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Abstract

The graph Laplacian regularization term is usually used in
semi-supervised representation learning to provide graph struc-
ture information for a model f(X). However, with the recent
popularity of graph neural networks (GNNs), directly encod-
ing graph structure A into a model, i.e., f(A,X), has become
the more common approach. While we show that graph Lapla-
cian regularization brings little-to-no benefit to existing GNNs,
and propose a simple but non-trivial variant of graph Laplacian
regularization, called Propagation-regularization (P-reg), to
boost the performance of existing GNN models. We provide
formal analyses to show that P-reg not only infuses extra infor-
mation (that is not captured by the traditional graph Laplacian
regularization) into GNNs, but also has the capacity equiv-
alent to an infinite-depth graph convolutional network. We
demonstrate that P-reg can effectively boost the performance
of existing GNN models on both node-level and graph-level
tasks across many different datasets.

Introduction
Semi-supervised node classification is one of the most popu-
lar and important problems in graph learning. Many effective
methods (Zhu, Ghahramani, and Lafferty 2003; Zhou et al.
2003; Belkin, Niyogi, and Sindhwani 2006; Ando and Zhang
2007) have been proposed for node classification by adding
a regularization term, e.g., Laplacian regularization, to a fea-
ture mapping model f(X) : RN×F → RN×C , where N is
the number of nodes, F is the dimensionality of a node fea-
ture, C is the number of predicted classes, andX ∈ RN×F is
the node feature matrix. One known drawback of these meth-
ods is that the model f itself only models the features of each
node in a graph and does not consider the relation among the
nodes. They rely on the regularization term to capture graph
structure information based on the assumption that neighbor-
ing nodes are likely to share the same class label. However,
this assumption does not hold in many real world graphs as
relations between nodes in these graphs could be complicated,
as pointed out in (Kipf and Welling 2017). This motivates
the development of early graph neural network (GNN) mod-
els such as graph convolutional network (GCN) (Kipf and
Welling 2017).
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Many GNNs (Kipf and Welling 2017; Veličković et al.
2018; Wu et al. 2019; Hamilton, Ying, and Leskovec 2017;
Pei et al. 2020; Li et al. 2015) have been proposed, which en-
code graph structure information directly into their model as
f(A,X) : (RN×N ,RN×F ) → RN×C , where A ∈ RN×N
is the adjacency matrix of a graph. Then, they simply train
the model by minimizing the supervised classification loss,
without using graph regularization. However, in this work we
ask the question: Can graph regularization also boost the per-
formance of existing GNN models as it does for traditional
node classification models?

We give an affirmative answer to this question. We show
that existing GNNs already capture graph structure in-
formation that traditional graph Laplacian regularization
can offer. Thus, we propose a new graph regularization,
Propagation-regularization (P-reg), which is a variation of
graph Laplacian-based regularization that provides new su-
pervision signals to nodes in a graph. In addition, we prove
that P-reg possesses the equivalent power as an infinite-depth
GCN, which means that P-reg enables each node to capture
information from nodes farther away (as a deep GCN does,
but more flexible to avoid over-smoothing and much less
costly to compute). We validate by experiments the effective-
ness of P-reg as a general tool for boosting the performance
of existing GNN models. We believe our work could inspire
a new direction for GNN framework designs.

Propagation-Regularization
The notations used in this paper and their description are
also given in Appendix A1. We use a 2-layer GCN model
f1 as an example of GNN for convenience of presenta-
tion. A GCN model f1 can be formulated as f1 (A,X) =

Â(σ(ÂXW0))W1, where W0 ∈ RF×H and W1 ∈ RH×C
are linear mapping matrices, and H is the size of hidden
units. Â = D−1A is the normalized adjacency matrix,
where D ∈ RN×N is the diagonal degree matrix with
Dii =

∑N
j=1Aij and Dij = 0 if i 6= j. σ is the activa-

tion function. f1 takes the graph structure and node features
as input, then outputs Z = f1(A,X) ∈ RN×C . Denote
Pij =

exp(Zij)∑C
k=1 exp(Zik)

for i = 1, . . . , N and j = 1, . . . , C as

1The appendices of this paper can be found at https://arxiv.org/
abs/2009.02027
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Figure 1: An overview of Propagation-regularization

the softmax of the output logits. Here, P ∈ RN×C is the
predicted class posterior probability for all nodes. By fur-
ther propagating the output Z of f1, we obtain Z ′ = ÂZ ∈
RN×C . The corresponding softmax probability of Z ′ is given
as Qij =

exp(Z′
ij)∑C

k=1 exp(Z′
ik)

for i = 1, . . . , N and j = 1, . . . , C .
The Propagation-regularization (P-reg) is defined as fol-

lows:
LP -reg =

1

N
φ
(
Z, ÂZ

)
, (1)

where ÂZ is the further propagated output of f1 and φ is
a function that measures the difference between Z and ÂZ.
We may adopt typical measures such as Square Error, Cross
Entropy, Kullback–Leibler Divergence, etc., for φ, and we
list the corresponding function below, where (·)>i denotes the
i-th row vector of the matrix (·).

φ Squared Error Cross Entropy KL Divergence

1
2

N∑
i=1

∥∥∥(ÂZ)>i − (Z)
>
i

∥∥∥2
2
−

N∑
i=1

C∑
j=1

Pij logQij
N∑
i=1

C∑
j=1

Pij log
Pij

Qij

Then the GNN model f1 can be trained through the com-
position loss:
L = Lcls + µLP -reg

= − 1

M

∑
i∈Strain

∑
j=1,...,C

Yij log (Pij) + µ
1

N
φ(Z, ÂZ), (2)

where Strain is the set of training nodes and M = |Strain|, N
is the number of all nodes, Yij is the ground-truth one-hot
label, i.e., Yij = 1 if the label of node vi is j and Yij = 0
otherwise. The regularization factor µ ≥ 0 is used to adjust
the influence ratio of the two loss terms Lcls and LP -reg .

The computation overhead incurred by Eq. (1) isO(|E|C+
NC), where |E| is the number of edges in the graph. Com-
puting ÂZ has time complexity O(|E|C) by sparse-dense
matrix multiplication or using the message passing frame-
work (Gilmer et al. 2017). Evaluating φ(Z, ÂZ) has com-
plexity O(NC). An overview of P-reg is shown in Figure 1.
We give the annealing and thresholding version of P-reg in
Appendix C.

Understanding P-reg through Laplacian
Regularization and Infinite-Depth GCN

We first examine how P-reg is related to graph Laplacian reg-
ularization and infinite-depth GCN, which helps us better un-

derstand the design of P-reg and its connection to GNNs. The
proofs of all lemmas and theorems are given in Appendix B.

Equivalence of Squared-Error P-Reg to Squared
Laplacian Regularization
Consider using squared error as φ in P-reg, i.e., LP -SE =
1
N φSE(Z,ÂZ) = 1

2N

∑N
i=1 ‖(ÂZ)>i − (Z)

>
i ‖22. As stated

by Smola and Kondor (2003), the graph Laplacian 〈Z,∆Z〉
can serve as a tool to design regularization operators, where
∆=D−A is the Laplacian matrix and 〈·, ·〉 means the inner
product of two matrices. A class of regularization functions
on a graph can be defined as:

〈Z,RZ〉 :=
〈
Z, r

(
∆̃
)
Z
〉
,

where ∆̃ = I −D−1A is the normalized Laplacian matrix.
r(∆̃) is applying the scalar valued function r(λ) to eigenval-
ues of ∆̃ as r(∆̃) :=

∑N
i=1 r (λi)uiu

>
i , where λi and ui are

i-th pair of eigenvalue and eigenvector of ∆̃.

Theorem 1. The squared-error P-reg is equivalent to the
regularization with matrix R = ∆̃>∆̃.

Theorem 1 shows that the squared-error P-reg falls into the
traditional regularization theory scope, such that we can enjoy
its nice properties, e.g., constructing a Reproducing Kernel
Hilbert Space H by dot product 〈f, f〉H =

〈
f, ∆̃>∆̃f

〉
,

where H has kernel K =
(

∆̃>∆̃
)−1

. We refer readers
to (Smola and Kondor 2003) for other interesting proper-
ties of spectral graph regularization and (Chung 1997) for
properties of Laplacian matrix.

Equivalence of Minimizing P-Reg to Infinite-Depth
GCN
We first analyze the behavior of infinite-depth GCN. Take
the output Z ∈ RN×C+ of a GNN model as the input of
an infinite-depth GCN. Let G (A,Z) be a graph with ad-
jacency matrix A and node feature matrix Z. A typical
infinite-depth GCN applied to a graph G (A,Z) can be repre-
sented as

(
Âσ
(
· · · Âσ

(
Âσ
(
ÂZW0

)
W1

)
W2 · · ·

)
W∞

)
.

We use ReLU as the σ(·) function and neglect all lin-
ear mappings, i.e., Wi = I ∀i ∈ N. Since Z ∈
RN×C+ , and ReLU(·) = max(0, ·), the infinite-depth GCN
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can be simplified to
(
Â∞Z

)
. This simplification shares sim-

ilarities with SGC (Wu et al. 2019).
Lemma 1. Applying graph convolution infinitely to a graph
G (A,Z) with self-loops (i.e., A := A + I) produces the
same output vector for each node, i.e., define Z̃ = Â∞Z,
then z̃1 = . . . = z̃N , where z̃i is the i-th row vector of Z̃.

Lemma 1 shows that an infinite-depth GCN makes each
node capture and represent the information of the whole
graph.
We next establish the equivalence between minimizing P-
reg and an infinite-depth GCN.
Lemma 2. Minimizing the squared-error P-reg of node fea-
ture matrix Z produces the same output vector for each node,

i.e., Z̃ ∈ arg minZ

∥∥∥ÂZ − Z∥∥∥2
F

, where z̃1 = · · ·= z̃N .

From Lemmas 1 and 2, the behaviors of applying infinite
graph convolution and minimizing the squared-error P-reg
are identical. Next, we show that iteratively minimizing P-reg
of G(A,Z) has the same effect as recursively applying graph
convolution to G(A,Z) step by step. We can rewrite ‖ÂZ −
Z‖2F = ‖

(
D−1A− I

)
Z‖2F =

∑N
i=1 ‖(

1
di

∑
j∈N (vi)

zj)−
zi‖22, where di is the degree of vi and N (vi) is the set of
neighbors of vi. If we minimize

∑N
i=1 ‖(

1
di

∑
j∈N (vi)

zj)−
zi‖22 in an iterative manner, i.e., z(k+1)

i = 1
di

∑
j∈N (vi)

z
(k)
j

where k ∈ N is the iteration step, then it is exactly the same
as applying a graph convolution operation to Z, i.e., ÂZ,
which can be rewritten into a node-centric representation:
z
(k+1)
i = 1

di

∑
j∈N (vi)

z
(k)
j . Thus, when k → +∞, the two

formulas converge into the same point. The above analysis
motivates us to establish the equivalence between minimizing
different versions of P-reg and an infinite-depth GCN, giving
the following theorem:
Theorem 2. When neglecting all linear mappings in GCN,
i.e., Wi = I ∀i ∈ N, minimizing P-reg (including the
three versions of φ using Squared Error, Cross Entropy
and KL Divergence defined in Section 2) is equivalent to
applying graph convolution infinitely to a graph G (A,Z),
i.e., define Z̃ = Â∞Z, then Z̃ is the optimal solution to
arg minZ φ(Z, ÂZ).

In Theorem 2, the optimal solution to minimizing P-reg
corresponds to the case when µ→ +∞ in Eq.(2).

Connections to Other Existing Work
P-reg is conceptually related to Prediction/Label Propaga-
tion (Zhu, Ghahramani, and Lafferty 2003; Zhou et al. 2003;
Wang and Zhang 2007; Karasuyama and Mamitsuka 2013;
Liu et al. 2019; Li et al. 2019b; Wang and Leskovec 2020),
Training with Soft Targets such as distillation-based (Hin-
ton, Vinyals, and Dean 2015; Zhang et al. 2019) or entropy-
based (Miller et al. 1996; Jaynes 1957; Szegedy et al. 2016;
Pereyra et al. 2017; Müller, Kornblith, and Hinton 2019), and
other Graph Regularization (Civin, Dunford, and Schwartz
1960; Ding, Tang, and Zhang 2018; Feng et al. 2019; Deng,
Dong, and Zhu 2019; Verma et al. 2019; Stretcu et al. 2019)

using various techniques such as Laplacian operator, adver-
sarial training, generative adversarial networks, or co-training.
We discuss these related works in details in Appendix D.

Why P-Reg Can Improve Existing GNNs
We next answer why P-reg can boost the performance of exist-
ing GNN models. From the graph regularization perspective,
P-reg provides extra information for GNNs to improve their
performance. From the infinite-depth GCN perspective, using
P-reg enhances the current shallow-layered GNNs with the
power of a deeper GCN as P-reg can simulate a GCN of any
layers (even a fractional layer) at low cost.

Benefits of P-Reg from the Graph Regularization
Perspective
Graph Regularization Provides Extra Supervision Infor-
mation
Usually, the more training nodes are provided, the more
knowledge a model can learn and thus the higher accuracy
the model can achieve. This can be verified in Figure 2a:
as we keep adding nodes randomly to the training set, we
generally obtain higher accuracy for the GCN/GAT models.

However, in real-world graphs, the training nodes are usu-
ally only a small fraction of all nodes. Graph regularization,
as an unsupervised term applied on a model’s output in train-
ing, can provide extra supervision information for the model
to learn a better representation for the nodes in a graph. Espe-
cially in semi-supervised learning, regularization can bridge
the gap between labeled data and unlabeled data, making
the supervised signal spread over the whole dataset. The ef-
fectiveness of regularization in semi-supervised learning has
been shown in (Zhu, Ghahramani, and Lafferty 2003; Zhou
et al. 2003; Belkin, Niyogi, and Sindhwani 2006; Ando and
Zhang 2007).

Limitations of Graph Laplacian Regularization
Unfortunately, graph Laplacian regularization can hardly
provide extra information that existing GNNs cannot
capture. The original graph convolution operator gθ is ap-
proximated by the truncated Chebyshev polynomials as
gθ ∗ Z =

∑K
k=0 θkTk(∆̃)Z (Hammond, Vandergheynst,

and Gribonval 2011) in GNNs, where K means to keep
K-th order of the Chebyshev polynomials, and θk is the
parameters of gθ as well as the Chebyshev coefficients.
Tk(x) = 2xTk−1(x) − Tk−2(x) is the Chebyshev polyno-
mials, with T0(x) = 1 and T1(x) = x. K is equal to 1 for
today’s spatial GNNs such as GCN (Kipf and Welling 2017),
GAT (Veličković et al. 2018), GraphSAGE (Hamilton, Ying,
and Leskovec 2017) and so on. Thus, the 1-order Laplacian
information is captured by popular GNNs, making the Lapla-
cian regularization useless to them. This is also verified in
Figure 2c, which shows that the Laplacian regularization does
not improve the test accuracy of GCN and GAT.

How P-Reg Addresses the Limitations of Graph Lapla-
cian Regularization
P-reg provides new supervision information for GNNs.
Although P-reg shares similarities with Laplacian regular-
ization, one key difference is that the Laplacian regulariza-
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Figure 2: The effects of increasing (a) the number of training nodes, (b) the number of nodes applied with P-reg, (c) regularization
factor on the accuracy of GCN and GAT, on the CORA dataset
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Figure 3: The t-SNE visualization of GCN outputs on the CiteSeer dataset (best viewed in color)

tion Llap =
∑

(i,j)∈E
∥∥Z>i − Z>j ∥∥22 is edge-centric, while

P-reg LP -reg = φ(Z, ÂZ) =
∑N
i=1 φ(Z>i , (ÂZ)>i ) is node-

centric. The node-centric P-reg can be regarded as using the
aggregated predictions of neighbors as the supervision tar-
get for each node. Based on the model’s prediction vectors
Z ∈ RN×C , the average of the neighbors’ predictions of
node vi, i.e., (ÂZ)>i =

∑
k∈N (vi)

zk, serves as the soft su-
pervision targets of the model’s output zi. This is similar to
taking the voting result of each node’s neighbors to super-
vise the nodes. Thus, P-reg provides additional categorical
information for the nodes, which cannot be obtained from
Laplacian regularization as it simply pulls the representation
of edge-connected nodes closer.
Empirical verification. The above analysis can be verified
from the node classification accuracy in Figure 2b. As P-
reg is node-centric, we can add a mask to a node vi so
that unmasking vi means to apply φ to vi. Define the un-
mask ratio as α = |Sunmask|

N , where Sunmask is the set of
nodes with φ applied. The masked P-reg can be defined
as LP -reg-m = 1

|Sunmask|
∑
i∈Sunmask

φ(Z>i , (AZ)>i ). If the un-
mask ratio α is 0, the model is basically vanilla GCN/GAT.
As the unmask ratio increases, P-reg is applied on more nodes
and Figure 2b shows that the accuracy generally increases.
After sufficient nodes are affected by P-reg, the accuracy
tends to be stabilized. The same result is also observed on all
the datasets in our experiments. The result thus verifies that

we can consider ÂZ as the supervision signal of Z, and the
more supervision we have, the higher is the accuracy.

In Figure 2c, we show that P-reg improves the test accuracy
of both GCN and GAT, while applying Laplacian regulariza-
tion even harms their performance. We also plot the t-SNE
visualization in Figure 3. Compared with pure GCN and
GCN with Laplacian regularization, Figure 3c shows that
by applying P-reg, the output vectors of GCN are more con-
densed within each class and the classes are also more clearly
separated from each other.

Benefits of P-Reg from the Deep GCN Perspective

Deeper GCN Provides Information from Farther Nodes
Xu et al. (2018) proved that for aK-layer GCN, the influence
distribution2 Ix for any node x in a graph G is equivalent to
the k-step random walk distribution on G starting at node
x. Thus, the more layers a GCN has, the more information
a node x can obtain from nodes farther away from x in the
graph G. Some works such as (Li et al. 2019a; Rong et al.
2020; Huang et al. 2020; Zhao and Akoglu 2020) provide
methods to make GNN models deep.

2The influence distribution Ix is defined as the normalized influ-
ence score I(x, y), where the influence score I(x, y) is the sum of[
δh

(k)
x /δh(0)

y

]
, where h(k)

x is the k-th layer activation of node x.
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Figure 4: Empirical observation of connections between P-reg and deep GCNs (best viewed in color)

Limitations of Deep GCNs
More layers is not always better. The more layers a GCN
has, the representation vectors of nodes produced become
more prone to be similar. As shown in Lemma 1, an infinite-
depth GCN even gives the same output vectors for all nodes.
This is known as the over-smoothing problem of GNNs and
there are studies (NT and Maehara 2019; Oono and Suzuki
2020) focusing on this issue, which claim that a GCN can
be considered as a low-passing filter and exponentially loses
its expressive power as the number of layers increases. Thus,
more layers may make the representation vectors of nodes
in-discriminable and thus can be detrimental to the task of
node classification.
Computational issues. First, generally for all deep neural
networks, gradient vanishing/exploding issues will appear
when the neural networks go deeper. Although it could be
mitigated by using residual skip connections, the training of
deeper neural networks will inevitably become both harder
and slower. Second, as GNNs grow deeper, the size of a
node’s neighborhood expands exponentially (Huang et al.
2018), making the computational cost for both gradient
back-propagation training and feed-forwarding inference ex-
tremely high.

How P-Reg Addresses the Limitations of Deep GCNs
P-reg can effectively balance information capturing and over-
smoothing at low cost. Although an infinite-depth model
outputting the same vector for each node is not desired, only
being able to choose the number of layers L from a discrete
set N+ is also not ideal. Instead, a balance between the size of
the receptive field (the farthest nodes that a node can obtain
information from) and the preservation of discriminating in-
formation is critical for generating useful node representation.
To this end, the regularization factor µ ∈ R in Eq. (2) plays
a vital role in enforcing a flexible strength of regularization
on the GNN. When µ = 0, the GNN model is basically the
vanilla model without P-reg. On the contrary, the model be-
comes an infinite-depth GCN when µ→ +∞. Consequently,
using P-reg with a continuous µ can be regarded as using a
GCN with a continuous rather than discrete number of layers.
Adjusting µ empowers a GNN model to balance between
information capturing and over-smoothing.

P-reg provides a controllable receptive field for a GNN
model and this is achieved at only a computation cost of

O(NC + |E|C), which is basically equivalent to the over-
head of just adding one more layer of GCN3. We also do
not need to worry about gradient vanishing/exploding and
neighborhood size explosion. P-reg also has zero overhead
for GNN inference.
Empirical verification. Define ω = 1

N

∑C
k=1

∑
i∈Sk
‖zi −

ck‖2 as the average intra-class Euclidean distance for a
trained GNN’s output Z, where zi is the learned represen-
tation of node vi (the i-th row of Z), Sk denotes all nodes
of class k in the graph, and ck = 1

|Sk|
∑
i∈Sk

zi. We trained
GCNs with 2, 3 and 4 layers and GCNs+P-reg with different
µ. The results on the CORA graph are reported in Figure 4,
where all y-axis values are the average values of 10 random
trials. Similar patterns are also observed on other datasets in
our experiments.

Figure 4a shows that as a GCN has more layers, ω be-
comes smaller (as indicated by the 3 dashed horizontal lines).
Also, as µ increases, ω for GCN+P-reg becomes smaller. The
result is consistent with our analysis that a larger µ corre-
sponds to a deeper GCN. Figure 4b further shows that as µ
increases, the test accuracy of GCN+P-reg first improves and
then becomes worse. The best accuracy is achieved when
µ = 0.7. By checking Figure 4a, µ = 0.7 corresponds to
a point lying between the lines of the 2-layer and 3-layer
GCNs. This implies that the best accuracy could be achieved
with an l-layer GCN, where 2 < l < 3. While a real l-layer
GCN does not exist, applying P-reg to GCN produces the
equivalent result as from an l-layer GCN. Finally, Figure 4c
shows the relation between ω and the accuracy. The high
accuracy region corresponds to the flat area of ω. This could
be explained as the flat area of ω achieves a good balance
between information capturing and over-smoothing.

Experimental Results
We evaluated P-reg on node classification, graph classifi-
cation and graph regression tasks. We report the results of
P-reg here using Cross Entropy as φ if not specified, and
the results of different choices of the φ function are reported
in Appendix F due to the limited space. In addition to the

3One layer of GCN has a computation cost of O(|E|C). Since
2|E| ≥ N holds for all undirected connected graphs, we have
O(NC + |E|C) = O(3 |E|C) = O(|E|C).
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CORA CiteSeer PubMed CS Physics Computers Photo

GCN

Vanilla 79.47±0.89 69.45±0.99 76.26±1.30 91.48±0.42 93.66±0.41 80.73±1.52 89.24±0.76

Label Smoothing 79.70±1.23 70.08±1.48 76.83±1.20 91.65±0.49 93.67±0.41 81.31±1.46 90.03±0.81
Confidence Penalty 79.70±1.08 69.69±1.22 76.57±0.97 91.55±0.45 93.67±0.41 80.70±1.50 89.26±0.76
Laplacian Regularizer 79.41±0.65 69.46±1.03 76.29±1.13 91.51±0.42 93.65±0.40 81.20±1.69 89.52±0.57

P-reg 82.83±1.16 71.63±2.17 77.37±1.50 92.58±0.32 94.41±0.74 81.66±1.42 91.24±0.75

GAT

Vanilla 79.47±1.77 69.28±1.56 75.61±1.56 91.15±0.36 93.08±0.55 81.00±2.02 89.55±1.20

Label Smoothing 80.30±1.71 69.42±1.41 76.53±1.28 91.09±0.34 93.25±0.51 81.92±1.98 90.55±0.86
Confidence Penalty 79.89±1.73 69.87±1.35 76.44±1.53 90.91±0.36 93.13±0.53 78.86±2.07 88.58±1.96
Laplacian Regularizer 80.23±1.90 69.50±1.42 76.80±1.57 90.86±0.39 93.09±0.52 82.38±2.00 90.58±1.15

P-reg 82.97±1.19 70.00±1.89 76.39±1.46 91.92±0.20 94.28±0.29 83.68±2.24 91.31±1.06

MLP

Vanilla 57.47±2.46 56.96±2.10 68.36±1.35 86.87±1.01 89.43±0.67 62.61±1.81 76.26±1.40

Label Smoothing 59.00±1.54 57.98±1.76 68.75±1.26 87.90±0.57 89.54±0.61 62.55±2.21 76.12±1.11
Confidence Penalty 57.20±2.59 56.89±2.15 68.16±1.36 86.97±1.04 89.54±0.63 62.75±2.15 76.19±1.34
Laplacian Regularizer 60.30±2.47 58.62±2.40 68.67±1.39 86.96±0.75 89.50±0.48 62.60±1.99 76.23±1.09

P-reg 64.41±4.56 61.09±2.13 70.09±1.75 90.87±1.90 91.57±0.69 68.93±3.28 79.71±3.72

Table 1: Accuracy improvements brought by P-reg and other techniques using random splits

CORA CiteSeer PubMed

GCN 81.67±0.60 71.57±0.46 79.17±0.37
GAT 83.20±0.72 71.29±0.84 77.99±0.47
APPNP 83.12±0.44 72.00±0.48 80.10±0.26
GMNN 83.18±0.85 72.77±1.43 81.63±0.36
Graph U-Nets 81.31±1.47 67.74±1.48 77.76±0.84
GraphAT 82.46±0.60 73.49±0.38 79.10±0.20
BVAT 83.37±1.01 73.83±0.54 77.97±0.84
GraphMix 83.54±0.72 73.81±0.85 80.76±0.84
GAM 82.28±0.48 72.74±0.62 79.60±0.63
DeepAPPNP 83.78±0.33 71.37±0.66 79.73±0.22

GCN+P-reg 83.38±0.86 74.83±0.17 80.11±0.45
GAT+P-reg 83.89±0.31 72.86±0.65 78.39±0.27

Table 2: Comparison of P-reg with the state-of-the-art meth-
ods using the standard split

node classification task for both random splits of 7 graph
datasets (Yang, Cohen, and Salakhutdinov 2016; McAuley
et al. 2015; Shchur et al. 2019) and the standard split of 3
graph datasets reported in Table 1 and 2, we also evaluated P-
reg on graph-level tasks on the OGB dataset (Hu et al. 2020)
in Table 3. Our implementation is based on PyTorch (Paszke
et al. 2019) and we used the Adam (Kingma and Ba 2014)
optimizer with learning rate equal to 0.01 to train all the mod-
els. Additional details about the experiment setup are given
in Appendix E.

Improvements on Node Classification Accuracy
We evaluated the node classification accuracy for 3 models on
7 popular datasets using random splits. The train/validation-
/test split of all the 7 datasets are 20 nodes/30 nodes/all the

remaining nodes per class, as recommended by Shchur et al.
(2019). We conducted each experiment on 5 random splits
and 5 different trials for each random split. The mean value
and standard deviation are reported in Table 1 based on the
5× 5 experiments for each cell. The regularization factor µ
is determined by grid search using the validation accuracy.
The search space for µ is 20 values evenly chosen from [0, 1].
The µ is the same for each cell (model × dataset) in Table 1.

We applied P-reg on GCN, GAT and MLP, respectively.
GCN is a typical convolution-based GNN, while GAT is atten-
tion based. Thus, they are representative of a broad range of
GNNs. MLP is multi-layer perception without modeling the
graph structure internally. In addition, we also applied label
smoothing, confidence penalty, and Laplacian regularization
to the models, respectively, in order to give a comparative
analysis on the effectiveness of P-reg. Label smoothing and
confidence penalty are two general techniques used to im-
prove the generalization capability of a model. Label smooth-
ing (Szegedy et al. 2016; Müller, Kornblith, and Hinton 2019)
has been adopted in many state-of-the-art deep learning mod-
els such as (Huang et al. 2019; Real et al. 2019; Vaswani
et al. 2017; Zoph et al. 2018) in computer vision and natu-
ral language processing. It softens the one-hot hard targets
yc = 1, yi = 0 ∀i 6= c into yLSi = (1− α) yi + α/C, where
c is the correct label and C is the number of classes. Label
smoothing Confidence penalty (Pereyra et al. 2017) adds the
negative entropy of the network outputs to the classification
loss as a regularizer, LCP = Lcls + β

∑
i pi log pi, where pi

is the predicted class probability of the i-th sample.
Table 1 shows that P-reg significantly improves the ac-

curacy of both GCN and GAT, as well as MLP. General
techniques such as label smoothing and confidence penalty
also show their capability to improve the accuracy on most
datasets but the improvements are relatively small compared
with the improvements brought by P-reg. The improvements
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moltox21 molhiv molbbbbp molesol molfreesolv
(ROC-AUC)↑ (ROC-AUC)↑ (ROC-AUC)↑ (RMSE)↓ (RMSE)↓

GCN 74.75±0.55 76.08±1.41 67.99±1.18 1.124±0.034 2.564±0.148
GCN+P-reg 75.86±0.75 76.03±1.25 69.37±1.03 1.141±0.038 2.406±0.147
GCN+Virtual 77.42±0.67 75.67±1.54 66.92±0.85 1.020±0.056 2.164±0.129
GCN+Virtual+P-reg 77.58±0.39 75.81±1.61 69.67±1.62 0.946±0.041 2.082±0.119
GIN 74.89±0.66 75.47±1.22 68.03±2.72 1.150±0.057 2.971±0.263
GIN+P-reg 74.90±0.59 76.77±1.41 67.69±2.43 1.137±0.028 2.529±0.216
GIN+Virtual 77.04±0.83 76.33±1.52 68.37±2.08 0.991±0.052 2.172±0.192
GIN+Virtual+P-reg 77.51±0.68 77.12±1.14 70.25±1.86 0.965±0.069 2.050±0.144

Table 3: The scores (with standard deviation) of graph-level tasks of P-reg applied on GCN/GIN on the OGB datasets (ROC-AUC
scores: higher is better. RMSE scores: lower is better.)

by P-reg are also consistent in all the cases except for GAT
on the PubMed dataset. Although Laplacian regularization
improves the performance of MLP on most datasets, it has
marginal improvement or even negative effects on GCN and
GAT, which also further validates our previous analysis about
limitations of Laplacian regularization.

Comparison with the State-of-the-Art Methods
(using the Standard Split)
We further compared GCN+P-reg and GAT+P-reg with the
state-of-the-art methods. Among them, APPNP (Klicpera,
Bojchevski, and Günnemann 2019), GMNN (Qu, Ben-
gio, and Tang 2019) and Graph U-Nets(Gao and Ji 2019)
are newly proposed state-of-the-art GNN models, and
GraphAT (Feng et al. 2019), BVAT (Deng, Dong, and Zhu
2019) and GraphMix (Verma et al. 2019) use various com-
plicated techniques to improve the performance of GNNs.
GraphAT (Feng et al. 2019) and BVAT (Deng, Dong, and Zhu
2019) incorporate the adversarial perturbation4 into the input
data. GraphMix (Verma et al. 2019) adopts the idea of co-
training (Blum and Mitchell 1998) to use a parameters-shared
fully-connected network to make a GNN more generalizable.
It combines many other semi-supervised techniques such as
Mixup (Zhang et al. 2017), entropy minimization with Sharp-
ening (Grandvalet and Bengio 2005), Exponential Moving
Average of predictions (Tarvainen and Valpola 2017) and so
on. GAM (Stretcu et al. 2019) uses co-training of GCN with
an additional agreement model that gives the probability that
two nodes have the same label. The DeepAPPNP (Rong et al.
2020; Huang et al. 2020) we used containsK=64 layers with
restart probability α= 0.1 and DropEdge rate 0.2. If more
than one method/variant is proposed in the respective papers,
we report the best performance we obtained for each work us-
ing their official code repository or PyTorch-geometric (Fey
and Lenssen 2019) benchmarking code.

Table 2 reports the test accuracy of node classification
using the standard split, on the CORA, CiteSeer and PubMed
datasets. We report the mean and standard deviation of the
accuracy of 10 different trials. The search space for µ is
20 values evenly chosen from [0, 1]. P-reg outperforms the

4Adversarial perturbation is the perturbation along the direction
of the model gradient ∂f

∂x
.

state-of-the-art methods on CORA and CiteSeer, while its
performance is among the best three on PubMed. This result
shows that P-reg’s performance is very competitive because
P-reg is a simple regularization with only a single hyper-
parameter, unlike in the other methods where heavy tricks,
adversarial techniques or complicated models are used.

Experiments of Graph-Level Tasks
We also evaluated the performance of P-reg on graph-level
tasks on the OGB (Open Graph Benchmark) (Hu et al. 2020)
datasets. We reported the mean and standard deviation of the
scores for the graph-level tasks of 10 different trials in Table 3.
The ROC-AUC scores of the graph classification task on the
moltox21, molhiv, molbbbbp datasets are the higher the better,
while the RMSE scores of the graph regression task on the
molesol, molfreesolv datasets are the lower the better. Here
Virtual means that the graphs are augmented with virtual
nodes (Gilmer et al. 2017). GIN (Xu et al. 2019) represents
the state-of-the-art backbone GNN model for graph-level
tasks. P-reg was added directly to those models, without
modifying any other configurations. The search space for µ
is 10 values evenly chosen from [0, 1].

Table 3 shows that P-reg can improve the performance
of GCN and GIN, as well as Virtual GCN and Virtual GIN,
in most cases for both the graph classification task and the
graph regression task. In addition, even if virtual node already
can effectively boost the performance of GNN models in the
graph-level tasks, using P-reg can still further improve the
performance. As shown in Table 3, Virtual+P-reg makes the
most improvement over vanilla GNNs on most of the datasets.

Conclusions
We presented P-reg, which is a simple graph regularizer de-
signed to boost the performance of existing GNN models. We
theoretically established its connection to graph Laplacian
regularization and its equivalence to an infinite-depth GCN.
We also showed that P-reg can provide new supervision sig-
nals and simulate a deep GCN at low cost while avoiding
over-smoothing. We then validated by experiments that com-
pared with existing techniques, P-reg is a significantly more
effective method that consistently improves the performance
of popular GNN models such as GCN, GAT and GIN.
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