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Abstract

Understanding narratives requires reasoning about implicit
world knowledge related to the causes, effects, and states of
situations described in text. At the core of this challenge is
how to access contextually relevant knowledge on demand
and reason over it.
In this paper, we present initial studies toward zero-shot com-
monsense question answering by formulating the task as in-
ference over dynamically generated commonsense knowledge
graphs. In contrast to previous studies for knowledge integra-
tion that rely on retrieval of existing knowledge from static
knowledge graphs, our study requires commonsense knowl-
edge integration where contextually relevant knowledge is
often not present in existing knowledge bases. Therefore, we
present a novel approach that generates contextually-relevant
symbolic knowledge structures on demand using generative
neural commonsense knowledge models.
Empirical results on two datasets demonstrate the efficacy of
our neuro-symbolic approach for dynamically constructing
knowledge graphs for reasoning. Our approach achieves signif-
icant performance boosts over pretrained language models and
vanilla knowledge models, all while providing interpretable
reasoning paths for its predictions.

Introduction
Understanding narratives requires reasoning about all the im-
plicit, but trivially inferable, details of a situation based only
on what is explicitly stated in text. A statement as simple
as “they went to the club” instantly invokes a bank of com-
monsense expectations: they had to get dressed, they were
going dancing, they likely had drinks, and so forth. These
reasoning capabilities are missing in most existing neural
language understanding models that learn task-specific rep-
resentations without acquiring rich background knowledge
about the social and physical world.

In response, recent work has investigated augmenting deep
learning models with retrieval mechanisms over large-scale
commonsense knowledge graphs (Mihaylov and Frank 2018;
Bauer, Wang, and Bansal 2018; Paul and Frank 2019). How-
ever, these approaches assume an entity linking step between
the written text and knowledge graph. By canonicalizing en-
tities, they discard key context surrounding the input, and
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Figure 1: Previous approaches for accessing knowledge link
situational contexts to static knowledge graphs. Our work
generates knowledge dynamically from neural knowledge
models.

often retrieve semantically irrelevant knowledge (e.g., a club
being a blunt weapon is irrelevant to the earlier situation).

In this paper, we propose to generate new knowledge that is
contextually relevant instead of retrieving existing knowledge
as is. Bosselut et al. (2019) recently introduced Commonsense
Transformers (COMET), a new framework for training neu-
ral representations of knowledge graphs. This new class of
neural knowledge model provides a powerful representational
tool for connecting commonsense knowledge to downstream
task models. Because COMET represents knowledge graphs
neurally, it can generate commonsense inferences for any en-
tity that can be encoded by the neural model (i.e., described
with language). With no need to canonicalize context entities
to link to a static knowledge graph, the knowledge model can
be queried directly with complex compositional structures,
and even full narrative contexts. This flexibility has led them
to be used out-of-the-box in a variety of settings requiring
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contextual knowledge, such as sarcastic comment genera-
tion (Chakrabarty et al. 2020), therapy chatbots (Kearns et al.
2020), and story plot generation (Ammanabrolu et al. 2020).

In this work, we use COMET to dynamically construct
context-relevant knowledge graphs that can be reasoned over
for commonsense question answering. Given a raw context,
COMET generates commonsense inferences that provide
world knowledge about the situation depicted in the context.
These inferences can be used as additional context to score
answer candidates or to generate additional inferences. By
generating new inferences and connecting them to the raw
context and answers, COMET dynamically constructs a sym-
bolic graph of commonsense knowledge. The raw context
is the root node, answer choices are leaf nodes and gener-
ated commonsense inferences provide intermediate nodes be-
tween them, instantiating different reasoning paths between
the context and answers. Using COMET generated scores
as factors weighting these paths, we propose new inference
algorithms to reason over the generated graph and identify
the most likely answers to questions about the situation.

We evaluate our approach in a zero-shot setting on the
SocialIQa (Sap et al. 2019b) benchmark, a question answer-
ing dataset for evaluating social commonsense, and the Sto-
ryCS benchmark (Rashkin et al. 2018), a story understand-
ing dataset. Empirical results show that our neuro-symbolic
approach, COMET - DynaGen, outperforms purely neural
large-scale pretrained language models (Radford et al. 2018,
2019) and knowledge models that evaluate QA examples
directly without dynamically generating an intermediate sym-
bolic commonsense knowledge graph (i.e., reasoning with
COMET with no inference hops).

Dynamic Knowledge Graph Construction for
Question Answering

Our approach uses a knowledge model, COMET (Bosse-
lut et al. 2019), to dynamically construct a context-relevant
commonsense knowledge graph about a presented situation.
COMET is trained using transfer learning from large-scale
pretrained language models (Radford et al. 2018) to knowl-
edge graphs. When trained on the Atomic knowledge graph
(Sap et al. 2019a), it learns to generate social commonsense
inferences of situations depicted in text. Importantly, unlike
static knowledge graphs (e.g., ConceptNet; Speer, Chin, and
Havasi 2017), which require canonicalizing input entities to
link to the graph, COMET represents knowledge neurally, al-
lowing it to generate commonsense for arbitrary input forms.

In Figure 1, for example, the context “Kai knew things
were getting out of control and managed to keep his tem-
per in check” is unlikely to be found in any existing knowl-
edge graph. It describes a very specific situation. However,
COMET can parse this full context and generate common-
sense knowledge about Kai’s reactions and motivations, such
as “Kai stays calm” or “Kai wants to avoid trouble,” as down-
stream inferences. We exploit this generalization property
of knowledge models to dynamically construct knowledge
graphs for presented situations that can be reasoned over to
answer commonsense questions about them.

Notation. Formally, we assume a dataset of examples, each
with an associated context c describing a situation, a ques-
tion q asked about that situation, and a set of n possible
answersA = {a0, ..., an−1} to that question. Each answer is
composed of multiple tokens Y a = {y1, ..., y|a|}.
Generating Commonsense Inferences. We generate com-
monsense inferences for a situational context c by concate-
nating the context with relation types from the Atomic knowl-
edge graph and using COMET to produce candidates G. Each
candidate g ∈ G is associated with a score φg that approxi-
mates the model’s confidence in the inference:

φg =
1

|g|

|g|∑
t=1

logP (xt|x<t, c, r) (1)

where xt are the tokens of g, |g| is the token length of
g, r is an arbitrary commonsense relation type for which
COMET can generate inferences, and:

P (xt|x<t, c, r) = COMET(c, r, x<t) (2)
where the tokens of c and r are concatenated with the tokens
x<t to be input to COMET. Any generation g ∈ G condi-
tioned on c can be seen as a 1-hop commonsense inference
of c.

Using a Markov assumption, we can generalize this ap-
proach by conditioning on generated commonsense infer-
ences to generate G`, a set of `-hop inferences from c:

φ`g = φ`−1g +
1

|g`|

|g`|∑
t=1

logP (xt|x<t, g
`−1, r) (3)

where φ`g is a generation score for any g` ∈ G`, g`−1 is an
arbitrary inference from G`−1, the set of inferences of the
previous hop, and φ`−1g is the generation score of that seed
inference. Using this approach, we can use COMET to con-
struct a graph where commonsense inferences g are nodes.
For an arbitrary node g`, its parent is the node from the pre-
vious level G`−1 that COMET conditions on to generate g`.
The children of g` are nodes generated when COMET condi-
tions on g` to generate new commonsense inferences. We set
g0 = c because the context is the root node of the graph, and
φ0g = 0 because the original context c is deterministic.

Answers as Leaf Nodes. The final step in constructing the
knowledge graph is to connect the answer choices a ∈ A to
the generated commonsense inferences. We initialize a node
in the graph for each answer choice a and connect it as a child
node to each commonsense inference in the graph: g ∈ G` for
` ∈ [0, L) where L is the number of levels in the final graph.
In Figure 2b, we see that the answer choices A = {relieved,
scared, anxious} are connected to the root node and each
generated commonsense inference in the L = 2 level graph.

Knowledge Graph Reasoning
Being designed as a conditional language model,
COMET can also be used to score candidate com-
monsense inferences. We use this property to score answer
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(Section ).

Figure 2: Our approach consists of dynamically constructing a local commonsense knowledge graph about a presented situation.
This graph can be used to reason about the different questions about the situation.

candidates a ∈ A conditioned on the generated common-
sense inferences g ∈ G that are connected to them. The
scores from COMET are used to initialize factor nodes
between each generated commonsense inference (at all levels
of the graph) and each answer choice. Using these scores,
and scores between commonsense inferences (Eqs. 1, 3), as
a set of factors, our generated knowledge graph implicitly
encodes a factor graph that can be reasoned over to evaluate
each answer candidate.

Computing Answer Scores
COMET is originally trained to maximize the conditional log-
likelihood of the tokens of a target entity e2 from a knowledge
graph tuple (e1, r, e2). As a result, the knowledge model can
measure the log-likelihood of a candidate entity e2 given a
source entity e1 and relation r. For a given example, we treat
each answer candidate a as an e2 candidate for COMET, map
the parent nodes of a (e.g., g nodes) to be equivalent to e1,
and set the question q as r, allowing COMET to evaluate
each answer candidate according to its implicit knowledge
representations. For each answer a ∈ A, we define a factor
based on each token’s conditional log-likelihood as computed
by COMET:

φga =
1

|a|

|a|∑
s=1

logP (ys|y<s, g, q) (4)

where ys corresponds to the token in a at time step s, y<s is
all the tokens preceding ys in a, and |a| is the total number
of tokens making up a. In this way, for any QA example,

we define a set of factor nodes φga connecting the answer
candidates a ∈ A to the commonsense inferences g ∈ G
generated by COMET about the situational context c.

Overcoming Answer Priors. Because certain answer candi-
dates have a high probability of occurring for certain ques-
tions regardless of the context (e.g., happy is a common
answer for questions about emotional reactions), we redefine
φga (Eq. 4) in terms of the point-wise mutual information
between the commonsense path g and answer a:

φga ∝ PMI(a, g|q)

φga =
1

|a|

|a|∑
s=1

(
logP (ys|y<s, g, q)

− logP (ys|y<s, q)
)

(5)

where logP (ys|y<s, q) is the log-likelihood of each token
in the answer given only the question and previous answer
tokens. We describe our approximation of this distribution in
Appendix B.

Inference
Each φ`g scores a unique reasoning path at a particular depth
` in the graph. The composition γgφ`g + γgaφ

`
ga can then be

seen as scoring a path to a particular answer. To find the most
likely answer, we marginalize over all paths to the answers at
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layer `:

φ`a = f({γgφ`g + γgaφ
`
ga : g ∈ G`}) (6)

where φ`g (Eq. 3) and φ`ga (Eq. 5) are the path and answer
score, respectively, for generation g ∈ G`. γg and γga are
hyperparameters balancing the contribution of both scores.
Because the path and answer scores are log-probabilities, we
set f as the LogSumExp, yielding Eq. 6 as a variable elimi-
nation over g ∈ G`. We also define an extremum estimator
over the distribution of generated inferences G`:

φ`amax
= max

g∈G`
γgφ

`
g + γgaφ

`
ga (7)

At a high level, φ`amax
can be interpreted as approximating

the likelihood of answer a given a singular reasoning path:
{c → g1 → · · · → g` → a}, rather than by computing an
aggregation of all paths in the graph to the answer (Eq. 6).

Once the answer scores at different levels in the graph
are computed, {φ`a}L0 , the final score for each answer can be
evaluated by averaging over the graph levels ` ∈ [0, L):

logP (a|q, c) ∝ φa =
L∑

`=0

β`φ`a (8)

â = argmax
a∈A

φa (9)

where â is the selected best answer by the approach, L is
the number of generation hops made by the COMET model
(i.e., the number of levels in the graph), φ`a is the score that
is propagated from each hop of the constructed knowledge
graph, and β` is hyperparameter scaling the contribution of
each hop score. We note that φ0a is the result from evaluating
the answer candidates directly against the original context c,
and that φ`a is replaced by φ`amax

if the extremum estimator
(Eq. 7) is used instead of variable elimination (Eq. 6).

Experimental Setup
We evaluate our approach in a zero-shot experimental setting.
It is a well-studied phenomenon that neural methods trained
on crowdsourced data often learn to shortcut reasoning to
arrive at a correct answer (Gururangan et al. 2018; Li and
Gauthier 2017). We use a zero-shot setting to simulate the
model having to reason about situations it has never encoun-
tered before, forcing it to construct reasoning graphs from
explicit knowledge it can generate (e.g., knowledge learned
by COMET), and precluding it from learning dataset-specific
artifacts. As such, we do not use training data to update model
parameters. Furthermore, any result presented on the test set
does not have hyperparameters tuned on the development set.

Datasets and Processing
We evaluate our method on two datasets: SocialIQa (Sap et al.
2019b) and StoryCS (Rashkin et al. 2018).

SocialIQa. The SocialIQa dataset evaluates a model’s abil-
ity to understand the social dynamics underlying situations
described in short text snippets. Each example in the dataset

consists of a context, a question about that context, and three
multiple choice answers. An example from the dataset is
shown in Figure 2. We outline pre-processing steps for the
data in Appendix A.

StoryCS. The StoryCS dataset consists of short 5-sentence
stories with annotated motivations and emotional responses
whose labels are drawn from classical theories of psychology
(e.g., Plutchik 1980). We map the emotion classification task
to a QA task by posing an individual question for each emo-
tion label (disgust, surprise, fear, anger, trust, anticipation,
sadness, joy) that must be predicted for each example. We
outline this procedure in Appendix B.

Experimental Settings
Hyperparameters. We use most of the same hyperparam-
eters to train the COMET model on the Atomic knowledge
graph as in Bosselut et al. (2019). However, we use GPT2-
345M (Radford et al. 2019) as the pretrained language model
that seeds COMET and freeze the position embeddings so
we can generalize to longer contexts. We note that the So-
cialIQa dataset is partially derived from Atomic knowledge
base tuples. However, we do not allow Atomic tuples used
to seed SocialIQa evaluation examples to be used as train-
ing examples for COMET. We provide more details of this
splitting in Appendix A. The number of levels in the graph
L is set to 2. As we operate in the zero-shot setting, we do
not tune hyperparameters. For the SocialIQa dataset, we set
γg = γga = 1.0 and β` = 1.0 ∀`. For StoryCS, we do the
same except that γg = 0. Unless stated otherwise, we use
argmax decoding to generate inferences from COMET, and
use variable elimination over the graph to select answers.

Prediction. To predict an answer on the SocialIQa dataset,
we use Equation 9. Prediction for StoryCS is less straightfor-
ward, as the task is originally binary multi-label classification.
To make a prediction, we treat φa (Eq. 8) for each label j
independently and select an answer based on whether φa,j is
above a label-specific threshold, κj . To avoid violating the
zero-shot setting (i.e., tuning thresholds on the development
set), we select the threshold using the score at the percentile
of the positive label distribution (e.g., if the joy emotion is
present for 20% of examples, we set the threshold at the score
of the 20th percentile of the CDF). Thresholds are reported
in Appendix Table 10 for each label.

SocialIQa Study
Baselines. As baselines in the SocialIQa study, we use
large-scale pretrained language models: GPT (Radford et al.
2018), GPT2-117M, GPT2-345M, and GPT2-762M (Rad-
ford et al. 2019). To adapt these language models optimally
to the QA task, question-answer pairs are automatically con-
verted to a templated form, a process we outline in Appendix
B. We also report the results of a model, COMET - Direct,
that only uses φ0a to select answers (i.e., answers are evaluated
with respect to the context with no dynamic graph construc-
tion). Additionally, we compare against the Self-Talk model
of Shwartz et al. (2020), which queries pretrained language
models to generate additional details about a presented situ-
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Situation Most Contributing Paths in Graph Answers

Jesse drove Ash to the airport and dropped
them off at the airport with ease.

Jesse wants to go home
a) drained 3
b) went to the ticket counter
c) dropped me off at the airport

Jesse wanted to be helpful
a) drained

How would Jesse feel afterwards? b) went to the ticket counter 7
c) dropped me off at the airport

After jumping off the roof of his house
Quinn had trouble breathing.

Quinn gets hurt
a) foolish 3
b) patient
c) light-headed

Quinn wants to get medical help
a) foolish

How would you describe Quinn? b) patient
c) light-headed 7

Alex took notice of the children who were
singing at the playground.

Alex is happy
a) hurt the children
b) joy 3
c) tell the children to stop

Alex wants to go home
a) hurt the children

What will happen to Alex? b) joy
c) tell the children to stop 7

Taylor was close to winning the game.
Taylor ran straight for home plate.

Taylor wants to celebrate
a) try to get over that they did win
b) celebrate the win 7
c) wanted to score

Taylor wants to be home
a) try to get over that they did win

What will Taylor want to do next? b) celebrate the win
c) wanted to score 3

Table 1: Example contexts, paths, and answers for the COMET - DynaGen model on SocialIQa. We bold the predicted answer
and its most contributing path. We italicize the most likely answer for each path. Incorrect high-scoring answers for a path are
marked with 7 and correct answers are marked with 3. We only present a subset of the generated paths.

Model Dev Acc. Test Acc.
Random 33.3 33.3
GPT 41.8 41.7
GPT2 - 117M 40.7 41.5
GPT2 - 345M 41.5 42.5
GPT2 - 762M 42.5 42.4
Self-Talk 46.2 43.9
COMET - Direct 48.7 49.0
COMET - DynaGen 50.1 52.6
BERT-large (sup.) 66.0 63.5
RoBERTa-large (sup.) 78.1 77.0
Human 86.9 84.4

Table 2: Accuracy on the development and test sets of So-
cialIQa. COMET - DynaGen is our model.

ation and appends these to the original context. Finally, we
report the result of supervised BERT (Devlin et al. 2018) and
RoBERTa (Liu et al. 2019) models, and random and human
baselines from Sap et al. (2019b).

Overall Performance. We report the main results of our So-
cialIQa study in Table 2. First, our approach achieves an
absolute improvement of ∼10.2% over the top performing
language model baseline, GPT2-762M, showing the impor-
tance of using knowledge models to represent commonsense.

Additionally, our approach of dynamically constructing a
knowledge graph on demand (COMET - DynaGen) performs
better than using the knowledge model to directly evaluate
answers (COMET - Direct) by∼3.6%, highlighting the value
in representing more complex reasoning paths. Finally, the
improvement over Self-Talk depicts the benefit of using a
structured graphical representation for reasoning compared
to one that uses language models to generate additional situa-
tional context sentences for conditioning.

We note, however, that the state-of-the-art performance of
the supervised BERT and RoBERTa models is significantly
higher, meaning there is room for improvement in developing
comparable zero-shot approaches to QA. However, one point
of interest is that the performance of training BERT with only
5000 training examples (rather than the full 30k) is close
(54%) to the performance of COMET - DynaGen, indicating
that knowledge models and joint neuro-symbolic solutions
are already promising in low-data regimes.

Qualitative Analysis. In Table 1, we present top reasoning
paths from the graphs generated by COMET - DynaGen. The
strength of our approach can be seen in the first example,
where the correct answer, drained, is more likely to be a feel-
ing associated with wanting “to go home,” a post-condition in
the graph generated by COMET - DynaGen. In the original
context, this condition is implicit. This benefit to leveraging
graph reasoning is also seen in the second example, where
Quinn’s foolishness is linked to “[getting] hurt.” We note
that COMET - Direct, RoBERTa-large, and GPT2-345M all
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Algorithm # nodes # edges φ`a φ`amax

Argmax Decoding 10.6 26.4 50.1 49.6
Beam Search - 5 43.2 156.8 49.5 49.1
Beam Search - 10 83.0 316.2 50.0 49.1
Top-5 sampling 32.0 111.9 49.0 49.0
Top-10 sampling 59.9 223.8 49.3 49.4

Table 3: Development set accuracy for different graph con-
struction techniques. The average number of nodes and edges
in the constructed graphs is presented.

answer this question incorrectly, reinforcing the importance
of explicit reasoning graphs.

In the final two examples, we present uninteresting or
failure cases. In the first, the model predicts that Alex will
experience joy after reasoning through the path that he will be
“happy,” which, while correct, is merely leveraging synonymy.
In the final example, we show a case where the model selects
an incorrect answer by reasoning through an incorrect path.
By recognizing that “Taylor wants to celebrate” as a likely
post-condition of the context, the model selects an answer
that is incorrect. An interesting secondary failure mode in this
example is in the second path through the inference “Taylor
wants to be home.” While this path selects the correct answer,
it would not be considered explanatory by humans. In general,
we find these cases to be more common in multi-sentence
situations. The compositionality of the context makes it more
challenging to generate directed inferences, and the factor
nodes become less reliable in the graph. We observe that
performance on multi-sentence contexts drops by ∼5%.

Graph Construction Algorithm. As the quality of the rea-
soning paths is key to our approach, we investigate the effect
of the inference generation algorithm. We evaluate the follow-
ing generation algorithms: argmax decoding, beam search
with beam size b = 5, 10 and top-k sampling (Fan, Lewis,
and Dauphin 2018; Holtzman et al. 2018) with k = 5, 10.
For each decoding method, we generate a graph using every
candidate produced by the decoder (e.g., argmax decoding
produces 1 candidate, top-10 sampling produces 10).

Our results in Table 3 show that the performance COMET
- DynaGen is not dependent on the decoding strategy used
to dynamically generate the commonsense knowledge graph.
This result is promising as it shows that the reasoning pro-
cedure is robust to variability in the candidate generations
(larger graphs will be less precise). However, it also shows
that the approach has difficulty using richer dynamically-
generated commonsense knowledge representations to an-
swer questions correctly. These results point to the need
for future work in developing algorithms that can aggregate
larger sets of commonsense inference paths.

StoryCS Study
Baselines. As with SocialIQa, we report the results of a ran-
dom baseline, pretrained language models adapted to the task,
and a model that only uses φ0a to select answers (COMET
- Direct). As supervised comparison models, we report the

Model P R F1
Zero-shot CDF-weighted No Training Data
Random 20.6 20.8 20.7
GPT 34.7 36.4 35.5
GPT2 - 117M 30.8 31.8 31.3
GPT2 - 345M 33.3 35.3 34.3
GPT2 - 762M 35.5 37.4 36.4
COMET - Direct 37.4 36.9 37.2
COMET - DynaGen 38.9 39.3 39.1
Supervised
BERT 65.6 56.9 61.0
BERT + LE 63.1 61.7 62.4
BERT + SS 57.9 76.4 65.9

Table 4: Precision, Recall, F1 on the StoryCS dataset. Best
models in different training settings are bolded

performance of several BERT-based models from Gaonkar
et al. (2020) that are state-of-the-art for the task.

Overall Performance. Our results indicate that our zero-shot
algorithm, COMET - DynaGen, significantly outperforms
other zero-shot baselines such as language models, including
models with twice the number of parameters. Importantly,
again, we see consistent improvement from dynamically gen-
erating a contextual commonsense knowledge graph, rather
than directly evaluating the answer choices with COMET -
Direct. Our full approach yields higher precision, recall, and
F1, than the COMET - Direct baseline.

Qualitative Analysis. We once again see the benefit of gen-
erating a reasoning graph in Table 5. COMET - DynaGen is
able to select the two correct answers to “How does Daniel
feel?” leveraging the path through the commonsense infer-
ence that “His Dad is helpful” to predict that Daniel is trust-
ing, and the path through the commonsense inference “Daniel
wants to try something new” to predict that Daniel is excited.
However, there is still much room for improvement, as large-
scale pretrained language models that are fine-tuned using
supervised data perform considerably better on the task.

Few-shot Tuning. To evaluate the quality of our untuned
thresholds from Section based on the label distribution
threshold of the CDF of the model’s scores (CDF-label in
Table 6), we also report the results of our approach using
different strategies to set thresholds κ. First, we explore the
impact of tuning the κ thresholds on varying amounts of the
development set data: 4 examples, 10 examples, 20 examples,
and 20% of the development data (the same amount used for
validation in Rashkin et al. 2018). In each of these settings,
we run a study with 5 different randomly selected sets of ex-
amples, and report the average performance. We also report
the performance of using the 50th percentile score of the CDF
as the threshold (CDF-50). In Table 6, we observe large recall
gains from these tuning strategies at the expense of precision.
However, tuning using merely 10 examples achieves higher
F1 than the default strategy, showing the potential of relaxing
to a few-shot setting when limited examples are available.
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Situation Most Contributing Paths in Graph Answers
Daniel was excited to get a remote control boat for
his birthday. He asked his dad to drive him to the
lake to try it out.

His dad is helpful disgusted, angry, sad, afraid,
happy, trusting 3, excited, surprised

Daniel wants to try something new disgusted, angry, sad, afraid,
How does Daniel feel? happy, trusting , excited 3, surprised

Table 5: Example StoryCS context, high-scoring paths, and answers for our approach. We show which emotions are predicted
through which path by bolding them. Correct answers are bolded. As in Table 1, only a subset of paths in the graph generated by
COMET - DynaGen are shown. Generated graphs for StoryCS have on average 8.8 nodes and 19.3 edges.

Model P R F1
Zero-shot No Training Data
CDF-label 39.5 39.5 39.5
CDF-50 25.9 75.0 38.5

Few-shot Tuning
Tuned from 4 examples 31.1 54.6 39.4
Tuned from 10 examples 30.2 64.3 41.0
Tuned from 20 examples 28.6 73.5 41.1
20% development tuning 31.2 65.1 42.2

Table 6: Development set Precision, Recall, and F1 of emo-
tion prediction on the StoryCS dataset for different strategies
for setting prediction thresholds.

Related Work
Question Answering with Knowledge Graphs Previous
work has explored integrating reasoning over static knowl-
edge graphs for question answering and story understanding.
In general, these approaches extract knowledge tuples from
the static KG by linking canonicalized entities to nodes and
performing multi-hop inference along relation paths to form
full tuples that can be encoded by a downstream neural archi-
tecture (Mihaylov and Frank 2018; Bauer, Wang, and Bansal
2018; Weissenborn, Kovcisk’y, and Dyer 2017; Lin et al.
2019; Paul and Frank 2019; Yu et al. 2019). Similar to our
approach of discovering reasoning chains between contexts
and answers, Paul and Frank (2019) extract reasoning paths
in ConceptNet between normalized entities from the context
answer candidates, but can only discover paths through nodes
in the static knowledge graph. Finally, there exists works that
also dynamically construct latent knowledge graphs (Das
et al. 2019; Bosselut et al. 2018), but these works presup-
pose a fixed set of entities that can be KG nodes and then
approximate graph edges with neural transformations. In con-
trast, our algorithm can generate arbitrary nodes, thereby
constructing a unique graphical structure for any example.

Multi-hop Reading Comprehension Similar in spirit to rea-
soning over knowledge graphs for question answering is
work in multi-hop reading comprehension. Many datasets for
learning to aggregate facts without graph structure have been
released in recent years (Weston et al. 2016; Welbl, Stene-
torp, and Riedel 2018; Yang et al. 2018; Talmor and Berant
2018). Approaches designed for these resources generally use
large-scale neural networks to attend over supporting facts

across text (Zhong et al. 2019; Dhingra et al. 2018). Most
similar to our work are approaches that construct real-time
entity mention graphs as neural reasoning paths (Cao, Aziz,
and Titov 2018; Jiang et al. 2019; Jiang and Bansal 2019;
Fan et al. 2019). Our approach differs from these models in
that we generate relevant supporting information rather than
mining it from accompanying documents and conduct our
study in a zero-shot setting with no additional training.

Automatic Commonsense KG Construction Multi-hop
reasoning over commonsense inferences requires construc-
tion of knowledge resources and recent approaches have
investigated how to mine commonsense knowledge from
deep learning models. Sap et al. (2019a) investigated whether
LSTM models could generate new tuples for the Atomic
knowledge graph. Similarly, Li et al. (2016) and Saito et al.
(2018) explored whether neural models could be used to
validate proposed knowledge rather than generating it. Jas-
trzebski et al. (2018) built on these approaches for evaluat-
ing novel commonsense knowledge mined from Wikipedia.
More recent work mapped commonsense tuples to natural lan-
guage with templates and used pretrained language models
to validate them (Davison, Feldman, and Rush 2019; Petroni
et al. 2019). Concurrently, other research has explored using
pretrained language models and adapting them as generative
knowledge graph constructors (Bosselut et al. 2019; Malaviya
et al. 2019). In contrast to these works that augment static
knowledge graphs, our approach focuses on constructing
knowledge graphs on demand to provide context-dependent
commonsense for downstream inference.

Conclusion
Our neuro-symbolic approach uses neural representations of
large-scale commonsense knowledge graphs (COMET) to
generate contextual knowledge graphs on demand for zero-
shot question answering. Our approach dynamically con-
structs a knowledge graph of commonsense inferences related
to a presented context and uses it to evaluate answer options
for a posed question. A novel inference algorithm reasons
over the constructed graph to select the most likely answer
to a question. Our approach shows promising results at an-
swering questions without training on the end task on two
datasets, SocialIQa and StoryCS, outperforming zero-shot
pretrained language models. Finally, our analysis indicates
that dynamically generating a contextualized commonsense
knowledge graph for inference performs better than using
vanilla knowledge models (COMET - Direct) to directly an-
swer questions.
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Çelikyilmaz, A.; and Choi, Y. 2019. COMET: Commonsense
Transformers for Automatic Knowledge Graph Construction.
In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics (ACL).

Cao, N. D.; Aziz, W.; and Titov, I. 2018. Question Answering
by Reasoning Across Documents with Graph Convolutional
Networks. In NAACL-HLT.

Chakrabarty, T.; Ghosh, D.; Muresan, S.; and Peng, N. 2020.
Rˆ3: Reverse, Retrieve, and Rank for Sarcasm Generation
with Commonsense Knowledge. In Proceedings of the
58th Annual Meeting of the Association for Computational
Linguistics, 7976–7986. Online: Association for Computa-
tional Linguistics. doi:10.18653/v1/2020.acl-main.711. URL
https://www.aclweb.org/anthology/2020.acl-main.711.

Das, R.; Munkhdalai, T.; Yuan, X.; Trischler, A.; and Mc-
Callum, A. 2019. Building Dynamic Knowledge Graphs
from Text using Machine Reading Comprehension. In Pro-
ceedings of the 7th International Conference on Learning
Representations.

Davison, J.; Feldman, J.; and Rush, A. 2019. Commonsense
Knowledge Mining from Pretrained Models. In Proceedings
of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-IJCNLP),
1173–1178. Hong Kong, China: Association for Compu-
tational Linguistics. doi:10.18653/v1/D19-1109. URL
https://www.aclweb.org/anthology/D19-1109.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805 .

Dhingra, B.; Jin, Q.; Yang, Z.; Cohen, W. W.; and Salakhut-
dinov, R. 2018. Neural Models for Reasoning over Multiple
Mentions Using Coreference. In NAACL-HLT.

Fan, A.; Gardent, C.; Braud, C.; and Bordes, A. 2019. Us-
ing Local Knowledge Graph Construction to Scale Seq2Seq
Models to Multi-Document Inputs. ArXiv abs/1910.08435.

Fan, A.; Lewis, M.; and Dauphin, Y. 2018. Hierarchical
Neural Story Generation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 889–898. Melbourne, Australia:
Association for Computational Linguistics. doi:10.18653/
v1/P18-1082. URL https://www.aclweb.org/anthology/P18-
1082.

Gaonkar, R.; Kwon, H.; Bastan, M.; Balasubramanian, N.;
and Chambers, N. 2020. Modeling Label Semantics for
Predicting Emotional Reactions. In Proceedings of the
58th Annual Meeting of the Association for Computational
Linguistics, 4687–4692. Online: Association for Computa-
tional Linguistics. doi:10.18653/v1/2020.acl-main.426. URL
https://www.aclweb.org/anthology/2020.acl-main.426.

Gururangan, S.; Swayamdipta, S.; Levy, O.; Schwartz, R.;
Bowman, S.; and Smith, N. A. 2018. Annotation Artifacts
in Natural Language Inference Data. In Proceedings of the
2018 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), 107–112. New Or-
leans, Louisiana: Association for Computational Linguistics.
doi:10.18653/v1/N18-2017. URL https://www.aclweb.org/
anthology/N18-2017.

Holtzman, A.; Buys, J.; Forbes, M.; Bosselut, A.; Golub,
D.; and Choi, Y. 2018. Learning to Write with Cooperative
Discriminators. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1:
Long Papers), 1638–1649. Melbourne, Australia: Association
for Computational Linguistics. doi:10.18653/v1/P18-1152.
URL https://www.aclweb.org/anthology/P18-1152.

Jastrzebski, S.; Bahdanau, D.; Hosseini, S.; Noukhovitch,
M.; Bengio, Y.; and Cheung, J. 2018. Commonsense mining
as knowledge base completion? A study on the impact of
novelty. In Proceedings of the Workshop on Generalization
in the Age of Deep Learning, 8–16. New Orleans, Louisiana:
Association for Computational Linguistics. doi:10.18653/v1/
W18-1002. URL https://www.aclweb.org/anthology/W18-
1002.

Jiang, Y.; and Bansal, M. 2019. Self-Assembling Modu-
lar Networks for Interpretable Multi-Hop Reasoning. In
EMNLP.

Jiang, Y.; Joshi, N.; Chen, Y.-C.; and Bansal, M. 2019. Ex-
plore, Propose, and Assemble: An Interpretable Model for
Multi-Hop Reading Comprehension. In ACL.

Kearns, W. R.; Kaura, N.; Divina, M.; Vo, C. V.; Si, D.; Ward,
T. M.; and Yuwen, W. 2020. A Wizard-of-Oz Interface and
Persona-based Methodology for Collecting Health Counsel-
ing Dialog. Extended Abstracts of the 2020 CHI Conference
on Human Factors in Computing Systems .

Li, L.; and Gauthier, J. 2017. Are Distributional Represen-
tations Ready for the Real World? Evaluating Word Vectors
for Grounded Perceptual Meaning. ArXiv abs/1705.11168.

4930



Li, X.; Taheri, A.; Tu, L.; and Gimpel, K. 2016. Common-
sense Knowledge Base Completion. In ACL, volume 1, 1445–
1455.
Lin, B. Y.; Chen, X.; Chen, J.; and Ren, X. 2019. KagNet:
Knowledge-Aware Graph Networks for Commonsense Rea-
soning. ArXiv abs/1909.02151.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V. 2019.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692 .
Malaviya, C.; Bhagavatula, C.; Bosselut, A.; and Choi,
Y. 2019. Exploiting Structural and Semantic Context
for Commonsense Knowledge Base Completion. ArXiv
abs/1910.02915.
Mihaylov, T.; and Frank, A. 2018. Knowledgeable Reader:
Enhancing Cloze-Style Reading Comprehension with Exter-
nal Commonsense Knowledge. In ACL.
Paul, D.; and Frank, A. 2019. Ranking and Selecting Multi-
Hop Knowledge Paths to Better Predict Human Needs. ArXiv
abs/1904.00676.
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