (Gupta et al. 2018), and attention-based
encoders (Tang and Salakhutdinov 2019). Kuderer et al.
(2012) uses a partition (“topological variants”) of the trajec-
tory space related to ours. There is also work related to the
principle of “social force” (Helbing and Molnar 1995; Ro-
bicquet et al. 2016; Blaiotta 2019), and related rule-based
driver modeling approaches (Treiber, Hennecke, and Hel-
bing 2000; Kesting, Treiber, and Helbing 2007).

Regarding additional game-theoretic elements: W.r.t. the
class of trajectory potential games we introduce (Def. 4), the
closest related work we are aware of is (Zazo et al. 2016)
who consider a related class, but they do not allow agents’
utilities to have differing additive terms w.r.t. their own ac-
tions. Worth mentioning is further related work based on
games (different ones than ours though), but towards pure
control (not prediction) tasks (Peters et al. 2020; Zhang et al.
2018; Spica et al. 2018; Fisac et al. 2019). Peters et al.
(2020) use a latent variable for the equilibrium selection,
similar to our equilibrium weighting. For further related
work see Sec. E in (Geiger and Straehle 2021).

2 General Setting, Goals and Background
We consider scenes, each consisting of:
• a set I := {1, . . . , n} of agents.
• Each agent i ∈ I at each time t ∈ [0, T ] has an indi-

vidual state yit ∈ RdY . They yield an individual trajectory
yi = (yit)t∈[0,T ] (think of 0 as the present time point and T
as the horizon up to which we want to predict).
• And y := ((y1

t , . . . , y
n
t ))t∈[0,T ] ∈ Y denotes the

agents’ joint (future) trajectory.
• We assume that the past joint trajectory x ∈ X of the

agents until time point 0 is available as side information.
Now, besides the other goals mentioned in Sec. 1, we for-
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mulate the main (passive) predictive problem as follows:
• goal: in a new scene, predict the future joint trajectory

y by a list of pairs (ŷ, q̂), corresponding to y’s modes, where
each ŷ is a point prediction of y, and q̂ the associated proba-
bility (for more details and metrics etc., see Sec. 3.2, 5);
• given: (1) the past trajectory x of that new scene, as

well as (2) a training set consisting of previously sampled
scenes, i.e., pairs (x′, y′), (x′′, y′′), . . . of past and future tra-
jectory (discrete-time subsampled of course). (We assume
all scenes sampled from the same underlying distribution.)

We assume that agent i’s (future) trajectory yi is param-
eterized by a finite-dimensional vector ai ∈ Ai ⊆ RdA ,
which we refer to as i’s action, with Ai the action space of
i. So, in particular, there is a (joint) trajectory parameteri-
zation r : A → Y , with A := A1 × . . . × An the joint ac-
tion space. Keep in mind that a = (a1, . . . , an), a−i means
(a1, . . . , ai−1, ai+1, an) and (ai, a−i) reads a.

We use games (Shoham and Leyton-Brown 2008; Os-
borne and Rubinstein 1994) to model our setting. A game
specifies the set of agents (also called “players”), their pos-
sible actions and their utility functions. The following for-
mal definition is slightly tailored to our setting: utilities are
integrals over the trajectories parameterized by the actions.
Definition 1 (Game). A (trajectory) game consists of: the
set I of agents, and for each agent i ∈ I: the action space
Ai ⊆ RdA , and a utility function ui : A → R. We assume
ui, i ∈ I , to be of the form

ui(a) =

∫ T

0

uit(yt)dµ(t),

where a ∈ A, y = r(a); uit, t ∈ [0, T ], are the stage-wise
utility functions, and µ is a measure on [0, T ].1

This game formalizes the agents’ “decision-making prob-
lem”. Game theory also provides the “Nash equilibrium” as
a concept of how rational agents will/should act to “solve”
the game. Here we use a “local” version – for tractability:
Definition 2 (Local Nash equilibrium (NE) (Ratliff, Burden,
and Sastry 2016, 2013)). Given a game, a joint action a ∈ A
is a (pure) local Nash equilibrium (local NE) if there are
open sets Si ⊂ Ai such that ai ∈ Si and for each i,

ui(ai, a−i) ≥ ui(ai′, a−i),
for any ai′ ∈ Si.2 If Si = Ai for all i, then a is called a
(pure, global) NE.

The following type of game can reduce finding local NE
to finding local optima of a single objective (“potential func-
tion”), allowing for tractable gradient ascent-based search.
Definition 3 (Potential game (Monderer and Shapley
1996)). A game is called an (exact continuous) potential
game, if there is a so-called potential function ψ such that,
for all agents i, all actions ai, ai

′
and remaining actions a−i,

ui(ai
′
, a−i)− ui(ai, a−i) = ψ(ai

′
, a−i)− ψ(ai, a−i).

1This general integral-based formulation contains discrete-time
Scenario 1 as special case with µ’s mass on discrete time points.

2I.e., no agent can improve its utility by unilaterally and locally
deviating from its action in a local NE – a “consistency” condition.

Let us also give some neural net-related background:
Remark 1 (Implicit layers (Amos and Kolter 2017; Amos
et al. 2018; Bai, Kolter, and Koltun 2019; El Ghaoui et al.
2019)). Classically, one specifies a neural net layer by spec-
ifying the functional relation between its input v and output
w explicitly, in closed form, w = f(v), for some function
f (e.g., a softmax). The idea of implicit layers is to specify
the relation implicitly, usually via an equation h(v, w) = 0
(coming from, e.g., a stationarity condition of an optimiza-
tion or dynamics modeling problem). To ensure that this
specification is indeed useful in prediction and training,
there are two important requirements: (1) the equation has
to determine a unique, tractable function f that maps v to
w, and (2) f has to be differentiable, ideally with explicitly
given analytic gradients.

3 General Approach With Analysis
We now describe our general approach. It consists of
(1) a game-theoretic model and differentiable reasoning
about how the agents behave (Sec. 3.1), and (2) a neu-
ral net architecture that incorporates this game-theoretic
model/reasoning as an implicit layer and combines it with
learnable modules, with tractable training and decision-
making transfer abilities (Sec. 3.2).

3.1 Common-Coupled Games, Equilibrium-
Separation and Induced Implicit Layer

For the rest of the paper, let (Γθ)θ∈Θ, Θ ⊆ RdΘ , be a para-
metric family of trajectory games (Def. 1). First let us intro-
duce the following type of trajectory game to strike a balance
between adequate modeling and tractability:
Definition 4 (Common-coupled game). We call Γθ a
common-coupled(-term trajectory) game, if the stage-wise
utility functions (Def. 1) have the following form, for all
agents i ∈ I , t ∈ [0, T ]:

ui,θt (yt) = ucom,θ
t (yt) + uown,i,θ

t (yit) + uoth,i,θ
t (y−it ), (1)

where y = r(a) (action parameterizes trajectory, Sec. 2),
ucom,θ
t is a term that depends on all agents’ trajectories and

is common between agents, uown,i,θ
t and uoth,i,θ

t are terms
that only depend on agent i’s trajectory, or all other agents’
trajectories, respectively, and may differ between agents.

Common-coupled games adequately approximate many
multiagent trajectory settings where agents trade off (1) so-
cial norms and/or common interests (say, traffic rules or the
common interest to avoid crashes), captured by the common
utility term ucom,θ

t , against (2) individual inclinations related
to their own state, captured by the terms uown,i,θ

t . It is non-
cooperative, i.e., utilities differ, but more on the cooperative
than adversarial end of games. For tractability we can state:
Lemma 1. If Γθ is a common-coupled game, then it is a
potential game with the following potential function, where,
as usual, y = r(a):

ψ(θ, a) =

∫ T

0

ucom,θ
t (yt) +

∑
i∈I

uown,i,θ
t (yit)dµ(t).

4952



Note that this implies existence of NE, given continuity of
the utilities and compactness (Monderer and Shapley 1996).

We now show how the mappings from parameters θ to
local NE of the game Γθ can be soundly defined, tractable
and differentiable, so that we can use this game-theoretic
reasoning3 as one implicit layer (Rem. 1) in our architecture.
For this, a helpful step is to (tractably) partition the action
space into subspaces with exactly one equilibrium each – if
the game permits this. For the rest of the paper, let (Ãk)k∈K
be a finite collection of subspaces of A, i.e., Ãk ⊆ A.
Definition 5 (Equilibrium-separating action subspaces). For
a common-coupled game Γθ, we call the action subspace
collection (Ãk)k∈K equilibrium-separating (partition) if, for
all k ∈ K and θ ∈ Θ, the game’s potential function ψ(θ, ·)
is strictly concave on Ãk.4

As a simplified example, a first partition towards
equilibrium-separation in the highway merging scenario of
Fig. 1 would be into two subspaces: (1) those that result in
joint trajectories where the red car goes first and (2) those
where yellow goes first. More details follow in Scenario 1.

Keep in mind that the equation ∇aψ(θ, a)=0 is a nec-
essary condition for a to be a local NE of Γθ (for interior
points), since local optima of the potential function corre-
spond to local NE. This equation induces an implicit layer:
Assumption 1. Let Γθ be a common-coupled game. Let
(Ãk)k∈K be equilibrium-separating subspaces for it, and let
all Ãk, k ∈ K be compact, given by the intersection of lin-
ear inequality constraints. On each subspace Θ × Ãk, k ∈
K, let Γθ’s potential function ψ be continuous.
Theorem 1 (Games-induced differentiable implicit layer).
Let Assumption 1 hold true.5 Then, for each k ∈ K, there
is a continuous mapping gk : Θ → Ãk, such that for any
θ ∈ Θ, if gk(θ) lies in the interior of Ãk, then

• gk(θ) is a local NE of Γθ,

• gk(θ) is given by the unique argmax6 of ψ(θ, ·) on Ãk,
with ψ the game’s potential function (Lem. 1),

• gk is continuously differentiable in θ with gradient

Jθgk(θ) = − (Haψ(θ, a))
−1
Jθ∇aψ(θ, a),

3Here, we mean reasoning in the sense of drawing the “local NE
conclusions” from the game Γθ , due to the principle of rationality.
More generally, game-theoretic reasoning also comprises equilib-
rium refinement/selection (Sec. 3.2).

4We loosely speak of a partition of A, but we do not require to
cover the full A, and we allow overlaps, so it is not a partition in
the rigorous set-theoretic sense. NB: The subspaces also have the
interpretation as macroscopic/high-level joint action of the agents:
for instance, which car goes first in the merging scenario in Fig. 1.

5Note: (1) (Parts of) this theorem translate to general poten-
tial games, not just common-coupled games. (2) For tractabil-
ity/analysis reasons we consider the simple deterministic game
form of Def. 1 instead of, say, a Markov game – which we leave to
future work. (3) Our framework may still be applicable if assump-
tions like concavity, which is quite strong, are relaxed. However,
deriving guarantees may become arbitrarily hard.

6Due to the concavity assumption, we can use established
tractable, guaranteeably sound algorithms to calculate this argmax.

whenever ψ is twice continuously differentiable on an open
set containing (θ, a), for a = gk(θ), where ∇, J and H
denote gradient, Jacobian and Hessian, respectively.

The specifics of how the gk of Thm. 1 form an implicit
layer will be discussed in Sec. 3.2.

Remark on boundaries. There remain several questions:
e.g., whether the action space partition introduces “artificial”
local NE at the boundaries of the subspaces; and also regard-
ing what happens to the gradient if gk(θ) lies at the boundary
ofA or Ãk. Here we state a preliminary answer7 to the latter:

Lemma 2. Assume Assumption 1 and that ψ is twice contin-
uously differentiable on a neighborhood of Θ×Ãk, k∈K. If
a=gk(θ) lies on exactly one constraining affine hyperplane
of Ãk, defined by orthogonal vector v, with multiplier λ and
optimum λ∗>0 of ψ(θ, a)’s Lagrangian (details see proof),
then Jθgk(θ) is the upper left ndA×ndA-submatrix of

−
(
Haψ(θ, a) v
λ∗vT 0

)−1(
Jθ∇aψ(θ, a)

0

)
.

Remark on identifiability. Another natural question is
whether the game’s parameters are identifiable from obser-
vations, and, especially, whether the gk are invertible. While
difficult to answer in general, we investigate this for one sce-
nario in Sec. C in (Geiger and Straehle 2021).

3.2 Full Architecture With Further Modules,
Tractable Training and Decision Making

Now for the overall problem of mapping past joint trajec-
tories x to predictions of their future continuations y, we
propose the architecture depicted in Fig. 1 alongside a train-
ing procedure. We call it trajectory game learner (TGL).
(Its forward pass is explicitly sketched in Alg. 1 in Sec. B in
(Geiger and Straehle 2021).) It contains the following mod-
ules (here we leave some of the modules fairly abstract be-
cause details depend on size of the data set etc.; for one con-
crete instances see the experimental setup in Sec. 5), which
are well-defined under Assumption 1:

• Preference revelation net: It maps the past joint trajec-
tory x ∈ X to the inferred game parameters θ ∈ Θ (encod-
ing agents preferences).8 For example, this can be an LSTM.
• Equilibrium refinement net: This net maps the past

joint trajectory x ∈ X to a subset K̃ ⊂ K(we encode K̃ e.g.
via a multi-hot encoding), with |K̃| = k̃, for k̃ arbitrary but
fixed. This subset K̃ selects a subcollection (Ãk)k∈K̃ of the
full equilibrium-separating action space partition (Ãk)k∈K

7Note that similar results have already been established, in the
sense of constrained optimizers as implicit layers (Amos and Kolter
2017), but we give the precise preconditions for our setting. See
also Sec. E in (Geiger and Straehle 2021). Moreover, note that un-
der the conditions of this lemma, i.e., when gk(θ) lies at the bound-
ary, then the above gradient Jθgk(θ) in fact often becomes zero,
which can be a problem for parameter fitting.

8In a sense, this net is the inverse of the game solver implicit
layer on x, but can be more flexible.
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(introduced in Sec. 3.1, Def. 5). This directly determines
a subcollection of local NE of the game Γθ, denoted by
(ka∗)k∈K̃ – those local NE that lie in one of the subspaces
Ãk, k ∈ K̃.9 The purpose is to narrow down the set of all
local NE to a “refined” set of local NE that form the “most
likely” candidates to be selected by the agents. 10 The rea-
son why we not directly output the refined local NE (instead
of the subspaces) is to simplify training (details follow). As
a simple example, take a feed forward net with softmax as
final layer to get a probability distribution over K, and then
take the k̃ most probable k ∈ K to obtain the set K̃.
• Game solver implicit layer11 g := (gk)k∈K̃: It maps

the revealed game parameters θ ∈ Θ together with the re-
fined K̃ to the refined subcollection (ka∗)k∈K̃ of local NE12

(described in the equilibrium refinement net above). This is
done by performing, for each k ∈ K̃, the concave optimiza-
tion over the subspace Ãk:

ka∗ = gk(θ) = arg max
a∈Ãk

ψ(θ, a),

based on Thm. 1. See also Line 3 to 4 in Alg. 1 in Sec. B in
(Geiger and Straehle 2021).
• Equilibrium weighting net: It outputs probabilities

(k q̂)k∈K̃ over the refined equilibria, and thus probabilities
of the modes of our prediction (introduced in Sec. 2). We
think of them as the probabilities of the mixture components
in a mixture model, but leave the precise metrics open. As in-
put, in principle the variables θ, (ka∗)k∈K̃ are allowed, plus
possibly the agents’ utilities attained in the respective equi-
librium. And one can think of various function classes, for
instance a feed forward net with softmax final layer. Its pur-
pose is to (probabilistically) learn agents’ “equilibrium se-
lection” mechanism considered in game theory.13

• Trajectory parameterization r: This is the pre-
determined parameterization from Sec. 2: it maps each local
NE’s joint action ka∗ to the corresponding joint trajectory kŷ

9To be exact, in rare cases it can happen that some of these local
NE are “artificial” as discussed in Sec. 3.1.

10In game theory, “equilibrium refinement concepts” mean
hand-crafted concepts that narrow down the set of equilibria of a
game (for various reasons, such as achieving “stable” solutions)
(Osborne and Rubinstein 1994). For us, the “locality relaxation”
makes the problem of “too many” equilibria particularly severe,
since the number of local NE can be even bigger than global NE;
it can grow exponentially in the number of agents in our scenarios.

11NB: Here, the implicit layer does not have parameters. Gener-
ally, implicit layers with parameters can be handled similarly.

12At first sight, local NE are a poorer approximation to rational-
ity than global NE, and are mainly motivated by tractability. How-
ever, we found that in various scenarios, like the highway merging,
local NE do seem to correspond to something meaningful, like the
intuitive modes of the distribution of joint trajectories. NB: Gener-
ally, we do not consider humans as fully (instrumentally) rational,
but we see (instrumental) rationality as a useful approximation.

13“Equilibrium selection” (Harsanyi, Selten et al. 1988) refers to
the problem of which single equilibrium agents will end up choos-
ing if there are multiple – possibly even after a refinement.

that results from it, corresponding to mode k of the predic-
tion, where k ∈ K̃ are the indices of the refined equilibria.

Training and tractability. Training of the architecture in
principle happens as usual by fitting it to past scenes in the
training set, sketched in Alg. 2 in Sec. B in (Geiger and
Straehle 2021). The implicit layer’s gradient for backprop-
agation is given in Thm. 1. By default, we take the mean
absolute error (MAE) averaged over the prediction horizon
[0, T ] (see also Sec. 5). Note that the full architecture – all
modules plugged together – is not differentiable, because the
equilibrium refinement net’s output is discrete. However, it
is easy to see that (1) the equilibrium refinement net and (2)
the rest of the architecture can be trained separately and are
both differentiable themselves: in training, for each sample
(x, y), we directly know which subspace y lies in, so we
first only train the equilibrium refinement net with this sub-
space’s index k as target, and then train the full architecture
with the equilibrium refinement net’s weights fixed.14 15

Observe that in training there is an outer (weight fitting)
and an inner (game solver, i.e., potential function maximizer,
during forward pass) optimization loop, so their speed is
crucial. For the game solver, we recommend quasi-Newton
methods like L-BFGS, because this is possible due to the
subspace-wise concavity of the potential function (Assump-
tion 1). For the outer loop, we recommend recent stochastic
quasi-Newton methods (Wang et al. 2017; Li and Liu 2018).

Transferability to decision making. Once the game Γθ’s
parameters θ are learned (for arbitrary numbers of agents)
as described above, it does not just help for prediction – i.e.,
a model of how an observed set of strategic agents will be-
have – but also for prescription. This means (among other
things) that it tells how a newly introduced agent should de-
cide to maximize its utility, while aware of how the other
agents respond to it based on their utilities in Γθ (think of
a self-driving car entering a scene with other – human –
drivers).16 Note: the knowledge of Γθ cannot resolve the re-
maining equilibrium selection problem (but the equilibrium
weighting net may help). For an example see Sec. 5.2.

4 Concrete Example Scenarios With Analysis
We give two examples of settings alongside games and ac-
tion space partitions that provably fulfill the conditions for
our general approach (Sec. 3) to apply. First we consider
a scenario that captures various non-trivial driver interac-
tions like overtaking or merging at on-ramps. Essentially,
it consists of a straight road section with multiple (same-
directional) lanes, where some lanes can end within the sec-
tion. Fig. 1 and 2 (left) are examples. This setting will be
used in the experiments (Sec. 5).

Scenario 1 (Multi-lane driver interaction). Setting: The
set of possible individual states, denote it by Y0, is of the

14Therefore we loosely refer to the full architecture as “end-to-
end trainable”, not “end-to-end differentiable”.

15On a related note, we learn the common term’s parameter θ
(see (1)) as shared between all scenes, while the other parameters
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Figure 2: Left: Simple illustration of Scenario 1’s variables.
Right: Illustration of simplistic pedestrian encounter sce-
nario (Sec. C in (Geiger and Straehle 2021)).

form [b, c] × [d, e] – positions on a road section. There
are m parallel lanes (some of which may end), paral-
lel to the x-axis. Agent i’s action ai ∈ Ai is given
by the sequence of planar (i.e., 2-D) positions denoted
(vit, w

i
t) ∈ Y0, t = 0, . . . , T , but not allowing backward

moves (and possibly other constraints). Define the states
yit := ((vit, w

i
t), (v

i
t−1, w

i
t−1), (vit−2, w

i
t−2)).17 And let yi

be the linear interpolation. Game: Let, for t = 0, . . . , T ,
the stage utilities of agent i in the game Γθ be the following
sum of terms for distance between agents, distance to center
of lane, desired velocities, acceleration penalty, and end of
lane overshooting penalty, respectively:18

ui,θt (yit) = −θdist
∑ 1

|vj′t − v
j
t |+ζ

− θcen,i
t (wit−cit)2 (2a)

− θvel,i
t (δvit − θv,i)2 − θvelw,i(δwit)

2 − θacc,i(δ2vit)
2 (2b)

− θend,i max(0, vt − eit), (2c)

where the sum ranges over all (j, j′) such that driver
j is right before j′ on the same lane; ζ > 0 is a
constant, cit is the respective center of the lane, δvit
means velocity along lane, δwit means lateral veloc-
ity, δ2vit means acceleration (vector), eit is the end of
i’s lane, if it ends, otherwise −∞; furthermore, µ is
the counting measure on {0, . . . , T} (i.e., discrete). and
θ=(θdist, θcen,i

[0:T ], θ
vel,i
[0:T ], θ

v,i, θvelw,i, θacc,i, θend,i)i∈I .19 Action
subspaces: Consider the following equivalence relation on
the trajectory space Y : two joint trajectories y, y′ ∈ Y are
equivalent if at each time point t, (1) each agent i is on the
same lane in y as in y′, and (2) within each lane, the order of
the agents (along the driving direction) is the same in y as in
y′. Now let the subspace collection (Ãk)k∈K be obtained by

are predicted from the individual’s sample past trajectory.
16This is the general double nature of game theory – predictive

and prescriptive (Shoham and Leyton-Brown 2008).
17We do this state augmentation so that utilities can also depend

on velocity/acceleration (not just position) while still rigorously fit-
ting into Def. 1. When calculating prediction errors for ŷ, only the
position component is considered.

18Note that the invariance over time of the utility terms, as we
assume it here, is a key element of how rationality principles can
give informative priors.

19We allow some of the weights to vary with t to add some flex-
ibility. In the experiments (Sec. 5), we use “terminal” costs only;
more specifically θvel,i

t = 0 for 0 ≤ t ≤ T − 6 and θcen,i
t = 0 for

0 ≤ t ≤ T − 1, which we found works best.

taking the (closures of the) resulting equivalence classes.20

Proposition 1 (Scenario 1’s suitability). Scenario 1 satisfies
Assumption 1. So, in particular, Thm. 1’s implications on the
induced implicit layer hold true.

Our general approach (Sec. 3) in principle is also applica-
ble to various other multiagent trajectory settings, such as
pedestrian interaction, relevant for mobile robots. We an-
alyze a simplistic such scenario in Sec. C in (Geiger and
Straehle 2021), see Fig. 2 (right) for a foretaste.

5 Experiments
We evaluate our approach on (1) an observational prediction
task21 on two real-world data sets (Sec. 5.1), as well as (2) a
simple decision-making transfer task (Sec. 5.2).

5.1 Prediction Task on Highway Merging
Scenarios in Two Real-World Data Set

We consider a highway merging interaction scenario with
two cars similar as sketched in Fig. 1. This is considered a
challenging scenario for autonomous driving.

Implementation details for our method for these merg-
ing scenario. We use the following generic implementa-
tion of our general approach (Sec. 3), with concrete setting,
game and action subspaces from Scenario 1 (with n = 2),
referring to it as TGL (trajectory game learner): We use
validation-based early stopping. We combine equilibrium
refinement and weighting net into one module, consisting
of two nets that predict the weights (k q̂)k∈K̃ on the combi-
nation of (1) merging order (before/after) probabilities via
a cross-entropy loss (2 hidden layers: 1 × 16, 1 × 4 neu-
rons; dropout 0.6), and (2) Gaussian distribution over merg-
ing time point (discretized and truncated, thus the support in-
ducing a refinement; 2 hidden layers: 1×64, 1×32 neurons;
dropout 0.6), given x. For the preference revelation net we
use a feed forward net (two hidden layers: 1×16, 1×24 neu-
rons).22 As training loss we use mean absolute error (MAE;
see also evaluation details below).

Besides this generic instantiation, we also consider a ver-
sion of it, termed TGL-D: Instead of predicting the desired
velocity θv,i itself, the preference revelation net predicts the
difference to the past velocity, and then squashes this into
a sensible range using a sigmoid. (This can be seen as en-
coding a bit of additional prior knowledge which may not
always be easy to specify and depend on the situation.) For
further details, see Sec. D in (Geiger and Straehle 2021).

Code is available at: https://github.com/
boschresearch/trajectory_games_learning

20In the two-driver on-ramp scenario of Fig. 1 and experiments
(Sec. 5.1), these subspaces roughly amount to splitting the action
space A w.r.t. (1) time point of merge and (2) which driver goes
first. Note that (1) are additional splits beyond the intuitive ones in
(2) (see Fig. 1), but they help for concavity and for the analysis.

21This directly evaluates the method’s abilities for the observa-
tional/passive prediction task, but it is also a proxy metric/task for
decision making.

22For varying initial trajectory lengths, an LSTM might be more
suitable.
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Data set Metric TGL (ours) TGL-D (ours) CS-LSTM MFP

highD (Krajewski et al. 2018) MAE 3.6 2.9 5.0 5.2
RMSE 4.9 3.7 6.8 7.1

HEE (our new data set; Sec. 5.1) MAE 3.7 3.2 3.6 3.7
RMSE 4.7 4.1 4.3 4.8

Table 1: Prediction task: Our method(s) vs. state-of-the-art (CS-LSTM (Deo and Trivedi 2018), MFP (Tang and Salakhutdinov
2019)) for a prediction task on merging scenarios in two real-world highway data sets, averaged over a 7s prediction horizon.

Figure 3: Decision-making transfer task: Solution trajectorie(s) that the (partially learned) game implies for the self-driving
car’s decision-making task (each circle/square corresponds to one time step). Left: First local NE: the self-driving car (red) does
a full emergency break and the other (blue) merges before it. Right: Second local NE: the other merges after it, both slow down.

Baselines. As baselines we use the state-of-the-art data-
driven methods “convolutional social pooling” – specifi-
cally: CS-LSTM (Deo and Trivedi 2018) – and “Multiple
Futures Prediction” (MFP) (Tang and Salakhutdinov 2019).
Evaluation. We use four-fold cross validation (splitting the
data into 4 × 75% train and 25% validation). As metrics,
we use rooted mean squared error (RMSE) and MAE (in
meters) between predicted future trajectory ŷ and truth y,
averaged over a 7s horizon, with prediction step size of 0.2s,
applying this to the most likely mode given by our method.

Data sets (one new one) and filtering: 1st data set: We
use the “highD” data set (Krajewski et al. 2018), which
consists of car trajectories recorded by drones over several
highway sections. It is increasingly used for benchmarking
(Rudenko et al. 2019; Zhang et al. 2020). From this data set,
we use the recordings done over a section with an on-ramp.

2nd data set: We publish a new data set with this paper,
termed HEE (Highway Eagle Eye). It consists of ∼12000
individual car trajectories (∼4h), recorded by drones over
a highway section (length ∼600m) with an entry lane. The
link to the data set and further details are in Sec. D.2 in
(Geiger and Straehle 2021). Keep in mind that this data set
can be useful for studies like ours, but some aspects of it may
be noisy, so it is only meant for such experimental purposes.

Selection of merging scenes in both data sets: We filter for
all joint trajectories of two cars where one is merging from
the on-ramp, one is on the rightmost highway lane, and all
other cars are far enough to not interact with these two. This
leaves 25 trajectories of highD and 23 of our new data set.

Results. The results are in Table 1 (with more details
in Sec. D in (Geiger and Straehle 2021)). Our generic
method TGL outperforms CS-LSTM and MFP on highD.
And our slightly more hand-crafted method TGL-D outper-
forms them on both data set. Keep in mind that the data sets
are small. So, while the results do indicate the practicality of
our method in this small-sample regime, their significance is
comparably limited.

5.2 Simple Decision-Making Transfer Task in
Simulation

As discussed in Sec. 3.2 the game Γθ – once θ is given, e.g.,
by our learned preference revelation net – naturally transfers
to decision-making tasks in situations with multiple strategic
agents (something which predictive methods like the above
CS-LSTM usually cannot do). To test and illustrate its ability
for this, we consider a simple scenario: Take the above two-
car highway on-ramp situation (Sec. 5.1, Scenario 1), but
assume that the car on the highway lane is a self-driving car.
Assume it has a technical failure roughly at the height of the
on-ramp’s end, and it should do an emergency break (i.e.,
desired velocity θv,i in (2) is set to 0) while at the same time
ensuring that the other car coming from the on-ramp will not
crash into it. Which trajectory should it choose? Result. Fed
with this situation, our game solver suggests two possible
solutions – two local NE, see Fig. 3: (1) the self-driving car
completely stops and the on-ramp car will merge in front of
it, accepting to touch the on-ramp’s end; (2) the self-driving
car moves slowly, but at a non-zero speed, with the other
car right behind it (keeping a rational distance). While a toy
scenario, we feel that these are sensible solutions.

6 Conclusion
For modeling of realistic continuous multiagent trajectories,
in this work we proposed an end-to-end trainable model
class that hybridizes neural nets with game-theoretic reason-
ing. We accompanied it with theoretical guarantees as well
as an empirical demonstration of its practicality, on real-
world highway data. We consider this as one step towards
machine learning methods for this task that are more inter-
pretable, verifiable and transferable to decision making. This
is particularly relevant for safety-critical domains that in-
volve interaction with humans. A major challenge is to make
game-theoretic concepts tractable for such settings, and we
were only partially able to address this. Specifically, poten-
tial for future work lies in relaxing subspace-wise concavity,
common-coupled games and related assumptions we made.
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