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Abstract

Neural networks have been the key to solve a variety of dif-
ferent problems. However, neural network models are still re-
garded as black boxes, since they do not provide any human-
interpretable evidence as to why they output a certain result.
We address this issue by leveraging on ontologies and build-
ing small classifiers that map a neural network model’s inter-
nal state to concepts from an ontology, enabling the gener-
ation of symbolic justifications for the output of neural net-
work models. Using an image classification problem as test-
ing ground, we discuss how to map the internal state of a neu-
ral network to the concepts of an ontology, examine whether
the results obtained by the established mappings match our
understanding of the mapped concepts, and analyze the justi-
fications obtained through this method.

1 Introduction
In this paper, we investigate whether it is possible to relate
the activations of a neural network with human-defined con-
cepts from an ontology, with the prospect of finding sym-
bolic justifications for the output of that neural network
through automated reasoning. Our results suggest that this
is possible for concepts that are relevant to the task of the
neural network with little overhead, requiring only a small
amount of labeled data and the training of small classifiers.

In the last few years, artificial neural network-based ma-
chine learning methods have allowed the field of Artifi-
cial Intelligence to successfully address multiple complex
tasks, such as image (Sultana, Sufian, and Dutta 2019), video
(Karpathy et al. 2014) and speech recognition (Graves, Mo-
hamed, and Hinton 2013), translation (Huang et al. 2013)
and text analysis (Lai et al. 2015), helping with drug de-
sign and discovery (Segler et al. 2018), and reconstruction
of brain circuits (Lee et al. 2019), to name a few. Some of
the systems developed by these methods outperformed hu-
mans in tasks like facial recognition (Schroff, Kalenichenko,
and Philbin 2015) or playing strategic games (Berner et al.
2019; Silver et al. 2017). The successes achieved by neural
network-based methods rendered them a widespread solu-
tion with innumerous applications, ranging from intelligent
cameras with object recognition (Redmon et al. 2016) to pre-
dicting river discharges and floods (Kratzert et al. 2019).
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As these systems begin to act autonomously and start be-
ing responsible for decisions previously taken by humans,
like self-driving cars (Bojarski et al. 2016) and unmanned
aerial vehicles (Radovic, Adarkwa, and Wang 2017), or start
being applied in sensitive domains, such as medical diagno-
sis and treatment recommendation (Topol 2019), the need
for humans to understand their reasoning becomes evident.
Explanations of how a system behaves and why it outputs
a certain result are known to allow users to build trust in a
system and its results (Pieters 2011), to increase the chances
of users taking action based on a system’s output (Ye and
Johnson 1995), and for a better assessment of when a sys-
tem is right or wrong (Biran and McKeown 2017; Gkatzia,
Lemon, and Rieser 2016).

However, since neural networks generally only use repre-
sentations based on high-dimensional Euclidean space, i.e.,
real-valued vectors, matrices, etc., which possess no obvious
associated declarative meaning (Hitzler et al. 2020), there
is no direct human interpretable indication of why a spe-
cific output was given. Hence, to justify the output of a neu-
ral network, a language containing human-understandable
concepts and meaningful relations between those concepts
is needed, allowing for a comprehensible description of the
reasoning that led the neural network to attain its output.
The level of abstraction and detail of the justifications is de-
pendent on the defined language. For example, when faced
with a picture of a representation of a train, c.f. Figure 1, we
might expect a justification as to why this train is of some
particular type, e.g., a passenger train, to refer to the par-
ticular lines, squares, and circles that can be identified as
constituting the train representation, or we might expect a
justification to be based on high-level concepts such as the
existence of passenger wagons or freight wagons. For each
domain of interest, even though there are relationships be-
tween the different levels of abstraction, we, humans, are
typically interested in a given particular level, where we can
conveniently justify ourselves to other humans.

The field of knowledge representation and reasoning pro-
vides many formalisms that allow the description of domains
of interest, such as ontologies. An ontology is the concep-
tualization of a domain, through the use of concepts and
axioms, and is usually specified using a logic-based lan-
guage with a precise semantics. Among the most important
formalisms in which to describe ontologies are Description
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Figure 1: Sample images of trains’ representations.

Logics (Baader et al. 2003), on which the W3C standard
OWL is formally based. Description Logics typically consist
of a decidable fragments of First-Order Logic. Ontologies in
Description Logics are typically composed of a TBox and an
ABox. The TBox contains knowledge in the form of a termi-
nology and is made of axioms describing how the domain’s
concepts relate to each other. The ABox contains assertional
knowledge and is made of axioms that describe knowledge
specific to the individuals of the domain of discourse. While
the knowledge in the TBox is usually thought to be unchang-
ing, the knowledge in the ABox is usually thought to be
contingent. Initiatives like the Semantic Web (Berners-Lee,
Hendler, and Lassila 2001), and Linked Open Data fostered
the availability of many ontologies of different domains, of-
ten working as a network where the concepts of an ontology
may be related to concepts of other ontologies.1

An ontology can therefore be used to define the necessary
language (concepts and relations), at the appropriate level
of abstraction, to adequately convey the justifications for the
output of a given neural network. However, for a neural net-
work’s internal representations to be presented in a mean-
ingful and human-understandable way, we need to estab-
lish some mapping to the concepts existing in the ontology.
To this end, we found inspiration in the research conducted
in the field of neuroscience, where ensembles of neurons
and how they respond to stimuli have been investigated to
comprehend what information they encode (Hassabis et al.
2009). By mapping the stimulus to the response, neurosci-
entists were able to understand the function and information
encoded in these neuronal ensembles (Quiroga et al. 2005).

We propose to establish mappings from the values of the
activations produced by the neurons of a neural network to
concepts from a chosen ontology. Then, when feeding input
to the neural network, we can observe, through these map-
pings, whether the corresponding concepts were identified in
the generated activations, acquiring knowledge about the in-
put’s characteristics. Using logic based reasoning methods,
together with the ontology and the observations made re-
garding each mapped concept, we can create a justification
for the neural network’s output. The justifications would be
minimal sets of axioms from the ontology that, together with
the observations, entail the output of the neural network.

One might wonder how much do the justifications pro-
duced by this method depend on the ontology, and whether
it can be said that they represent an explanation of the neu-
ral network’s internal output generation process. It should
be pointed out that we, humans, can often reason in the most
varied domains, even without knowing any specific language

1We assume basic familiarity with Description Logics.

to describe it. Once we are taught concepts and their rela-
tionships in a given domain, we are usually able to map our
experiences and intuitions into them, allowing us to produce
meaningful explanations of our internal mental processes.
For instance, we might be able to understand a given geo-
metric phenomenon without knowing anything about coor-
dinate systems, and once we learn the Cartesian coordinate
system, we can use it to explain that phenomenon. Nonethe-
less, we could have learned the polar coordinate system in-
stead, and still use it to describe the same phenomenon.
While both explanations would certainly be different, and
likely none of them would correspond literally to our inter-
nal understanding of the phenomenon, both would be mean-
ingful and plausible, which is often enough.

In this paper, we explore the generation of justifications
for artificial neural networks through the use of mappings
between their neuron’s activations and concepts of an ontol-
ogy, which we then leverage with sound reasoning methods.

In the remaining of this paper, we analyze the intricacies
involved with the process of mapping human-defined con-
cepts from trained neural networks and examine the kind of
results that might be expected by this approach; we com-
pare the concepts resulting from this method and examine
how they resemble our understanding of those concepts; we
present a procedure for pinpointing which neurons should
be used to map a given ontology’s concept; and we discuss
how to obtain justifications for the output of trained neural
networks based on the extracted concepts.

2 The Main Networks
To illustrate the proposed method, we test it in a setting
where images with simplified representations of trains, such
as the ones shown in Figure 1, are classified based on their
visual features. The images used in this paper’s dataset
(de Sousa Ribeiro, Krippahl, and Leite 2020) were inspired
by those developed by J. Larson and R. S. Michalski in (Lar-
son and Michalski 1977) and use fragments of images from
(Olmos and Kingdom 2004) as background. The trains’ rep-
resentations are amply diverse, varying in the number, size,
and shape of the trains’ wagons and wheels, and in the quan-
tity, size and relative position of the geometric shapes inside
each wagon, but also in the distance between each wagon,
the thickness of the wagons’ walls, the height of the trains’
couplers, etc. Noise was explicitly introduced in the form of
missing pixels from the trains’ representations.

Each image in the dataset was labeled as being, or not, of
three different types of trains:
• Type A – trains having either a wagon with at least a circle

inside and a wagon with two walls in each side, or no
wagons with geometric figures inside them;

• Type B – trains having a long wagon or two wagons with
at least a circle inside, or trains having at least two long
wagons, or three wagons, with at least two of which with
a geometric figure inside that is not a circle;

• Type C – trains having a wagon with no geometric figure
inside, and either a wagon with a circle inside and a wagon
with a geometric figure inside that is not a circle, or no
long wagons and a wagon with a geometric figure inside.
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∃has.EmptyWagon u ∃has.(PassengerCar t FreightWagon) u ¬∃has.LongWagon v RuralTrain
Train ≡ ∃has.(Wagon t Locomotive) ∃has.FreightWagon u ∃has.PassengerCar u ∃has.EmptyWagon v MixedTrain
TypeA ≡WarTrain t EmptyTrain ∃has.(PassengerCar u LongWagon) t (≥ 2 has.PassengerCar) v PassengerTrain
TypeB ≡ PassengerTrain t LongFreightTrain ∃has.ReinforcedCar u ∃has.PassengerCar vWarTrain
TypeC ≡ RuralTrain tMixedTrain (≥ 2 has.LongWagon) t (≥ 3 has.Wagon) v LongTrain
LongFreightTrain ≡ LongTrain u FreightTrain (≥ 2 has.FreightWagon) v FreightTrain
EmptyTrain ≡ ∀has.(EmptyWagon t Locomotive) u ∃has.EmptyWagon

Figure 2: A subset of the ontology’s axioms, describing how the trains’ representations are classified.

Throughout this paper we report on several experiments
performed on three different convolutional neural network
models – referred to as NNA, NNB, and NNC – trained to
identify trains of each corresponding type. Each neural net-
work was trained with a balanced dataset of 25 000 images
and achieves an accuracy of about 99% on a balanced test
set of 10 000 images. All three neural networks possess a
different architecture, although each possesses at least a set
of convolutional, batch normalization, pooling, and dropout
layers followed by a set of fully connected and batch nor-
malization layers, with a single output neuron at the end.

3 The Ontology
Starting with a previously trained neural network – in our
case, three – whose output we are interested in justifying,
we now need an ontology that defines the adequate language
necessary to build the justifications. A publicly available on-
tology might be used, if it encompasses the domain of the
task of the neural network and contains concepts analogous
to those output by the neural network, or an ontology might
be designed purposely to define the language to justify the
output of the neural network. The more comprehensive the
ontology, the more detailed the justifications.

To illustrate our proposal in the case of justifying the out-
put of the neural networks NNA, NNB, and NNC, we de-
signed an ontology using high-level concepts that allow for
a simple and intuitive description of the trains’ components
– the kind that humans would know about and expect – such
as, for example, PassengerCar, represented by a wagon of
any shape and size containing, at least, a circle inside; or
FreightWagon, represented by a wagon of any shape and
size containing inside geometric figures that are not circles.
A subset of this ontology is shown in Figure 2, illustrat-
ing how other concepts can be further introduced and inter-
related, such as, for example, FreightTrain as encompassing
those with at least two FreightWagons, and RuralTrains as
including those having an empty wagon, either a passenger
car or a freight wagon, and no long wagons.

Note that even though the dataset was labeled with the
concepts used in the ontology, no other label apart from
TypeA, TypeB and TypeC, nor the knowledge encoded in
the ontology was used in any way in the process of develop-
ing and training the neural networks NNA, NNB, and NNC.

4 The Mapping Networks
We now focus on the central part of our proposal, namely to
relate the information encoded in a neural network – dubbed
main network – with the concepts in the ontology. We will

do so by approximating each unknown mapping from the
activations of a neural network to a single ontological con-
cept through the use of another neural network – dubbed a
mapping network. Mapping networks are trained to output
whether a given activation pattern – a set of neurons’ ac-
tivations – from the main network represents an individual
belonging to a given concept. We refer to the act of training a
mapping network to predict a concept as concept extraction.
It is important to note that mapping networks might be seen
as an independent tool given that their use does not modify
or require the retraining of the main network. They go be-
yond the classifiers in (Alain and Bengio 2017) and (Kim
et al. 2018) that are limited to linear combinations of the
neuron’s activations, which is in general insufficient to ex-
tract human-defined concepts such as those in an ontology.

To test the use of mapping networks to extract concepts
from neural network models, multiple experiments were per-
formed. Each mapping network took as input the activations
fed to and produced in the dense part of its main network,
with the exception of the mapping networks developed in
Section 4.4, where we discuss how to choose the set of in-
put features. All activation values were extracted from the
batch normalization layers of the main networks – NNA,
NNB, or NNC. The results of each experiment are averaged
over 20 repetitions, using different balanced sets of samples
for training, validating, and testing purposes. All neural net-
works were trained using the optimization algorithm Adam
(Kingma and Ba 2015), with a learning rate of 0.001, the bi-
nary cross entropy as loss function, and early stopping with
a patience value of 15 for mapping networks and 30 for con-
volutional neural networks. Two different mapping network
architectures were considered, one where the mapping net-
work is composed by a single neuron, and another where
the mapping network is composed by three layers of fully
connected neurons, containing 10, 5 and 1 neurons respec-
tively. All mapping networks use the ReLU activation func-
tion (Nair and Hinton 2010) in their hidden layers, and the
sigmoid activation function in their output layers.

4.1 The Relevant Concepts
Our main hypothesis is that if human-defined ontological
concepts are relevant to the task of a trained neural network,
then we should be able to relate them to the representations
encoded in the model of that network. For instance, if a
neural network were trained to identify mixed trains, then
we should be able to relate the representations encoded in
the network’s model with concepts like PassengerCar and
FreightWagon, given that they are generally used to define
MixedTrains. In general, we expect to be able to extract from
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Figure 3: Accuracy of each mapping network trained to extract concepts based on the activations of NNA, NNB, and NNC.

a neural network concepts that are relevant to its task. In-
formally, a concept is relevant to another concept if there
are circumstances where knowledge relative to the former
allows us to infer knowledge about the latter. Formally, con-
cept C1 is relevant to concept C2, with respect to an ontol-
ogy TBox T , if there exists an ABox A, composed only by
atomic assertions or their negations, such that (where x is a
fresh individual):
• (T ,A) 6|= C2(x)

• (T ,A ∪ {C1(x)}) |= C2(x)

• (T ,A ∪ {C1(x)}) 6|= ⊥
A concept is said to be relevant to a neural network, with

respect to a given ontology, if it is relevant to a concept that
is analogous to an output of that network. For example, if
a neural network is trained to identify long freight trains,
then LongFreightTrain would be the analogous concept, and
(≥ 2 has.FreightWagon) a relevant concept to the network.

According to our hypothesis, we expect that we should
generally achieve better results when extracting relevant
concepts than non-relevant concepts from a given main net-
work. To test our hypothesis we built mapping networks to
extract various (11) concepts defined in the ontology shown
in Figure 2 from all three main networks. Each mapping net-
work was trained with a set of 800 samples, selected using a
validation set of 200 samples, and tested using a set of 1 000
samples, each labeled with the concepts being extracted.

In Figure 3, we present the accuracy of each map-
ping network, highlighting those concepts that are rele-
vant to the corresponding main network. Relevant con-
cepts were typically extracted with the highest accuracy
among all concepts, and non-relevant concepts were ex-
tracted with the lowest. For example, the extraction of
∃has.ReinforcedCar (resp. RuralTrain) achieved better re-
sults for the main network NNA (resp. NNC) for which it
is relevant. Also worth noting is, for example, the fact that
concept ∃has.OpenRoofCar, which is not relevant for any of
the three main networks, was not extractable from neither.
There are situations where some relevant concepts turn out
to be redundant given other concepts that are extractable, i.e.
that the main network has learned, rendering them less ex-
tractable. This is the case with ∃has.LongWagon in NNB,
which is redundant given LongTrain and PassengerTrain.
Non-relevant concepts might also be learned, due to a bias
in the dataset. This is the case with LongTrain in NNC, since
most images of TypeC trains are long trains.
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Figure 4: Accuracy of mapping networks and convolutional
neural networks when trained to identify the same concepts.

4.2 Cost of the Mappings
The results from the previous experiment suggest that it is
possible to extract human-defined concepts from neural net-
works models, as long as those concepts are relevant to the
task performed by that neural network. However, apart from
our interest in better understanding the information encoded
in the architecture of a neural network, it is necessary to
assess whether training a neural network to predict a given
concept based on the activations of another neural network
is practical, taking into account the amount of required train-
ing data, and the size and accuracy of the resulting model.

To assess the cost of training the mapping networks, we
contrasted the results obtained by extracting the 4 relevant
concepts with higher accuracy from each main network,
out of the 11 previously considered, with those obtained by
training convolutional neural networks using the images in
the dataset to predict those same concepts. For our main
hypothesis to be practical, training the mapping networks
should require less training data than training the convolu-
tional neural networks. The accuracy of the networks devel-
oped in both settings is compared when different amounts of
training data are available, using 20% of the available data
for validation, and a test set of 1 000 samples. The validation
set was used to choose between the two different models of
mapping networks being considered, and to choose between
22 different models of convolutional neural networks, each
similar to or simpler than those used in the main networks.
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In Figure 4, we plot the accuracy of the neural networks
developed in both settings, against the amount of available
training data for each considered concept. Mapping net-
works typically achieve higher accuracy values than the cor-
responding convolutional neural networks, especially when
the number of available training examples is low. The results
suggest that the use of the activations of a neural network
to predict relevant concepts yields smaller models achieving
higher accuracies, and requiring less training data.

This experiment shows two main benefits that stem from
using the activations of a trained neural network to predict
relevant concepts. First, the overhead caused by the devel-
opment and use of a mapping network is minimal, since
the model is much simpler than what otherwise would have
been necessary. Then, the amount of required labeled data
for training with the same accuracy value is usually smaller
when extracting a concept using a mapping network.

This seems to further suggest that the information en-
coded in the activations of a neural network can, in a sense,
be closer to the human-defined concepts than the informa-
tion present in the input features, assuming that the concepts
are relevant to the task of this neural network.

4.3 Meaning of the Extracted Concepts
Having evidence that it is possible to extract human-defined
concepts from the activations of a trained neural network,
and that it might only require few labeled data to do so, we
address the natural concern related to the use of mapping
networks: “Do the extracted concepts resemble our under-
standing of those concepts? Or are the neural networks find-
ing meaningless correlations in the activations of the many
different neurons which are being fed as input?”.

To answer these questions, we employed the occlusion
procedure described in (Zeiler and Fergus 2014), which
works by systematically occluding different portions of an
input image with a grey square and observing how the out-
put of a neural network changes relative to the position of
the grey square, allowing for a visualization of the probabil-
ity of the correct class as a function of the position of the oc-
cluding grey square. We apply this procedure by feeding the
activations of the occluded images to the mapping networks,
allowing for an estimation of how mapping networks’ react
to the main networks’ input features.

Figure 5 shows the images of Figure 1 and the resulting
attribution map obtained through this procedure. In the first
example, we tested a mapping network on NNA identify-
ing whether a train has a passenger car, represented as a
wagon containing a circle. The output of the mapping net-
work drops when the first wagon – the passenger car – is
occluded. In the second example, we used NNB to assess a
mapping network trained to identify freight trains. The im-
age depicts a freight train, given that it has two wagons con-
taining commercial goods – represented by a hexagon and a
diamond. The mapping network properly identifies this con-
cept, changing its output only when one of the two commer-
cial wagons is covered. The third example shows an image
of a train with two long wagons. Using a mapping network
on NNC trained to identify long wagons present in its input,

0.0
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Figure 5: Map of correct class probability as a function of the
position of a occluding square for three mapping networks.

only when the grey square occludes partially both wagons
does the output of the mapping network decreases.

We tested the 12 mapping networks chosen in the previous
Section, trained using 800 samples, by applying the above-
described procedure to generate 1 200 attribution maps of
100 different images. Through visual evaluation, we were
able to precisely understand the resulting attribution map
given the concept being identified by a mapping network
in 94% of the images. This experiment provides strong ev-
idence that mapping networks are correctly localizing the
concepts that they are trained to identify and appropriately
reacting to the visual features that embody each concept.

4.4 Origin of the Extracted Concepts
So far, we have been using as input to the mapping networks
all activations fed to and produced in the dense part of the
main network, which might not always be feasible, e.g., due
to memory constraints. Pinpointing which neurons’ activa-
tions are required to extract a given concept is a crucial task,
since it allows for the development of mapping networks
that are smaller in input size, potentially achieving higher
accuracies, besides providing useful information regarding
where on a neural network each concept is more prominent.

In most non-trivial neural networks, due to their size, it
is unfeasible to explore all possible sets of input features
to train a mapping network. We designed a procedure – In-
put Reduce – that searches for a set of features with a given
maximum cardinality that allows for a mapping network to
be trained with the greatest possible accuracy. The proce-
dure, c.f. Figure 6, keeps track of a set of best performing
features, i.e., the smallest set of features that results in a
mapping network achieving the highest accuracy, while it-
erating through the layers of a neural network, from output
to input. At each layer a set of input features, composed by
all neurons of the current layer together with the known best
performing set of features, is considered. This set is itera-
tively reduced through the use of a feature ranking method
and tested by building and evaluating mapping networks that
use it. A patience parameter is used to speed up this process,
anticipating the move to the next layer. The procedure re-
turns the best performing set of features found, either after
the last layer of the neural network is processed, or when no
new best performing set of features is found in a given layer.

We tested the Input Reduce procedure for the 4 relevant
concepts previously selected for each of NNA, NNB, and
NNC, using a training set of 800 samples, a validation set
of 200 samples, and a test set of 1 000 samples. The test
was performed using the Input Perturbation Feature Impor-
tance algorithm (Heaton et al. 2017), a patience value of 8,
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Input : mainnn – main network architecture
mapnn – mapping network architecture
datatr – training data of mapping networks
dataval – validation data of mapping networks
ranker – feature ranking algorithm
patience – amount of steps to wait before changing

layer if no progress on validation accuracy
remove% – % of features to remove each step
maxfeats – maximum number of features

Output: a set of inputs

begin
featsbest ← ∅
accbest ← 0
for layer in reversed(mainnn.layers) do

curr feats← featsbest ∪ layer.neurons
curr patience← patience
new solution← false
while not curr feats.is empty() do

mapnn.train(datatr[curr feats])
acc← mapnn.eval(dataval[curr feats])
if (acc > accbest or (acc == accbest and
|featsbest| > |curr feats|)) and
maxfeats ≥ |curr feats| then

accbest ← acc
featsbest ← curr feats
curr patience← patience
new solution← true

else
curr patience← curr patience− 1
if patience < 0 then break

rank ←
ranker(mapnn, datatr, dataval, curr feats)
curr feats.remove(rank, remove%)

if not new solution then
return featsbest

return featsbest

Figure 6: Input Reduce procedure for feature selection.

Output Concept Dense Layers Input Reduce
Accuracy Features Accuracy Features

N
N

A

∃has.FreightWagon 0.9367 10480 0.9263 453
WarTrain 0.9719 10480 0.9930 4

EmptyTrain 0.9937 10480 0.9942 2
∃has.ReinforcedCar 0.9950 10480 0.9928 4

N
N

B

∃has.FreightWagon 0.9676 10464 0.9629 2374
PassengerTrain 0.9485 10464 0.9433 1107

LongTrain 0.9670 10464 0.9701 534
FreightTrain 0.9523 10464 0.9493 1247

N
N

C

∃has.FreightWagon 0.9459 10608 0.9500 519
RuralTrain 0.9820 10608 0.9916 7
MixedTrain 0.9484 10608 0.9750 14

∃has.LongWagon 0.9813 10608 0.9814 12

Table 1: Comparison of the accuracy of mapping networks
developed using all activations fed to and produced in the
dense part of their main network, and using the features re-
sulting from the Input Reduce procedure.

LongTrain(i1)

FreightTrain(i1)

LongFreightTrain ≡ LongTrain u FreightTrain

TypeB ≡ PassengerTrain t LongFreightTrain

Figure 7: Input image and accompanying justification.

and removing 20% of the features at each step, with a max-
imum feature set size equal to the number of all activations
fed to and produced in the dense part of their main network.
Although this procedure does not provide formal guarantees
regarding the resulting set of features, our empirical results,
shown in Table 1, show that all of the mapping networks
decreased their input size. On average, the mapping net-
works trained with the set of selected features required only
5% of the features achieving similar accuracy values. This
is observable in the second example in Table 1, where the
mapping network trained to identify war trains increased its
accuracy and substantially reduced its input dimensionality
when trained using the features obtained by Input Reduce.

5 The Justifications
The main motivation for extracting human-defined concepts
from the activations of ensembles of neurons of a neural net-
work was to be able to leverage on the ontology used to
define those concepts to produce justifications for the neu-
ral network’s output in a symbolic and declarative way. In
a nutshell, if we add the observations produced by the map-
ping networks to the ABox of the ontology, a justification
would be a minimal subset of the ontology that entails a fact
representing the output of the network.

More formally, given an ontology O = < T , A >, an
ABox A′ composed of facts describing the extracted con-
cepts, and a formula (typically an atomic fact) ϕ represent-
ing the output of the neural network, a justification J for ϕ
given O and A′ is a subset of O′ = < T , A ∪ A′ > such
that J |= ϕ and for all J ′ ⊂ J , J ′ 6|= ϕ. The last require-
ment ensures minimality so that justifications only contain
axioms that are necessary to support the entailment. Note
that there may be more than one minimal justification.

Consider the scenario where we are analyzing NNB, the
main neural network trained to identify trains of type B,
for which we developed mapping networks for the concepts
PassengerTrain, LongTrain, and FreightTrain. When we
feed image (i1) depicted in Figure 7 to this neural network, it
correctly classifies it as being of type B, i.e., ϕ = TypeB(i1).
By only taking into account the ontology, i.e., before looking
at the extracted concepts, all we could infer is that the train
in the picture is either a passenger train or a long freight
train, but we would not be able to tell which. However,
once we observe that the mapping networks were able to ex-
tract the concepts FreightTrain and LongTrain, though not
PassengerTrain, then we can build the ABox:

{¬PassengerTrain(i1), LongTrain(i1),FreightTrain(i1)}

and find a justification for ϕ = TypeB(i1), depicted in Fig-
ure 7. This justification shows that the input of the neural
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All Correct Some Correct None Correct No Justifications
NNA 85.5% 14.3% 0.2% 0.0%
NNB 94.2% 2.1% 0.7% 3.0%
NNC 90.6% 8.9% 0.1% 0.4%

Table 2: Summary of justifications for each main network.

network was classified as a train of type B because it was
identified to be both a long train and a freight train; and
trains being both long and freight are long freight trains,
and long freight trains are of type B. Naturally, these jus-
tifications could be translated to natural language before be-
ing presented to the user, e.g. as in (Androutsopoulos, Lam-
pouras, and Galanis 2013).

To evaluate the justifications produced through this
method, we employed a Description Logics axiom pinpoint-
ing algorithm described in (Horridge 2011). We used the
mapping networks developed in Section 4.4 and, for each,
we sought justifications for the output of 1 000 images con-
taining train representations of the type they are trained
to identify. The result for each image could fall into one
of four cases: –all justifications produced were correct i.e.,
only used concepts correctly extracted; –some justifications
were correct, but some were incorrect i.e., used some con-
cept incorrectly extracted; –none of the produced justifica-
tions were correct; –no justifications were produced. Incor-
rect justifications can either be due to absent concepts that
were incorrectly extracted, or present concepts that were not
extracted. Absent justifications can either be due to the in-
correct concept extraction, but could also be due to a poor
choice of relevant concepts to be extracted.

The results, summarized in Table 2, are quite positive as
the method was able to find correct justifications in most
cases. Whereas the experiments we conducted benefited
from a controlled environment, even if the data and meth-
ods ensure that the results are valid, when employed in less
controlled environments it is expectable that things may be-
come more difficult. Either because of errors in the concept
extraction, of poor choice of concepts to be extracted, we
could end up not only with incorrect justifications, no justi-
fications, or even obtain inconsistent justifications. There are
nevertheless known methods involving abductive reasoning
– e.g. minimally adding the required missing observations to
be able to justify the output – belief revision – e.g. minimally
removing observations to restore consistency – or even para-
consistent reasoning, that could be employed, which never-
theless fall outside the scope of the present paper.

6 Related Work
Popular approaches to interpretability of neural networks are
saliency and attribution methods (Ancona et al. 2018; Zeiler
and Fergus 2014), where information regarding the impor-
tance of each input feature to a given prediction is produced.
Other methods try to build more concise representations of
neural networks, e.g., (Zhang et al. 2018). Despite their rel-
evance, they do not provide any type of language to de-
scribe their results. Proxy-based methods (Ribeiro, Singh,
and Guestrin 2016; Zilke, Mencı́a, and Janssen 2016) typi-

cally substitute a model for one that is interpretable by de-
sign and that behaves similarly to the original model. In con-
trast, our justifications don’t require changing or substituting
the original model, which might not always be feasible.

In the field of neural-symbolic integration there has also
been work towards increasing the interpretability of neu-
ral networks. For example, (Hitzler, Hölldobler, and Seda
2004) seeks interpretability of neural networks by design
since they are built to compute propositional logic programs.
However, they miss on the neural network’s capacity to learn
from examples. In (Sarker et al. 2017), the authors propose
the use of ontologies as background knowledge to help ex-
tract formulae that explain neural networks, but their method
is somehow limited as it only encodes the input-output be-
havior of the networks, and requires that data be labelled
with the required concepts.

7 Conclusions
In this paper, we linked neural networks and ontologies with
the objective of obtaining justifications for a neural net-
work’s output. To this end, we assessed the implications and
benefits of the use of mapping networks – neural networks
built to predict human-defined concepts from the activations
of ensembles of neurons from a neural network. Through ex-
perimental evaluation, we showed that the developed map-
ping networks are small in size, requiring less computational
power, training time, and training data than if we were to de-
velop a neural network without leveraging on the activations
of the neural network which output we want to justify.

We conclude that it is possible to leverage on the knowl-
edge hidden in the architecture of a neural network and to
use that knowledge to establish mappings to concepts from
an ontology, in order to extract symbolic justifications for
a neural network’s output that are human-comprehensible.
This allows us to peek into the concepts that a neural net-
work has learned, increasing its interpretability.

To the best of our knowledge, our work is the first to
leverage the representations encoded in the architecture of
a neural network to obtain justifications for its output using
human-understandable concepts defined through an ontol-
ogy, without changing or retraining the neural network.

It is important to note that the justifications obtained
through our method are not necessarily a representation
of how neural networks really reach their outputs, but
rather plausible and understandable justifications for how
they might have achieved their results, based on human-
understandable concepts. The process somehow resembles
a similar human behavior: sometimes we make choices, and
only when compelled to explain the reason behind them, do
we stop for a moment and try to rationalize them. Indepen-
dently of their nature, this seems to be a relevant step to-
wards bridging neural and symbolic Artificial Intelligence,
with an immediate impact in the search for Explainable AI.

In the future, we wish to explore in-depth the extraction
of justifications based on the ontology and the results of the
developed mapping networks, investigate the usage of this
method to search for learned biases in trained neural net-
works, and as a way to search for errors, missing axioms, or
missing relations in ontologies.
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