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Abstract

The recent outbreak of COVID-19 has affected millions of in-
dividuals around the world and has posed a significant chal-
lenge to global healthcare. From the early days of the pan-
demic, it became clear that it is highly contagious and that hu-
man mobility contributes significantly to its spread. In this pa-
per, we utilize graph representation learning to capitalize on
the underlying relationship of population movement with the
spread of COVID-19. Specifically, we create a graph where
the nodes correspond to a country’s regions, the features in-
clude the region’s history of COVID-19, and the edge weights
denote human mobility from one region to another. Subse-
quently, we employ graph neural networks to predict the num-
ber of future cases, encoding the underlying diffusion patterns
that govern the spread into our learning model. Furthermore,
to account for the limited amount of training data, we capital-
ize on the pandemic’s asynchronous outbreaks across coun-
tries and use a model-agnostic meta-learning based method
to transfer knowledge from one country’s model to another’s.
We compare the proposed approach against simple baselines
and more traditional forecasting techniques in 4 European
countries. Experimental results demonstrate the superiority
of our method, highlighting the usefulness of GNNs in epi-
demiological prediction. Transfer learning provides the best
model, highlighting its potential to improve the accuracy of
the predictions in case of secondary waves, given data from
past/parallel outbreaks.

1 Introduction
In late 2019, a highly infectious new virus, SARS-CoV-
2, started spreading in Wuhan, China. In early 2020, the
virus had spread to most countries around the world causing
the pandemic of the COVID-19 disease. As of December
7, 2020, a total of 1,532,418 deaths and 66,422,058 cases
of COVID-19 were confirmed worldwide1. During a pan-
demic, accurately predicting the spread of the infection is of
paramount importance to governments and policymakers in
order to impose measures to combat the spread of the virus
or decide on the allocation of healthcare resources.

Given the severity of the pandemic and the need for ac-
curate forecasting of the disease spread, machine learning,
and artificial intelligence approaches have recently started
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to emerge as a promising methodology to combat COVID-
19. However, it turns out that the nature of the problem is
rather challenging (Zeroual et al. 2020). In many domains,
data admits a natural graph representation. For instance, to
predict the spread of COVID-19, ideally, we would like to
have access to the social network of all individuals and to
make predictions based on the interactions between them.
However, in the absence of such data, we consider a similar
problem: predicting the development of the disease based on
mass mobility data, i. e., how many people moved from one
place to another. Mobility inside a region can be regarded
as a proxy of the interaction i.e. the more people move, the
higher the risk of transmission inside the region. Interest-
ingly, mobility between different regions is known to play
a crucial role in the growth of the pandemic, especially for
long range travels (Colizza et al. 2006; Soriano-Panos et al.
2020). Mobility gives rise to a natural graph representation
allowing the application of recent relational learning tech-
niques such as graph neural networks (GNNs).

GNNs have been applied to a wide variety of tasks, in-
cluding node classification (Kipf and Welling 2017), graph
classification (Morris et al. 2019) and text categorization
(Nikolentzos, Tixier, and Vazirgiannis 2020). GNNs capi-
talize on the concept of message passing, that is, at every
iteration, the representation of each vertex is updated based
on messages received from its neighbors. Since GNNs have
been successfully applied to several real-world problems, in
this paper, we also investigate their effectiveness in fore-
casting COVID-19. We focus on the problem of predicting
the number of confirmed COVID-19 cases in each node. We
propose a model that captures both spatial and temporal in-
formation, thus combining mobility data with the history of
COVID-19 cases.

To investigate if the model can learn the underlying com-
plex dynamics associated with COVID-19, we evaluate it
on recent data where we predict the number of new cases.
Our results demonstrate that GNNs on mobility exhibit a
substantial potential in predicting the disease spread. Fur-
thermore, since the availability of data is limited at the start
of the outbreak in a country, we employ a transfer learning
method based on Model-Agnostic Meta-Learning (MAML)
to capitalize on knowledge from other countries’ models.
Our main contributions are summarized as follows:

• We propose a model for learning the spreading of
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COVID-19 in a country’s graph of regions. The model
relies on the representational power of GNNs and their
capability to encode the underpinnings of the epidemic.

• We apply a method based on MAML to transfer a disease
spreading model from countries where the outbreak has
been stabilized to another country where the disease is at
its early stages.

• We evaluate the proposed approach on data obtained from
regions of 4 different countries, namely France, Italy,
Spain, and England. We observe that it can indeed surpass
the benchmarks and produce useful predictions.
The rest of this paper is organized as follows. Section 2

provides an overview of the related work and elaborates our
contribution. Section 3 provides a detailed description of the
proposed model. Section 4 evaluates the proposed model on
data from the first COVID-19 wave in 4 European countries.
Finally, section 5 summarizes the work and presents poten-
tial future work.

2 Related Work
As mentioned above, many recent studies have leveraged
machine learning and artificial intelligence techniques to
make predictions about the spread of COVID-19. For in-
stance, Lorch et al. (2020) propose a compartmental SEIR
model which is based on a parameterized counting process.
The parameteres of the model are estimated using bayesian
optimization. and was evaluated on regions of Germany and
Switzerland. Flaxman et al. (2020) study the effect of major
non-pharmaceutical interventions across 11 European coun-
tries with a bayesian model whose parameters are estimated
based on the observed deaths in those countries. Their re-
sults indicate that the interventions have had a large effect
on reducing the spread of the disease. Time-series based
models have also been utilized and will serve as our base-
lines. For instance, Chimmula and Zhang (2020) employed
an LSTM to predict the number of confirmed COVID-19
cases in Canada, while Kufel (2020) investigated the effec-
tiveness of the ARIMA model in predicting the dynamics of
COVID-19 in certain European countries.

A GNN for epidemic forecasting, ColaGNN, was recently
developed by Deng et al. (2019). ColaGNN learns a hidden
state for each location using an RNN, and then an attention
matrix is derived from these representations that captures
how locations influence each other. This matrix forms the
graph that is passed on to a GNN to generate the outputs.
This work was evaluated on influenza-like illness (ILI) pre-
diction in US and Japan, without the use of an underlying
graph. More recent works on predicting COVID-19 using
the graph of US counties include a static (Kapoor et al. 2020)
and a temporal GNN (Gao et al. 2020). The former forms a
supergraph using the instances of the mobility graph, where
the spatial edges capture county-to-county movement at a
specific date, and a county is connected to a number of past
instances of itself with temporal edges. The node features
include demographics, number of deaths and recoveries. In
STAN (Gao et al. 2020), on the other hand, the edges are
determined based on demographic similarity and geograph-
ical proximity between the counties. STAN takes advantage

of the nature of the pandemic and predicts the parameters
of an epidemic simulation model together with the infected
and recovered cases, using multiple outputs in the neural net-
work. These are used to produce long-term predictions based
on the simulation and to penalize the original long-term pre-
dictions of the model. The main difference between these
approaches and our work lies in the size of the constructed
graph and the amount of available data for training. To be
specific, in both these approaches, the size of the training
data ranges from 50 to 60 days. In our case, this is not feasi-
ble as the pandemic is already at its peak before the 30th day,
and has already cost too many lives. This is why we utilize
transfer learning to account for the limited training samples
in the initial stages of the pandemic. Moreover, our graphs
are relatively small compared to the graph of US counties.
Finally, our open data lacks in many cases the number of re-
covered cases, deaths and population demographics required
for training these models. This kind of data may not always
be available at the regional level for a real-life pandemic,
especially for smaller, less developed countries.

Transfer learning for disease prediction has been pro-
posed in the past by Zou et al. (2019) who have mapped
a disease model trained on online google searches obtained
from one location, where the virus spreading is available, to
another location, where the virus has not spread widely yet.
More recently, this approach was utilized in the context of
COVID-19 (Lampos et al. 2020). In the context of graph rep-
resentation learning, transfer learning has only been used to
the best of our knowledge for classifying textual documents
represented as graphs (Lee et al. 2017), for traffic predic-
tion (Mallick et al. 2020), for semi-supervised classification
(Yao et al. 2020) and for designing GNNs that are robust to
adversarial attacks (Tang et al. 2020).

3 Methodology
In this section, we present the proposed neural network ar-
chitecture for predicting the course of the COVID-19 dis-
ease. It should be mentioned that our analysis involves a se-
ries of assumptions. First, we assume that people that use
Facebook on their mobile phones with Location History en-
abled (see subsection 4.1 below) constitute a uniform ran-
dom sample of the general population. Second, we assume
that the number of cases in a region reported by the author-
ities is a representative sample of the number of people that
have been actually infected by the virus. Finally, we hypoth-
esize that the more people move from one region to another
or within a region, the higher the probability that people in
the receiving region are infected by the virus. This is a well-
known observation in the field of epidemics(Colizza et al.
2006; Soriano-Panos et al. 2020), and motivates the use of a
message passing procedure as we delineate below.

3.1 Graph Construction
We chose to represent each country as a graph G = (V,E)
where n = |V | denotes the number of nodes. Specifically,
given a country, we create a series of graphs, each corre-
sponding to a specific date t, i. e., G(1), . . . , G(T ). A sin-
gle date’s mobility data is transformed into a weighted, di-
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Figure 1: Example of the message passing procedure.

rected graph whose vertices represent the NUTS3 regions
and edges capture the mobility patterns. For instance, the
weight A(t)

v,u of the edge (v, u) from vertex v to vertex u de-
notes the total number of people that moved from region v
to region u at time t. Note that these graphs can also con-
tain self-loops which correspond to the mobility behavior
within the regions. The mobility between administrative re-
gions u and v at time t forms an edge which, multiplied
by the number of cases c(t)u of region u at time t, provides
a relative score expressing how many infected individuals
might have moved from u to v. To be more specific, let
x
(t)
u = (c

(t−d)
u , . . . , c

(t)
u )> ∈ Rd be a vector of node at-

tributes, which contains the number of cases for each one
of the past d days in region u. We use the cases of multiple
days instead of just the day before the prediction because
case reporting is highly irregular between days, especially
in decentralized regions. Intuitively, message passing over
this network computes a feature vector for each region with
a combined score from all regions, as illustrated below.
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where A(t) is the adjacency matrix of G(t) and X(t) is a
matrix whose rows contain the attributes of the different re-
gions. In this case, zu ∈ Rd is a vector that combines the
mobility within and towards region u with the number of re-
ported cases both in u and in all the other regions. Here, we
would like to stress the importance of the mobility patterns
Au,u within a region u which correspond to good indicators
of the evolution of the disease, especially during lockdown
periods. To visualize concretely how the representations are
extracted from the message passing, Figure 1 contains a toy
example with a region u receiving individuals from other
regions. Intuitively, the average value z̄u represents an esti-
mate of the number of new latent cases in u, and is broken
down to the cases received from other regions (inside the
parenthesis) and the new cases due to the mobility within
region u (i. e., Au,uxu).

3.2 Models
To model the dynamics of the spreading process, we use two
instances of a well-known family of GNNs, known as mes-

Figure 2: Overview of the MPNN architecture.

sage passing neural networks (MPNNs) (Gilmer et al. 2017).
These networks consist of a series of neighborhood aggrega-
tion layers. Each layer uses the graph structure and the node
feature vectors from the previous layer to generate new rep-
resentations for the nodes.

MPNN. To update the representations of the vertices of
each of the input graphs, we use the following neighborhood
aggregation scheme:

Hi+1 = f(ÃHiWi+1)

where Hi is a matrix that contains the node representations
of the previous layer, with H0 = X, Wi is the matrix of
trainable parameters of layer i, and f is a non-linear acti-
vation function such as ReLU. Following Kipf and Welling
(2017), we normalize the adjacency matrix A such that the
sum of the weights of the incoming edges of each node is
equal to 1. Note that for simplicity of notation, we have
omitted the time index. The above model is in fact applied
to all the input graphs G(1), . . . , G(T ) separately. Given a
model with K neighborhood aggregation layers, the ma-
trices Ã and H0, . . . ,HK are specific to a single graph,
while the weight matrices W1, . . . ,WK are shared across
all graphs. Typically, an MPNN contains K neighborhood
aggregation layers. As the number of neighborhood aggre-
gation layers increases, the final node features capture more
and more global information. However, retaining local, in-
termediary information might be useful as well. Thus, we
concatenate the matrices H0,H1,H2, . . . ,HK horizontally,
i. e., H = CONCAT(H0,H1,H2, . . . ,HK), and the rows
of the emerging matrix H can be regarded as vertex rep-
resentations that encode multi-scale structural information,
including the initial features of the node. In other words, we
utilize skip connections from each layer to the output layer
which consists of a sequence of fully-connected layers. Note
that we apply the ReLU function to the output of the network
since the number of new cases is a nonnegative integer. We
choose the mean squared error as our loss function as shown
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below:

L =
1

nT

T∑
t=1

∑
v∈V

(
y(t+1)
v − ŷ(t+1)

v

)2
(1)

where y(t+1)
v denotes the reported number of cases for re-

gion v at day t+ 1 and ŷ(t+1)
v denotes the predicted number

of cases. An overview of the MPNN is given in Figure 2.

MPNN+LSTM. In order to take advantage of the tempo-
ral correlation between the target and the confirmed cases in
the past, we build a time-series version of our model using
the different snapshots of the mobility graph. Given a se-
quence of graphs G(1), G(2), . . . , G(T ) that correspond to a
sequence of dates, we utilize an MPNN at each time step, to
obtain a sequence of representations H(1),H(2), . . . ,H(T ).
These representations are then fed into a Long-Short Term
Memory network (LSTM) (Graves and Jaitly 2014) which
can capture the long-range temporal dependencies in time
series. We expect the hidden states of an LSTM to capture
the spreading dynamics based on the mobility information
encoded into the node representations. We use a stack of
two LSTM layers. The new representations of the regions
correspond to the hidden state of the last time step of the
second LSTM layer. These representations are then passed
on to an output layer similar to the MPNN, along with the
initial features for each time step. Note that this model re-
sembles other attempts to spatio-temporal prediction, but in-
stead of convolutional (Yao et al. 2018), it employs message
passing layers.

Figure 3: Overview of the MPNN+LSTM architecture.

MPNN+TL. Note that the different countries were hit by
the pandemic at different times. Indeed, there are cases
where once the epidemic starts developing in one country, it
has already stabilized in another. Furthermore, a new wave
of COVID-19 is very likely to share fundamental character-
istics with the previous ones, as it is the same virus. This
additional information may prove rather important in case
of insufficient training data. In our setting, as discussed in
subsection 4.2, the model starts predicting as early as the
15th day of the dataset. In such a scenario, the model has
access to a few samples to learn from (split into validation
and training sets), while it is used to make predictions for
as far as 14 days ahead. Given the inherent need for data
in neural networks, this setting is rather challenging. More-
over, our intuition is that a model trained in the whole cycle

or an advanced stage of the epidemic can capture patterns
of its different phases, which is missing from a new model
working in a country at the start of its infection.

To incorporate past knowledge from models running in
other countries, we separate our data into tasks and pro-
pose an adaptation of MAML (Finn, Abbeel, and Levine
2017). Lets initially assume that the Meta Train set Mtr =
{D(1), . . . , D(p)}, corresponds to the datasets of p countries
that we can use to obtain a set of parameters θ. The learnt
parameters can then be employed to initialize the model for
the country left out in the Meta Test Mte. In reality, each
dataset D(k), k ∈ {1, . . . , p} is divided into subtasks it-
self. More specifically, each country has different training
sets of increasing size (as the train days increase) as well as
shorter- and longer-term targets (next day, two days ahead
and so on). For each combination of these two, we train a
different model. Hence, the set of tasks for a country k is
D(k) =

{(
Tr

(k)
i,j , T e

(k)
i,j

)
: 14 < i ≤ T, 1 ≤ j ≤ dt

}
where

(
Tr

(k)
i,j , T e

(k)
i,j

)
is a dataset (train and test set) associ-

ated with country k, where the train set consists of the first
i days of the data and the task is to predict the number of
cases in the j-th day ahead.

The set of parameters θ corresponds to the weight matri-
ces and biases of all layers in the MPNN model. As men-
tioned above, in MAML, θ is randomly initialized and un-
dergoes gradient descent steps during the metatrain phase.
The algorithm is shown in Algorithm 1. In each task, we
minimize the loss on the task’s train set towards a task-
specific θt, as shown in Equation (2) and on lines 3-5 of
the algorithm. Then, we use the emerging θt to compute the
gradient with respect to θ in the task’s test set as illustrated
in Equation (3) below and on line 6. This gradient is normal-
ized by the total number of tasks in the set to refrain from
taking too big steps.

θt = θ − α∇θL
(
fθ(Tr

(k)
i,j )
)

(2)

θ = θ − αm∇θL
(
fθt(Te

(k)
i,j )
)

(3)
The standard update includes the gradient of θt and that of θ,
which is in fact the hessian matrix, as shown in Equation (4).

∂LT (fθt(Te
(k)
i,j ))

∂θ
= ∇θtL(fθt(Te

(k)
i,j ))(I−a∇2

θLfθ(Tr
(k)
i,j ))

(4)
We are dropping the term that contains the hessian, as it was
shown to have insignificant contribution in practice (Finn,
Abbeel, and Levine 2017), possibly due to the vanishing gra-
dient. Finally, we train θ on the train set of Mte and test on
its test set (lines 7-10 and 11 respectively).

Note that in the Algorithm 1 ,E is our error function (i. e.,
Equation (5)), L is the loss function defined in Equation (1),
and f is an MPNN.

4 Experiments
In this section, we first describe the datasets that we used for
our experiments. We next give details about the experimental
settings. We last report on the performance of the proposed
models and the baselines.
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Algorithm 1 MPNN+TL
Input: Mtr, Mte, α , αm, n epochs
Output: θ

1: Initialize θ randomly
2: for D ∈Mtr do
3: for (Tr, Te) ∈ D do
4: for Batch b ∈ Tr do
5: θt = θ − α∇θL(fθ(b))

6: θ = θ − αm∇θL(fθt(Te))/|Mtr|
7: for (Tr, Te) ∈Mte do
8: for Epoch e ∈ n epochs do
9: for Batch b ∈ Tr do

10: θ = θ − α∇θL(fθ(b))

11: error+ = E(fθ(Te))

12: return error/|Mte|

COUNTRY TIME REGIONS AVG NEW CASE

ITALY 24/2-12/5 105 25.65
ENGLAND 13/3-12/5 129 16.7
SPAIN 12/3-12/5 35 61
FRANCE 10/3-12/5 81 7.5

Table 1: Summary of the available data for the 3 considered
countries.

4.1 Datasets

Facebook has released several datasets in the scope of Data
For Good program2 to help researchers better understand
the dynamics of the COVID-19 and forecast the spread of
the disease (Maas et al. 2019). We use a dataset that con-
sists of measures of human mobility between administrative
NUTS33 regions. The data is collected directly from mo-
bile phones that have the Facebook application installed and
the Location History setting enabled. The raw data contains
three recordings per day (i. e., midnight, morning, and after-
noon), indicating the number of people moving from one re-
gion to another at that point of the day. We compute a single
value for each day and each pair of regions by aggregating
these three values. We focus on 4 European countries: Italy,
Spain, France, and England. The number of cases in the dif-
ferent regions of the 4 considered countries was collected
from open data listed in the github repository4 along with
the code and the aggregated mobility data. An overview of
the preprocessed data can be found in Table 1. The start date
is the earliest date for which we have both mobility data and
data related to the number of cases available. Some regions
were removed either due to having no COVID-19 cases or
due to being unable to map with the Facebook mobility data.

2https://dataforgood.fb.com/tools/disease-prevention-maps/
3https://en.wikipedia.org/wiki/Category:NUTS 3 statistical

regions of the European Union
4https://github.com/geopanag/pandemic tgnn

4.2 Experimental Setup
In our experiments, we train the models using data from day
1 to day T , and then use the model to predict the number of
cases for each one of the next dt days (i. e., from day T + 1
to day T + dt). We are interested in evaluating the effective-
ness of the model in short-, mid- and long-term predictions.
Therefore, we set dt equal to 14. We expect the short-term
predictions (i. e., small values of dt) to be more accurate than
the long-term predictions (i. e., large values of dt). Note that
we train a different model to predict the number of cases for
days T + i and T + j where i, j > 0 and i 6= j. Therefore,
each model focuses on predicting the number of cases after
a fixed time horizon, ranging from 1 day to 14 days. With
regards to the value of T , it is initially set equal to 14 and is
gradually increased (one day at a time). Therefore, the size
of the training set increases as time progresses. Note that a
different model is trained for each value of T . Furthermore,
for each value of T , to identify the best model, we build a
validation set which contains the samples corresponding to
days T − 1, T − 3, T − 5, T − 7 and T − 9, such that the
training and validation sets have no overlap with the test set.

With regards to the hyperparameters of the MPNN, we
train the models for a maximum of 500 epochs with early
stopping after 50 epochs of patience. Early stopping starts
to occur from the 100th epoch and onward. We set the batch
size to 8. We use the Adam optimizer with a learning rate
of 10−3. We set the number of hidden units of the neigh-
borhood aggregation layers to 64. Batch normalization and
dropout are applied to the output of every neighborhood ag-
gregation layer, with a dropout ratio of 0.5. We store the
model that achieved the highest validation accuracy in the
disk and then retrieve it to make predictions about the test
samples. For the MPNN+LSTM model, the dimensionality
of the hidden states of the LSTMs is set equal to 64. All the
models are implemented with PyTorch (Paszke et al. 2019).
We evaluate the performance of a model by comparing the
predicted total number of cases in each region versus the
corresponding ground truth, throughout the test set:

error =
1

ndt

T+dt∑
t=T+1

∑
v∈V
|ŷ(t)v − y(t)v | (5)

4.3 Baselines
We compare the proposed models against the following
baselines and benchmark methods, which have been applied
to the problem of COVID-19 forecasting:

• AVG: The average number of cases for the specific region
up to the time of the test day.

• AVG WINDOW: The average number of cases in the past
d days for the specific region where d is the size of the
window.

• LAST DAY: The number of cases of the previous day is
the prediction for the next days.

• LSTM (Chimmula and Zhang 2020): A two-layer LSTM
that takes as input the sequence of new cases in a region
for the previous week.
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Model Up to next 3 Days Up to next 7 Days Up to next 14 Days
England France Italy Spain England France Italy Spain England France Italy Spain

AVG 9.75 8.50 21.38 45.10 9.99 8.55 22.23 45.87 10.09 8.55 23.09 47.63
LAST DAY 7.11 7.47 17.40 33.58 7.62 7.37 18.49 37.06 8.66 8.03 20.69 43.63
AVG WINDOW 6.52 6.04 15.17 32.19 7.34 6.40 16.81 36.06 8.54 7.24 19.45 42.79
LSTM 9.11 8.08 22.94 51.44 8.97 8.13 23.17 49.89 9.10 7.91 23.12 47.26
ARIMA 13.77 10.72 35.28 40.49 14.55 10.53 37.23 41.64 15.65 10.91 39.65 46.22
PROPHET 10.58 10.34 24.86 54.76 12.25 11.56 27.39 62.16 16.24 14.61 33.07 79.42
TL BASE 9.65 7.67 19.12 42.25 12.30 9.21 23.44 52.29 13.48 12.27 24.89 59.68
MPNN 6.36 6.16 14.39 35.83 6.86 5.99 15.47 38.51 8.13 6.93 17.88 44.25
MPNN+LSTM 6.41 6.39 15.56 33.35 6.67 7.21 16.41 34.47 7.02 7.36 17.25 35.31
MPNN+TL 6.05 5.83 14.08 29.61 6.33 5.90 14.61 31.55 6.84 6.13 16.69 34.65

Table 2: Average error for dt = 3, 7 and 14, in number of cases per region.
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Figure 4: Average error in number of cases per region for
each target shift. PROPHET and ARIMA are omitted for
illustration purposes.

• ARIMA (Kufel 2020): A simple autoregressive moving
average model where the input is the whole time-series of
the region up to before the testing day.

• PROPHET (Mahmud 2020): A forecasting model for var-
ious types of time series5.The input is similar to ARIMA.

• TL BASE: An MPNN that is trained on all data from the
three countries and the train set of the fourth (concate-
nated), and tested on the test set of the fourth. This serves
as a baseline to quantify the usefulness of MPNN+TL.

We should note here that we cannot utilize models that
work with recoveries and deaths such as SEIR because we
only have the confirmed cases. That said, a simple approach
is to run SI at every T with a β taken from the COVID-
19 literature, along with the number of infected people at
T and the population. In the preliminary experiments, how-
ever, this provided errors in a different scale than the ones
mentioned here, similar to Gao et al. (2020), which is why
we have not experimented further.

5https://github.com/facebook/prophet

4.4 Results and Discussion

The average error per region for each one of the next 14
days is illustrated in Figure 4. We observe that the proposed
models yield lower average errors compared to the base-
lines, MPNN+TL having the best performance. In terms of
short term predictions its performance is close to some base-
lines, but the difference increases for longer scopes. Even
simple baselines can be competitive at predicting the next
day’s number of cases since proximal samples for the same
region from the same phases of the pandemic tend to have
a similar number of cases. However, a prediction that goes
deeper in time requires the identification of more persistent
patterns. In the case of our model, as mentioned above, we
aim to capture unregistered cases moving from one region to
the other or spreading the disease in their new region. These
cases would inevitably take a few days to appear, due to the
delay of symptoms associated with COVID-19. This is why
MPNN performs well throughout the 14-days window. The
results also demonstrate the benefit of transfer learning tech-
niques since MPNN+TL outperforms MPNN and its base-
line TL BASE in all cases. We expect MPNN to perform
similar towards the end of the dataset, when the training of
both models has become similar due to the number of epochs
and. The main difference occurs when T is small, where the
training samples are scarce and MPNN is unable to capture
the underlying dynamics. One way to see this is again the ac-
curacy of MPNN+TL in the long term predictions. Due to
the size of the prediction window, long term tasks have di-
minished train set, meaning if the task is to predict t+14 and
the set ends at day 60, t+14 training will stop at day 46 while
the t+1 will stop at 59. Thus MPNN performs similarly at
the short-term predictions but fails compared to MPNN+TL
in the long term.

Note that for clarity of illustration, we chose not to visual-
ize the performance of PROPHET and ARIMA in Figure 4
as their error was distorting the plot. However, we present in
Table 2 the average error for the predictions where dt takes
three values: 3, 7 and 14. Overall, it is clear that the time
series methods (i. e., LSTM, PROPHET, and ARIMA) and
the temporal variant of our method MPNN+LSTM yield
quite inaccurate predictions. Apart from the inherent diffi-
culty of learning with time-series data, which we analyze
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further below, this might also happen because of the nature
of the epidemic curve. Specifically, sequential models, that
are trained with values that tend to increase, are impossi-
ble to predict decreasing or stable values. For instance, in
our dataset, once the models have enough samples to learn
from, there is a transition in the phase of the epidemic due
to lockdown measures. The same applies when the epidemic
starts to recede at the start of May.

Our error function treats all regions equivalently, inde-
pendent of the region-specific population and the number
of cases, i. e., a region with 10 cases per day should not be
treated the same as a region with 1000. We need a measure to
take into account the region-specific characteristics as well
as the time. Towards this end, we computed the deviation be-
tween the average predicted and the actual average number
of cases over the next 5 days (not to be confused with the av-
erage error for the next x days in Table 2). The relative error
of each region is defined below and is illustrated in Figure 5.

r =
1

n (T − 5)

T−5∑
t=1

∑
v∈V

∣∣∣∑5
i=0 ŷ

(t+i)
v −

∑5
i=0 y

(t+i)
v

∣∣∣∑5
i=0 y

(t+i)
v

(6)
One can see that the regions with high relative error are the
ones with the fewest cases. On the other hand, the regions
with the highest number of cases tend to have much smaller
relative error, less than 20% to be exact, with the exception
of one region in Spain. This indicates that our model in-
deed produces accurate predictions that could be useful in
resource allocation and policy-making during the pandemic.

Figure 5 also allows us to evaluate the method more ob-
jectively. From a machine learning perspective, one may ar-
gue that even though the MPNN+TL outperforms the base-
lines, their predictions are not very accurate in terms of av-
erage error. This is partially explained due to the inherent
problems of the dataset mentioned at subsection 4.1 as well
as the assumption that case reporting is standard throughout
the regions. We expect a large improvement in performance
in case a standard methodology for case reporting is adopted
and the number of tests per region remains constant and pro-
portional to the population. Having said that, utilizing such
a model in practice is more than feasible as the difference in
scale is more useful at the regional level. In other words, a
region predicted to have 10 new cases in the next 5 days will
generally have similar needs (e. g., hospital capacity needs)
with a region with 5 or 15 real cases (50% error). On the
other hand, predicting 500 instead of 1000 cases, although
identical in terms of relative error, can prove disastrous. This
is not the case for our model, since the regions with large
relative error tend to have a small number of cases, e. g.,
the model may predict 20 cases instead of 10 (100% error),
which is arguably not significant.

5 Conclusion
In this paper, we presented a model for COVID-19 forecast-
ing that could provide useful insights to policymakers.We
use mobility data as a graph where nodes correspond to re-
gions and edge weights to mass mobility between their end-
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Figure 5: Plot of the relative test error and average number
of cases per day for each available region.

points. Then, we derive variants of the family of MPNNs
to generate representations for the regions based on their
interactions and history. Furthermore, since different coun-
tries might be in different phases of the epidemic, we pro-
pose to transfer the disease spreading model from one coun-
try to another where limited data is available. Experiments
conducted on data from 4 European countries show that
our architectures outperform traditional and more recent ap-
proaches in predicting the number of daily new COVID-19
cases.
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