The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

FedRec++: Lossless Federated Recommendation with Explicit Feedback

Feng Liang, Weike Pan*, Zhong Ming*
National Engineering Laboratory for Big Data System Computing Technology
College of Computer Science and Software Engineering
Shenzhen University, Shenzhen 518060, China
liangfeng2018 @email.szu.edu.cn, panweike @szu.edu.cn, mingz@szu.edu.cn

Abstract

With the marriage of federated machine learning and recom-
mender systems for privacy-aware preference modeling and
personalization, there comes a new research branch called
federated recommender systems aiming to build a recom-
mendation model in a distributed way, i.e., each user is rep-
resented as a distributed client where his/her original rating
data are not shared with the server or the other clients. No-
tice that, besides the sensitive information of a specific rating
score assigned to a certain item by a user, the information
of a user’s rated set of items shall also be well protected.
Some very recent works propose to randomly sample some
unrated items for each user and then assign some virtual rat-
ings, so that the server can not identify the scores and the
set of rated items easily during the server-client interactions.
However, the virtual ratings assigned to the randomly sam-
pled items will inevitably introduce some noise to the model
training process, which will then cause loss in recommenda-
tion performance. In this paper, we propose a novel lossless
federated recommendation method (FedRec++) by allocating
some denoising clients (i.e., users) to eliminate the noise in a
privacy-aware manner. We further analyse our FedRec++ in
terms of security and losslessness, and discuss its generality
in the context of existing works. Extensive empirical studies
clearly show the effectiveness of our FedRec++ in providing
accurate and privacy-aware recommendation without much
additional communication cost.

Introduction

In the era of information overload, it is often difficult for
people to find what they like among a huge number of
items. Recommender systems solve the problem by exploit-
ing users’ historical data to recommend some items that the
users may like. Traditional collaborative filtering (CF) algo-
rithms (Mnih and Salakhutdinov 2007; Koren 2008; Rendle
2012) need to collect all the users’ rating data in one central
place, e.g., the server, for model training. With the increas-
ing awareness of privacy and the publishing of some related
privacy protection laws such as GDPR (EU 2016), collecting
users’ data may not be feasible in many cases.

Recently, federated machine learning (McMahan et al.
2017; Yang et al. 2019; Kairouz et al. 2019) has been pro-
posed for protecting users’ privacy in machine learning al-

Copyright (© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

4224

gorithms and systems (including recommender systems).
Some recent works (Ammad-ud-din et al. 2019; Chai et al.
2020) revisit some recommendation algorithms in the new
federated learning paradigm. Specifically, the original rat-
ing data are always kept locally in each client (i.e., user) in
the whole process of model training, and each client only
uploads the corresponding model parameters to the server
in order to update the model jointly. For example, federated
collaborative filtering (FCF) (Ammad-ud-din et al. 2019) fo-
cuses on item ranking with implicit feedback, and treats all
the unrated items as negative ones, which may cause bias
in model training and also high communication cost dur-
ing the server-client interactions. FedMF (Chai et al. 2020)
uses the homomorphic encryption technology to encrypt the
items’ gradients before uploading them to the server in or-
der to protect the users’ privacy. A federated meta learn-
ing work (Jalalirad et al. 2019) combines a meta learning
method called REPTILE (Nichol, Achiam, and Schulman
2018) with federated learning for rating prediction with ex-
plicit feedback, which is able to fine tune the model param-
eters for each user. Federated multi-view matrix factoriza-
tion (FED-MVMF) (Flanagan et al. 2020) combines multi-
view matrix factorization with federated learning in order to
protect the users’ original rating data when modeling multi-
party data. However, it will leak the users’ rating behaviors
(i.e., the set of items rated by a user) similar to the afore-
mentioned methods.

We can see that most existing federated recommendation
methods will either bias the model training or do not protect
the users’ rating behaviors well. Recently, SDCF (Jiang, Li,
and Lin 2019) proposes a two-stage randomized response al-
gorithm to perturb the rated and unrated items of each user,
and then calculates and uploads their gradients to the server.
In this way, the server can not identify the set of items rated
by the users easily, which thus protects the users’ rating be-
haviors. FedRec (Lin et al. 2020) also uploads the gradients
of the rated items and the randomly sampled unrated items
of the users. Notice that it uses a hybrid filling strategy to as-
sign some virtual ratings to the unrated items. However, both
of them will introduce some noise to the gradients, which
will cause loss in the recommendation performance.

In order to eliminate the gradient noise, we propose to al-
locate some denoising users (i.e., clients) to eliminate the
noise caused by the randomly sampled items and their as-

signed virtual ratings. Our denoising strategy is secure in
terms of protecting users’ privacy even the server colludes
with the denoising clients. We then incorporate the denois-
ing component into the very recent method FedRec (Lin
et al. 2020) and obtain our solution called FedRec++. As far
as we know, we are the first to study gradient noise elimina-
tion in federated recommendation. We summarize our main
contributions as follows. (i) We propose a novel lossless fed-
erated recommendation method (FedRec++) for modeling
users’ explicit feedback, which is able to completely elim-
inate the gradient noise brought by the virtual ratings as-
signed to the randomly sampled unrated items. (ii) We dis-
cuss the relationships of our FedRec++ with existing works,
e.g., our FedRec++ reduces to FedRec (Lin et al. 2020) when
the component of noise elimination is removed, and also
analyse its security in protecting users’ privacy. (iii) We con-
duct extensive empirical studies on three public datasets, and
find our FedRec++ is able to protect users’ privacy without
sacrificing the recommendation performance.

Related Work
Probabilistic Matrix Factorization

In probabilistic matrix factorization (PMF) (Mnih and
Salakhutdinov 2007), the rating of a user « to an item 7 is
calculated via the inner product of their latent feature vec-
tors, i.e., 7 = U, VT, where U,., V;. € R1X4,

Federated Recommendation with Explicit
Feedback

In federated recommendation with explicit feedback (Fe-
dRec) (Lin et al. 2020), in order to protect a user’s rating be-
haviors, i.e., the set of items Z,, rated by a user u, the authors
design an effective hybrid filling (HF) strategy to randomly
sample some unrated items. Firstly, it randomly samples |Z,|
unrated items of user u from Z\Z,,, where |Z,| = p|Z,| with
p € {1,2,3}. Secondly, it uses the average rating or pre-
dicted rating of user u to a sampled item ¢ as a virtual rating
7} ;. Thirdly, it calculates the gradients of user u to the rated
items and the unrated items, i.e., VV;., i € Z,,UZ, , and then
uploads these gradients to the server. In this way, FedRec
with the HF strategy achieves the purpose of protecting the
user’s original rating records and the rating behaviors in the
preference modeling process. In particular, the virtual rating
7], is as follows,

m
Zk:l YukTuk

/ m
Twi = Zk:l Yuk
! T
Uu,‘/z 7t Z Tprcdict

,t<Tre ict
e M

where ¢ denotes the number of iterations that have been ex-
ecuted in model training, and 7.4 is a parameter that de-
termines when to start using the predicted rating as a virtual
rating to a sampled unrated item <.

In FedRec with PMF (Mnih and Salakhutdinov 2007) as
the backbone model, the gradient of each item i is as follows,

HF ;
ueU; UU! EF ’
> ueu ! VVer (u,1)

VVi = o OU|

@

4225

Notice that U; U U] denotes the users that have rated or vir-
tually rated item ¢, and

(UquT — Tui)Un. + AVi s = 1

3

VVir (u, 1) = {
where r,,; and 7, are the true observed rating and the virtual
rating of user u to item ¢, respectively.

Although FedRec achieves privacy protection in rating
prediction, the randomly sampled items in the hybrid fill-
ing strategy introduces some noise to the recommendation
model, which inevitably affects the performance. This mo-
tivates us to design a lossless version of FedRec, which is
critical to be deployed in a real-world application.

Secure Distributed Collaborative Filtering

Secure distributed collaborative filtering (SDCF) (Jiang, Li,
and Lin 2019) is a distributed recommendation framework
for protecting users’ original rating data, recommendation
model and rating behaviors (i.e., each user’s rated items).
SDCEF divides the recommendation model into two parts, in-
cluding some public elements and some personal elements.
The public elements refer to the items’ latent factors which
can be shared with the server and the other clients, and the
personal elements are the users’ rating data and users’ la-
tent factors that are kept locally in their own clients. Hence,
SDCF can protect the privacy in users’ rating data and
the recommendation model in a similar way to that of Fe-
dRec (Lin et al. 2020). Moreover, SDCF uses stochastic gra-
dient langevin dynamics (SGLD) (Welling and Teh 2011) as
a gradient descent method so as to defend differential attacks
and prevent users’ latent factors being leaked to the server.
However, there may still be the leakage of the users’ rating
behaviors. For this reason, SDCF uses a two-stage random-
ized response algorithm to perturb the rated items and un-
rated items of each user, and then uploads the corresponding
items’ gradients to the server. Finally, SDCF can thus pro-
tect the users’ rating behaviors similar to that of FedRec by
uploading the virtually rated items’ gradients.

As another issue, users have no ratings for the unrated
items, hence the users can not calculate the values of the
loss in the unrated items’ gradients via 7,; — UUV;T (.e.,
€ui)y @ € IT\Z,. To solve this problem, SDCF samples some
virtual e,;, i € Z\Z, from the distribution of e,;,i € Z,, of
the user u. However, this strategy will also introduce some
noise to the gradient at each iteration of model training.

From the above discussions of FedRec and SDCEF, we can
see that noise elimination is a common challenge for perfor-
mance improvement in privacy-ware recommendation tasks.

Decentralized Distributed Matrix Factorization

Decentralized matrix factorization (DMF) (Chen et al. 2018)
is a distributed POI recommendation framework for protect-
ing users’ rating data and solving the problem of computa-
tion and storage in the server. DMF keeps users’ rating data
in the corresponding local clients and utilizes these rating
data to calculate the global items’ latent factors and the lo-
cal items’ latent factors. And then each client synchronously
sends the global items’ gradients to his/her neighboring

clients who are chosen by a random walk method. Although
this framework saves the resource of the server and avoids
the risk of the rating data of all the users being leaked from
the server to malicious attackers, there still exists the leak-
age of users’ rating behaviors. Specifically, each user will re-
ceive the items’ gradients from their own neighbors at each
iteration of model training, and these items’ gradients con-
tain the items’ IDs. Hence, this user will know the rated
items of its neighbors, i.e., rating behaviors of its neighbors.

PDMFRec (Duriakova et al. 2019) is also a decentral-
ized distributed POI recommendation framework with a
novel, user-centric and privacy-enhanced matrix factoriza-
tion method. This framework builds a user’s adjacency graph
in trustworthy clients via co-rated items between users,
which solves the privacy problem of user geographic loca-
tion leaked by DMF (Chen et al. 2018) when constructing
the user adjacency graph. Furthermore, PDMFRec also pro-
poses two privacy-protection settings that allow users to con-
trol the privacy-protection level. In the first setting, it allows
each user to only choose parts of the rated items to take part
in the construction of the user’s adjacency graph. In the sec-
ond setting, the rated items hidden by each user in the first
setting also do not take part in model training. Compared
with DMF, PDMFRec has comparable performance, better
privacy-protection level, i.e., protecting the users’ rating be-
haviors and ensuring the anonymity of the sending client.
The anonymity of the sending client in PDMFRec inspires
us to design an effective noise elimination strategy to prevent
the denoising clients from colluding with the server, which
will be described in detail later.

Our Solution: FedRec++

In this section, we describe our proposed lossless federated
recommendation method FedRec++ for modeling users’ ex-
plicit feedback in detail. We will first define our studied
problem and then describe our solution on noise elimination
in both the server and the clients. We then discuss the gener-
ality of our FedRec++ and its security in privacy protection.

Problem Definition

In federated recommendation with explicit feedback, we
have a set of rating records for each user u, i.e., R,
{(u,%,7y);t € T, }, where Z,, is a set of items rated by user
u and r; is the rating of user u assigned to item ¢. Our goal
is to estimate the preference of user u to the unrated items
without exposing the rating scores and the rating behaviors
of each user u (i.e., R, and Z,), which is the main dif-
ference between federated recommendation and traditional
recommendation. We put some commonly used notations in
Table 1.

Eliminate the Gradient Noise in the Server

In the beginning, the server initializes the model parame-
ters V;.,i € Z, and sends them to each client, i.e., step 1 in
Figure 1. When each ordinary client u € U \Z;I completes
the computation of the item gradients, i.e., VViF (u,), ¢ €
T, UT!,, by using the local rating data, the server will receive
the item gradients from each ordinary client u € U \Z;I , 1.e.,

4226

n
m
R={1,...,5}
rmei}{

R = {(u,i,74)}
R?E ={(u,t,7ru)}
7T

number of users (i.e., clients)
number of items

rating range

rating of user u to item %

rating records in training data
rating records w.r.t. user u in R
rating records in test data

the whole set of items

Ty items rated by user u

I, |Z.| = p|Zy| sampled unrated items w.r.t. user
u from Z\Z,

U the whole set of users

U; users who rated item ¢

u! users who virtually rated item ¢

U, Vi users who virtually rated item ¢
w.r.t. denoiser u

U={u} denoising clients (denoisers)

yui € {0,1} indicator variable

deR number of latent dimensions

Uy, U, € R1*d user-specific latent feature vector

V;. € Rixd item-specific latent feature vector

Tui predicted rating of user u to item
i

~y learning rate

p sampling parameter

c number of clients in training

n number of denoising clients

A tradeoff parameter

T iteration number

Table 1: Some notations and explanations used in the paper.

Server _
Step 1 Step 2 Step1 Step 3
Vi. VYV (u,7) Vi. VVS(a,4) U
i€l i€, UL, ieT el
Step 2 YV (u,i)
Clients @ - @ -
1€,

Ordinary Clients Denoising Clients

Figure 1: Illustration of the interactions between the server
and each client in our lossless federated recommendation
(FedRec++). Notice that FedRec (Lin et al. 2020) is a special
case of our FedRec++ without the denoising clients.

step 2 in Figure 1. Then the server can calculate the summa-
tion of the gradients of each item i € Z as follows,

VVi= Y VVi(u,i),
ueU\U

4)

where U \L~{ denotes the ordinary clients (excluding the de-
noising clients). Since VVEF (u,) with i € Z,, U Z/, contain

the gradients of client u to unrated items Z;,, the server can

not identify each client u’s rated items Z,, easily. Hence, the
rating behaviors of each client u are protected. Notice that
VV;. in Eq.(4) is not immediately divided by |U/; Ul{!| as that
in FedRec (Lin et al. 2020) via Eq.(2), but is divided by the
number of users that have rated item 4, i.e., |[f;], after noise
elimination for more accurate preference modeling. We will
show the details in Eq.(5) and Eq.(6).

The gradient noise (i.e., VVi¥ (u,i),¢ € Z/) from each
ordinary client v € U \Z:l will inevitably bias the model-
ing of the user’s preferences, which will be more serious
when a larger value of p is used (Lin et al. 2020). In or-
der to eliminate the gradient noise in VV;. in Eq.(4), we de-
sign a specific algorithm for noise elimination in the server.
Firstly, the server randomly selects some denoising clients
U C U as denoisers, which will be used to collect the gra-
dient noise, i.e., VVi¥(u,i), i € T, u € U\U, from the
ordinary clients. Secondly, each denoising client u sends the
summation of the noisy gradients of the ordinary clients (i.e.,
VV3(4,1)) to the server in order to eliminate the noise in
VV;. in Eq.(4), which corresponds to step 3 in Figure 1. No-
tice that the server will also receive the number of users who
virtually rated item 1, i.e., [{/%|, from each denoising client
@ € U in step 3 in Figure 1. Thirdly, once the server has
received VV35(4,) from all the denoisers U, the server can
eliminate the gradient noise in VV;. in Eq.(4) as follows,

VVi = VVi = Y VV(@,), 5)
aeld

where VV3(@, 7) also contains the gradients for item 7 of the
denoiser @ itself, i.e., VViF(,1),i € Zs. We will describe
the details in Eq.(9).

After the server has eliminated the gradient noise in VV,.,
the server can then calculate the number of users who rated

item 4, i.e., U] = |Us; UU| — 3.y [U"], and update V;.
as follows,
VV.
Vi Vi — ; (6)
T

where y denotes the learning rate. We depict the whole pro-
cess of eliminating the gradient noise in the server in Algo-
rithm 1.

Eliminate the Gradient Noise in the Client

After each client u € U/ has received the item-specific latent
feature vectors V;., ¢ € Z from the server, i.e., step 1 in Fig-
ure 1, each client u € U can use its own local rating data to
calculate the gradient VU,,.,

ZieZu (_euivz" + /\Uu)
1 Z]

where e,; = r,; — Tv;- Moreover, we can calculate the gra-
dients VVi¥ (u, i), i € Z,,UZ/, via Eq.(3), which is the same
as that in FedRec (Lin et al. 2020).

Notice that VU,,. is used to update U,. locally in each
client, and VVi¥ (u,) are sent to the server to update V.
with the denoising information, i.e., step 2 in Figure 1.

Notice that if a client « is a denoising client, it only needs
to calculate the gradients VVo¥ (u, i) with ¢ € Z,, rather than

VU,. = N

Algorithm 1 The algorithm of FedRec++ in the server.

1: Randomly select some clients as denoisers, i.e., U.

2: Initialize the model parameters V;.,¢ = 1,2, ..., m and
send them to each client u € U.

3: fort=1,2,...,Tdo

4: for each client v € U in parallel do

5: ClientTraining(V;.,i = 1,2,...,m; TRAINING;
w; U, U; t).
6: end for

7: Synchronize(). /*Wait for the clients to complete cal-
culation.®/
8 fori:=1,2,...,mdo

9: Calculate the gradient VV;. via Eq.(4) and also
|U; UU]|.
10: end for B
11: for each client u € U in parallel do
12: ClientTraining(NULL; COLLECTING; 0; u;
NULL; 0).
13: end for
14: Synchronize(). /¥Wait for all the clients to com-
plete.*/
150 fori=1,2,...,mdo
16: Eliminate the gradient noise in VV;. via Eq.(5).
17: Calculate the number of users who rated item ¢, i.e.,
U] = Uy DU — S ey 1AL,
18: Update V;. via Eq.(6).
19: end for
20: Decrease the learning rate y <— 0.9.
21: end for

the gradients VVi¥ (u, i) with ¢ € Z,, UZ/,, because the gra-
dients VViF (u, 1) with ¢ € Z,, would be mixed with the gra-
dient noise of the ordinary clients before being sent to the
server. Hence, the privacy of the denoising client v does not
leak towards the server, i.e., the rating behaviors of client u
are protected.

When each ordinary client u € U\U sends VVIF (u, i)
with i € Z,, UZ], to the server, they need to send the gradient
noise (i.e., VVN(u,1), i € ') to a denoising client & € U
at the same time, i.e., from the ordinary clients to the de-
noising clients of step 2 in Figure 1. We have the gradients
VVN(u, 1) as follows,

VVN(u,i) = VVEF (u,i),i € I, (8)

where 7/, denotes the sampled unrated items w.r.t. user .
Notice that transferring information between clients is a
prominent specialty of the decentralized distributed frame-
work. In our FedRec++, we adopt this specialty by sending
gradient noise to the denoising clients, which can help elim-
inate the gradient noise.

For each denoising client & € U, it does not need to send
VVaE(a, 1), i € Ty to the server immediately, because they
can send VV3(4, i) containing VViF(i,1), i € Zj to the
server after collecting the gradient noise from the ordinary
clients. We have VV3(a, 1) as follows,

VVS(i,i) =Y VVN(u,i) = V()i € o, (9)

u—u

Algorithm 2 ClientTraining(V;.,7 = 1,2,...,m; OPERA-
TION; w; u; U; t), i.e., the algorithm of FedRec++ in the
client.

1: if OPERATION == TRAINING then

2: Sample items Z/, from Z\Z,, with |Z},| = p|Z,,|-

3: Assign U,. to U], and update U, viaU,, + U, —

VU, in Tjcoq iterations.

4: Assign a virtual rating for item ¢, ¢ € Z, via Eq.(1).

5: Calculate the gradient VU,,. via Eq.(7).
6: Update U,. viaU,. < U,. — yVU,..
7.
8

fori e Z,UT, do
: Calculate VV#F (u,) via Eq.(3).
9: end for

10: Upload VViF (u,4) with ¢ € Z,, UZ], to the server.

11: if v is not a denoising client then

12: Calculate the gradient noise VVN(u, ¢) with i € Z,

via Eq.(8), and send it to a denoiser u € U.

13: else

14: Calculate VV5(u, %) via Eq.(9).

15: endif

16: else if OPERATION == COLLECTING then

17: Receive the gradient noise VVN(u,i) with i € T,
from user u € U\U.

18: Calculate the summation of the gradient noise
Y usa VVN(u, 1) and the number of users who vir-
tually rated item i w.r.t. the denoiser 4, i.e., [U/%|.

19: Send VV3(i,4) and |[U/%| to the server.

20: end if

where the first term denotes the summation of the gradient
noise sent to the denoising client %. Notice that the server
can then use Eq.(5) to completely remove the noise, and
the resulting VV;. on the left side of Eq.(5) contains the
pure gradient of the rated item by the corresponding ordi-
nary and/or denoising clients (i.e., users).

Notice that each ordinary client v € U\U only sends its
own gradient noise to one denoising client. And each denois-
ing client % does not need to send its own gradient noise (i.e.,
VV™(4, 1)) to other denoisers, because each denoiser @ does
not need to send the gradient noise VV{{F(4,1),7 € Z7, to
the server and thus the server does not need to eliminate the
gradient noise in VViF (4, ¢), & € U. When each denoiser @
calculates the summation of the gradient noise from the ordi-
nary clients, they can also calculate the number of users who
virtually rated item ¢ w.r.t. the denoiser u at the same time,
ie., |U!™|. After each denoiser @ € U obtains VVS(i, 1),
they send VVS(i,4) and |U]%| to the server, i.e., step 3 in
Figure 1. Notice that VV®(@,4) in Eq.(9) will not leak the
privacy of the denoising clients towards the server, because
VV3(4, 1) contains the gradient noise information of the or-
dinary client u € U\U. We describe the whole process of
eliminating the gradient noise in the client in Algorithm 2.

Discussions

The designed noise elimination strategy in the server and in
the client are actually quite generic and can be applied to

other recommendation methods. For example, as introduced
before, SDCF (Jiang, Li, and Lin 2019) uses a two-stage
random response algorithm to perturb the rated items Z,, and
the unrated items Z!/ of each user, and then calculates the
gradients VV 3P with ¢ € 7]/ of each user to the unrated
items. The gradients VV;3°F with ¢ € Z|/ can be rewritten
as follows,

VVEPTE = y(eyiUy. + Vi A) — N(0,71),i € I/, (10)

where + is the learning rate, e,; with i € Z|/ are sampled
from the distribution of e,,; with ¢ € Z,,, A is a diagonal ma-
trix related to the Gamma distribution of the regularization
term of V;., and I is an identity matrix with appropriate di-
mension. We can see that the gradients VVS°F with i € 7/
are similar to the gradient noise VV™N(u, i) with ¢ € Z/, in
Eq.(8) in our FedRec++. Hence, we can eliminate the noise
introduced by the two-stage random response algorithm in
SDCEF via the denoising strategy in our FedRec++.

Privacy Analysis

In this subsection, we analyze how our FedRec++ protects
the user privacy in modeling explicit feedback. Firstly, each
user’s original rating records are always kept locally in the
client in the whole process, which ensures the security of
the original data. Secondly, our FedRec++ adopts a hybrid
filling strategy (Lin et al. 2020) to assign a virtual rating
to each randomly sampled unrated item, which protects the
users’ rating behaviors. Thirdly, each ordinary client u trans-
fers the gradients of the sampled unrated items (i.e., the gra-
dient noise VV™(u,4),4 € 7)) to a denoising client, which
again does not reveal the user’s rating behaviors (i.e., Z,,).
Fourthly, the denoising client cannot identify the source (i.e.,
the sender) of the gradient, because the gradient does not
contain the sensitive information of user ID, which guaran-
tees the anonymity of each ordinary client (Duriakova et al.
2019). Finally, even if the server colludes with the denois-
ing clients, the server cannot obtain the rating behaviors of a
specific user according to the gradient noise of the ordinary
clients as collected by the denoising clients because of the
anonymity of the clients (i.e., the denoising clients do not
know which ordinary client the gradient noise belongs to).
Hence, the server cannot obtain a user u’s rating behaviors
7, via comparing the item ID of VVF(u,i),i € T, UZ],
uploaded to the server by user w and VV™(u,1),i € Z/, sent
to a denoising client by user u.

Experiments

We conduct experiments on three public datasets to study
the effectiveness and efficiency of our FedRec++. We focus
on the following three research questions: (i) RQ1: Is the
denoising strategy in our FedRec++ lossless? (ii) RQ2: How
is the impact of the number of clients participating in model
training ¢? (iii) RQ3: What is the communication cost with
different numbers of denoising clients n?

Following FedRec (Lin et al. 2020), we use multi-thread
programming in Java to simulate the interactions among the
clients and the server, where the server and each client is
modeled as one thread.

Datasets and Evaluation Metrics

Besides using the two datasets in FedRec (Lin et al.
2020), i.e., MovieLens 100K (ML100K) and MovieLens 1M
(ML1M), we also include a subset from Netflix (NFSK5K).
Specifically, ML100K contains 100,000 ratings of 1,682
movies from 943 users; MLIM contains 1,000, 209 rat-
ings of 3,952 movies from 6, 040 users; and NF5K5K con-
tains 7, 944, 473 ratings of 5, 000 most popular movies from
5, 000 most active users. We process each dataset as follows:
(i) we randomly divide the dataset into five parts with the
same size; (ii) we take four parts as the training data, and the
remaining one part as the test data; and (iii) we repeat the
second step four times to get five different copies of training
data and test data. We conduct experiments and report the
average performance on these five copies of data.

We use two commonly used evaluation metrics, i.e.,
RMSE and MAE, for performance evaluation. Notice that
the losslessness of our denoising strategy is independent of
the datasets and the evaluation metrics.

Baselines and Parameter Settings

In order to study the effectiveness of our FedRec++, in par-
ticular of the merit of losslessness, we compare our Fe-
dRec++ with the most closely related work, i.e., FedRec (Lin
et al. 2020). We have analyzed the generality of the denois-
ing strategy, i.e., it is also applicable to SDCF (Jiang, Li,
and Lin 2019), and will study its applicability to other works
as the future work. In both FedRec and our FedRec++, we
use PMF (Mnih and Salakhutdinov 2007) as the backbone
model and the hybrid filling strategy for virtual ratings (Lin
et al. 2020). And we randomly assign ordinary clients to de-
noising clients for eliminating the gradient noise.

For parameter configurations, we mainly follow Fe-
dRec (Lin et al. 2020). In particular, we fix the number
of latent features d = 20 and the number of iterations
T = 100. We search the best value of the learning rate
v € {0.7,0.8,...,1.4}, and have vy 0.8, v = 0.8
and v = 1.0 on ML100K, MLIM and NF5KS5K, respec-
tively. We search the best value of the tradeoff parameter on
the regularization terms o € {0.1,0.01,0.001}, and have
a = 0.001 on all the three datasets. We use different values
of the sampling parameter p € {0, 1,2,3}. We choose the
best value of the iteration number 74 for starting filling
the sampled unrated items via Eq.(1) and the iteration num-
ber T for locally training U}, both from {5, 10,15}, and
have (Tpredicta T}ocal) (]-07]-0)9 (Tpredicta Tiocal) = (57 15) and
(Tpredictaﬂocal) = (55 15) on ML100K with p = 1’ p = 2
and p = 3, respectively; and have (T pedict; Tioca) = (10, 15),
(Tprediclyiz—‘local) = (]-07 15) and (nredicl:ﬂocal) = (1Oa]-5) on
MLIM with p = 1, p = 2 and p = 3, respectively; and
have (Tpredictvﬂocal) = (57 10)7 (Tpredichj}ocal) = (53 10) and
(T predicts Tioca) = (5, 15) on NFSKSK with p =1, p = 2 and
p = 3, respectively. All the hyper parameters are searched
according to the MAE performance on the first copy of each
dataset.

Results

RQ1: Losslessness We report the performance of FedRec
and our FedRec++ in Table 2, from which we can have

4229

Data [Algorithm | MAE RMSE [p
FedRec 0.7418+ 00048 0.9424+ 00064 | O
FedRec 0.7440+ 00043 0.9432+ 0.0056 1
FedRec++ | 0.7417+00049 0.9422+ 0.0063
MLI100K | FedRec 0.7445+ 00045 0.9431+ 0.0057 9
FedRec++ | 0.7422+ 00047 0.9430-+ 0.0061
FedRec 0.7447+ 00043 0.9431+ 0.0054 3
FedRec++ | 0.7416+ 00049 0.9421+ 0.0064
FedRec 0.7193+ 00012 0.9106=+ 00015 | O
FedRec 0.7217+ 00011 0.9129+ 0.0012
FedRec++ | 0.7198+ 00011 0.9113+ 0.0013
MLIM FedRec 0.7239+ 00011 0.9152+ 0.0011 9
FedRec++ | 0.7195+ 00011 0.9109+ 0.0013
FedRec 0.7263+ 00010 0.9178+ 0.0010 3
FedRec++ | 0.7196+ 00013 0.9109+ 0.0015
FedRec 0.7139+ 00007 0.9090+ 0.0008 | O
FedRec 0.7148+ 00004 0.9102+ 0.0005 1
FedRec++ | 0.7137+00008 0.9088+ 0.0012
NF5K5K | FedRec 0.7152+ 00005 0.9104+ 0.0005 9
FedRec++ | 0.7137+0.0002 0.9089+ 0.0002
FedRec 0.7160=+ 00007 0.9110+ 0.0005 3
FedRec++ | 0.7138+0.0005 0.9090+ 0.0004

Table 2: Recommendation performance of FedRec and our
FedRec++ with different values of p € {1, 2, 3}. Notice that
we fix ¢ = n and n = 1 in our FedRec++, and copy the
results of FedRec on ML100K and ML1M from (Lin et al.
2020) for reference and direct comparison.

the following observations: (i) The performance of our Fe-
dRec++ with p € {1,2,3} is almost the same with that
of FedRec with p = 0 (i.e., without introducing gradient
noise), which means that our FedRec++ is able to com-
pletely eliminate the noise introduced when assigning virtual
ratings to the sampled unrated items (i.e., the denoising strat-
egy is lossless). The results are very promising and clearly
show that our FedRec++ ensures privacy in model training
without sacrificing the recommendation accuracy. (ii) The
performance of FedRec decreases with a larger value of p
for higher security, which is expected because the volume
of noise is proportional to the value of p. On the contrary,
the performance of our FedRec++ does not decrease accord-
ingly, which means that it can well eliminate the noise re-
gardless of a small or large value of p.

./v<::3

®— FedRec c=n
FedRec ¢=0.6n

1.075

1.050 o FedReccmn

FedRec ¢=0.6n

m 1.025 21.05
g —#— FedRec c=0.2n 2 —#— FedRec c=0.2n
1.000 FedRec++ c=n 1.00 FedRect++ c=n
0.975 ~— FedRec++ c=0.6n *— FedRect++ ¢=0.6n
—4— FedRec++c=0.2n 0.95 —4— FedRec++c=0.2n
0950 e o X e ——%—— & 9
0.90
0 1 2 3 0 1 2 3
P P

Figure 2: Recommendation performance of FedRec and our
FedRec++ with different values of ¢ € {0.2n,0.6n,n} and
p € {1,2,3}. Notice that we fix n = 1.

Denoising | Ordinary .

Data Client | Client | €1t | 7

0 70 | 170 | 0

81,550 254 | 258 | 1
ML100K 571 256 | 350 | n/4
251 256 | 294 | n/2

0 %65 2650

804,058 397 | 399 | 1
MLIM 903 397 | 551 | n/4
393 397 | 460 | n/2

0 2535 2555 | 0

6324227 | 3799 | 3801 | 1
NFSKSK 7300 | 3800 | 4608 | n/4
3537 | 3799 | 4172 | n)2

Table 3: Average communication cost per iteration of each
denoising client, each ordinary client and each (denoising or
ordinary) client in our FedRec++ with different numbers of
denoising clients € {0,1,n/4,n/2}. Notice that we fix
c = n and p = 1. The unit of each cost is 80 bytes occupied
by one latent vector.

RQ2: Impact of the Number of Clients in Training In
this subsection, we study the influence of the number of
clients participating in model training. We fix n = 1, and
report the results of FedRec and our FedRec++ with ¢ €
{0.2n,0.6n,n} and p € {0, 1,2, 3} in Figure 2. Notice that
the results on NF5K5K are similar to that on ML100K. We
can obtain the following observations: (i) When ¢ = 0.2n,
the performance of FedRec decreases fast as p increases, and
the overall performance of our FedRec++ is significantly
better than that of FedRec on each corresponding value of
p, which again shows the effectiveness of the noise elimi-
nation strategy in our FedRec++. Because there are fewer
clients participating in model training when ¢ = 0.2n, the
model training is insufficient and the error is higher as ex-
pected. Hence, when ¢ = 0.2n, the performance of both
FedRec and our FedRec++ with p = 1,2, 3 are worse than
that in Table 2. (ii) When ¢ € {0.6n,n}, the performance
of FedRec on ML100K does not decrease much with the
increased values of p, while its performance on ML1M de-
creases. This means that we may choose to use the noise
elimination strategy in our FedRec++ appropriately for dif-
ferent datasets. Importantly, the performance of our Fe-
dRec++ with p € {1,2,3} is almost the same with that in
Table 2, which means that we may only use 60% clients in
model training to achieve comparable performance as that
of using all the clients.

RQ3: Communication Cost In this subsection, we study
the impact of the number of denoising clients n €
{0,1,n/4,n/2} in our FedRec++ on the communication
cost. Notice that when the number of denoising clients is
larger than the number of ordinary clients (i.e., n > n/2),
the item gradients of the redundant denoising clients are not
uploaded to the server together with the item gradient noise

4230

of the ordinary clients, which will then cause the rating be-
haviors of these denoising clients to be exposed to the server.
We fix ¢ = n and p = 1, and report the cost in Table 3. No-
tice that when 17 = 0, we do not use the noise elimination
strategy and our FedRec++ reduces to FedRec. And we do
not count the communication cost of the clients receiving the
model parameter V;.,7 € T sent by the server, because this
part of communication cost is the same for FedRec and our
FedRec++. From Table 3, we can see: (i) Using more de-
noising clients (i.e., a larger value of 1) can more efficiently
process the gradient noise in parallel, which thus reduces
the cost of each denoising client. (ii) The cost of each or-
dinary client is almost the same when n € {1,n/4,n/2},
which is expected since it is independent of the number
of denoising clients. (iii) When n € {n/4,n/2}, the cost
of each client is higher than that when n € {0,1}, be-
cause there are more denoising clients sending gradients to
the server. Quantitatively, the cost of each client is at most
350—170 = 180, 551—265 = 286, and 4608 —2535 = 2073
more on ML100K, MLIM and NF5K5K, respectively. Be-
cause there are 100 iterations in model training, the av-
eraged additional communication costs for each client are
180 x 80 x 100 bytes = 1.37 MB, 286 x 80 x 100 bytes =
2.18 MB, and 2073 x 80 x 100 bytes 15.8 MB, on
ML100K, MLIM and NF5K5K, respectively. We can see
that the noise elimination strategy in our FedRec++ only
consumes a small amount of communication cost of clients,
which shows another merit of our FedRec++.

Conclusions and Future Work

In this paper, we study an emerging problem, i.e., privacy-
aware recommendation with explicit feedback. In particular,
we propose a novel and lossless federated recommendation
method called FedRec++, for which we use some denoising
clients to completely eliminate the noise caused by the as-
signed virtual ratings to some randomly sampled items. We
also conduct privacy analysis to show that our FedRec++
is able to protect the user privacy well. Moreover, our Fe-
dRec++ is a generic solution, which embodies FedRec (Lin
et al. 2020) as a special case, and the denoising strategy
can also be used in the other privacy-aware recommendation
method such as SDCF (Jiang, Li, and Lin 2019). Experimen-
tal results on three public datasets show the effectiveness
(i.e., losslessness) and efficiency (i.e., low communication
cost) of our FedRec++.

For future works, we are interested in generalizing our Fe-
dRec++ to some models with ranking losses (e.g., pairwise
loss (Rendle et al. 2009) or listwise loss (Wu, Hsieh, and
Sharpnack 2018)), neural network models, and some vertical
federated machine learning settings (Yang et al. 2019; Zhang
et al. 2020). We are also interested in federating some more
advanced recommendation models such as those based on
deep learning techniques (He et al. 2017; Liang et al. 2018;
Sun et al. 2019). Moreover, we will further explore the ap-
plicability of the denoising strategy to other works.

Acknowledgments

We thank the support of National Natural Science Founda-
tion of China Nos. 61872249 and 61836005. Weike Pan and
Zhong Ming are co-corresponding authors for this work.

References

Ammad-ud-din, M.; Ivannikova, E.; Khan, S. A.; Oyomno,
W.; Fu, Q.; Tan, K. E.; and Flanagan, A. 2019. Feder-
ated Collaborative Filtering for Privacy-Preserving Personal-
ized Recommendation System. CoRR abs/1901.09888. URL
https://arxiv.org/abs/2004.04256.

Chai, D.; Wang, L.; Chen, K.; and Yang, Q. 2020. Secure
Federated Matrix Factorization. IEEE Intelligent Systems doi:
10.1109/M1S.2020.3014880.

Chen, C.; Liu, Z.; Zhao, P.; Zhou, J.; and Li, X. 2018. Privacy
Preserving Point-of-Interest Recommendation Using Decen-
tralized Matrix Factorization. In Proceedings of the 32nd
AAAI Conference on Artificial Intelligence, 257-264.

Duriakova, E.; Tragos, E. Z.; Smyth, B.; Hurley, N.; Pefa,
E. J.; Symeonidis, P.; Geraci, J.; and Lawlor, A. 2019. PDM-
FRec: A Decentralised Matrix Factorisation with Tunable
User-Centric Privacy. In Proceedings of the 13th ACM Con-
ference on Recommender Systems, 457-461.

EU. 2016. Regulation (EU) 2016/679 of the European Parlia-
ment and of the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of personal data
and on the free movement of such data, and repealing Di-
rective 95/46/EC (General Data Protection Regulation) (Text
with EEA relevance). https://eur-lex.europa.eu/eli/reg/2016/
679/0j. Accessed April 27, 2019.

Flanagan, A.; Oyomno, W.; Grigorievskiy, A.; Tan, K. E;
Khan, S. A.; and Ammad-ud-din, M. 2020. Federated Multi-
view Matrix Factorization for Personalized Recommenda-
tions. CoRR abs/2004.04256. URL https://arxiv.org/abs/
2004.04256.

He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; and Chua, T.
2017. Neural Collaborative Filtering. In Proceedings of the
26th International Conference on World Wide Web, 173—-182.

Jalalirad, A.; Scavuzzo, M.; Capota, C.; and Sprague, M. R.
2019. A Simple and Efficient Federated Recommender Sys-
tem. In Proceedings of the 6th IEEE/ACM International Con-
ference on Big Data Computing, Applications and Technolo-
gies, 53-58.

Jiang, J.; Li, C.; and Lin, S. 2019. Towards A More Reli-
able Privacy-Preserving Recommender System. Information
Sciences 482: 248-265.

Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Ben-
nis, M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode,
G.; Cummings, R.; D’Oliveira, R. G. L.; Rouayheb, S. E.;
Evans, D.; Gardner, J.; Garrett, Z.; Gascon, A.; Ghazi, B.;
Gibbons, P. B.; Gruteser, M.; Harchaoui, Z.; He, C.; He, L.;
Huo, Z.; Hutchinson, B.; Hsu, J.; Jaggi, M.; Javidi, T.; Joshi,
G.; Khodak, M.; Konecny, J.; Korolova, A.; Koushanfar, F,;
Koyejo, S.; Lepoint, T.; Liu, Y.; Mittal, P.; Mohri, M.; Nock,
R.; Ozgiir, A.; Pagh, R.; Raykova, M.; Qi, H.; Ramage, D.;
Raskar, R.; Song, D.; Song, W.; Stich, S. U.; Sun, Z.; Suresh,

4231

A. T.; Tramer, E.; Vepakomma, P.; Wang, J.; Xiong, L.; Xu,
Z.; Yang, Q.; Yu, F. X.; Yu, H.; and Zhao, S. 2019. Ad-
vances and Open Problems in Federated Learning. CoRR
abs/1912.04977. URL http://arxiv.org/abs/1912.04977.

Koren, Y. 2008. Factorization Meets the Neighborhood:
A Multifaceted Collaborative Filtering Model. In Proceed-
ings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 426-434.

Liang, D.; Krishnan, R. G.; Hoffman, M. D.; and Jebara, T.
2018. Variational Autoencoders for Collaborative Filtering.
In Proceedings of the 2018 World Wide Web Conference on
World Wide Web, 689-698.

Lin, G.; Liang, F.; Pan, W.; and Ming, Z. 2020. FedRec: Fed-
erated Recommendation with Explicit Feedback. IEEE Intel-
ligent Systems doi:10.1109/MIS.2020.3017205.

McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In Proceedings of
the 20th International Conference on Artificial Intelligence
and Statistics, 1273-1282.

Mnih, A.; and Salakhutdinov, R. R. 2007. Probabilistic
Matrix Factorization. In Proceedings of the 21st Interna-
tional Conference on Neural Information Processing Systems,
1257-1264.

Nichol, A.; Achiam, J.; and Schulman, J. 2018. On First-
Order Meta-Learning Algorithms. CoRR abs/1803.02999.
URL http://arxiv.org/abs/1803.02999.

Rendle, S. 2012. Factorization Machines with libFM. ACM
Transaction on Intelligent System and Technology 3(3): 57:1—
57:22.

Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-
Thieme, L. 2009. BPR: Bayesian personalized ranking from
implicit feedback. In Proceedings of the 25th Conference on
Uncertainty in Artificial Intelligence, 452-461.

Sun, E; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; and Jiang,
P. 2019. BERT4Rec: Sequential Recommendation with Bidi-
rectional Encoder Representations from Transformer. In Pro-
ceedings of the 28th ACM International Conference on Infor-
mation and Knowledge Management, 1441-1450.

Welling, M.; and Teh, Y. W. 2011. Bayesian Learning via
Stochastic Gradient Langevin Dynamics. In Proceedings
of the 28th International Conference on Machine Learning,
681-688.

Wu, L.; Hsieh, C.; and Sharpnack, J. 2018. SQL-Rank: A
Listwise Approach to Collaborative Ranking. In Proceedings
of the 35th International Conference on Machine Learning,
ICML 18, 5311-5320.

Yang, Q.; Liu, Y.; Chen, T.; and Tong, Y. 2019. Federated
Machine Learning: Concept and Applications. ACM Trans-
actions on Intelligent Systems and Technology 10(2): 12:1—
12:19.

Zhang, C.; Liu, Y.; Wang, L.; Liu, Y.; Li, L.; and Zheng, N.
2020. Joint Intelligence Ranking by Federated Multiplicative
Update. IEEE Intelligent Systems 35(4): 15-24.

