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Abstract

Hyperspectral anomaly detection (HAD) is a challenging task
because it explores the intrinsic structure of complex high-
dimensional signals without any samples at training time.
Deep neural networks (DNNs) can dig out the underlying
distribution of hyperspectral data but are limited by the la-
beling of large-scale hyperspectral datasets, especially the
low spatial resolution of hyperspectral data, which makes la-
beling more difficult. To tackle this problem while ensuring
the detection performance, we present an unsupervised low-
rank embedded network (LREN) in this paper. LREN is a
joint learning network in which the latent representation is
specifically designed for HAD, rather than merely as a fea-
ture input for the detector. And it searches the lowest rank
representation based on a representative and discriminative
dictionary in the deep latent space to estimate the residual
efficiently. Considering the physically mixing properties in
hyperspectral imaging, we develop a trainable density esti-
mation module based on Gaussian mixture model (GMM) in
the deep latent space to construct a dictionary that can better
characterize the complex hyperspectral images (HSIs). The
closed-form solution of the proposed low-rank learner sur-
passes existing approaches on four real hyperspectral datasets
with different anomalies. We argue that this unified frame-
work paves a novel way to combine feature extraction and
anomaly estimation-based methods for HAD, which intends
to learn the underlying representation tailored for HAD with-
out the prerequisite of manually labeled data. Code available
at https://github.com/xdjiangkai/LREN.

Introduction
Recently, great strides have been made towards more pre-
cise target detection in natural images thanks in part to the
large scale of labeled datasets, such as the COCO dataset
(Lin et al. 2014), ImageNet (Deng et al. 2009) and DOTA
dataset (Xia et al. 2018). In hyperspectral anomaly detection
(HAD), however, it is difficult to manually and accurately
label because of unavailable prior knowledge, complicat-
ed imaging environment, and low spatial resolution (Zare,
Jiao, and Glenn 2018). Due to these real-world resource con-
straints, no labeled samples are captured for HAD, forming
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Figure 1: Background-anomaly separability results on (a)
SanDiego, (b) Hydice, (c) Coast, and (d) Pavia. Each detec-
tor row corresponds to two boxes, where the red box indi-
cates the distribution interval of the anomaly and the blue
box indicates the distribution interval of the background.
The distance between the upper boundary of the blue box
and the lower boundary of the red box indicates the separa-
bility of the background-anomaly. The existing HAD meth-
ods cannot suppress the background and enhance the sepa-
ration of the anomaly box from the background box.

a typical sample-free detection task. Under these circum-
stances, it is highly essential to design a network specifically
for the task of HAD.

A series of efforts dedicated to determining hyperspectral
anomalies by DNNs without any prior knowledge have been
developed. Most of which employ generative models includ-
ing AE (Dong et al. 2018), DBN (Hinton and Salakhutdi-
nov 2006) and GAN (Goodfellow et al. 2014) to extract fea-
tures in the deep latent space or the reconstruction space by
minimizing the error between the original and reconstructed
spectra. Subsequently, separate detectors such as RX (Reed
and Yu 1990), LRX (Matteoli et al. 2013), CRD (Li and Du
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2014), AED (Kang et al. 2017), and LSDM-MoG (Li et al.
2020) are performed on these features to achieve final de-
tection. Typically, these methods are optimized in two sep-
arate steps: extracting features of hyperspectral images (H-
SIs) with DNNs, and then performing detection on the ex-
tracted features. Although these methods tend to mitigate
the problem of dimensional disaster, their objective func-
tions are not customized for anomaly detection. This would
lead to a suboptimal solution because the two steps have not
been learned together to maximize their respective strengths
through cooperation. Moreover, due to remote non-contact
observations and numerous imaging scenes, real HSIs of-
ten contain rich and complex structures. In addition, noise
corruption further poses a challenge to HAD. Consequently,
when applied to real scenes, most existing methods fail to
effectively distinguish the anomaly from the background, as
shown in Figure 1.

A natural question is: Particularly for this sample-free
task, is it possible to establish a unified network with both
dimension reduction and anomaly detection to ensure de-
tection performance? In order to address this issue, we sys-
tematically discuss various structures and propose our net-
work structure based on the following three properties: 1)
the background still preserves a low-rank property lying in
a low-dimensional manifold; 2) the presence probability of
the anomaly is much lower than that of the background; and
3) the latent representation serves the anomaly estimation,
which optimally updates the parameters of the deep latent s-
pace. In this way, we propose a low-rank embedded network
(LREN) for HAD to adapt the learned latent representation
to a specific density estimation. To the best of our knowl-
edge, this is the first method tackling this challenging prob-
lem. In contrast to existing approaches, an integrated loss,
which includes a reconstruction error and a density estima-
tion loss, is defined to optimize the LREN jointly. We for-
mulate the unsupervised learning-based HAD problem as a
low-rank optimization with a closed-form solution in a low-
dimensional manifold. This method constructs a representa-
tive and discriminative dictionary that best characterizes the
underlying structure of complex HSIs, breaking the dilemma
of limited detection performance for sample-free detection.
Notably, Gaussian mixture model, a weighted finite sum of
Gaussian components, is embedded into the LREN to esti-
mate the complex HSIs. Extensive experiments demonstrate
the efficacy of LREN in generalizing to unknown targets and
different datasets. Our main contributions are summarized as
follows.

• We propose an unsupervised low-rank learner, called L-
REN, which is a unified framework for formulating the
sample-free HAD problem as a low-rank optimization in
a low-dimensional manifold. This design can not only ef-
fectively alleviate the misalignment between feature ex-
traction and anomaly estimation, but also avoid the diffi-
culty of decomposing high-dimensional data.

• A novel learnable density estimation module is develope-
d, which models the physically mixing properties in hy-
perspectral imaging into the LREN to construct a discrim-
inative dictionary while retaining the latent representa-

tions that are customized end-to-end for dictionary con-
struction. This universal module can be embedded into
any other HAD networks.

• To find the optimum of the low-rank learner, LREN, more
efficiently, we shrink the solution space to the latent space
of a low-dimensional closed-form solution. We show that
LREN achieves state-of-the-art results on four real hyper-
spectral datasets.

Related Work
Broadly speaking, anomaly detection is a significant task in
artificial intelligence to find anomalous instances that sub-
stantially deviate from a normal distribution. The DNN-
based anomaly detection technology has been applied to
many fields (Liu et al. 2013; Zhao et al. 2017; Abati et al.
2019; Markovitz et al. 2020; Pang et al. 2020; Park, Noh,
and Ham 2020). They can be grouped into two typical cate-
gories including reconstruction-based and estimation-based
methods to learn models describing normal samples. Most
of these methods are trained on normal samples and even
on samples that are both normal and anomalous. Therefore,
they have limited applications in HAD in the absence of any
background or anomaly samples at training time.

With respect to HAD, the existing DNN-based works
mainly focus on feature extraction or dimension reduction
through unsupervised learning, because it is a sample-free
task. For example, Lei et al. (Lei et al. 2019) adopt DBN to
learn the feature matrix and input it into the subsequent de-
tector. Xie et al. (Xie et al. 2020) present a spectral adversar-
ial feature learning (SAFL) architecture for HAD to extract
underlying spectral features in deep latent space. Very re-
cently, Jiang et al. (Jiang et al. 2020) propose a spectral con-
strained GAN to reduce the data dimensionality. These ap-
proaches can effectively capture the general structure, how-
ever, lead to a suboptimal solution, because the feature ex-
traction and anomaly detection have not been learned togeth-
er to maximize their respective strengths through coopera-
tion. Moreover, the physically mixing properties of complex
HSIs in real scenarios are not yet plugged into the network.
In contrast, the proposed LREN can successfully address
these issues.

Low-Rank Embedded Network
Problem Formulation
In significant contrast to the background, anomalies in H-
SIs are rarely present with sparse property, making it diffi-
cult to describe anomalies directly using data-driven models
in the absence of samples. Besides, the presence of noise
poses a challenge to HAD. LREN infers the anomaly based
on the motivations that in the low-dimensional manifold,
the background still preserves a low-rank property, while
the anomaly presents a sparse property. Let us denote by
H = [h1, · · · ,hi, · · · ,hN ] ∈ RL×N an input HSI, where
hi, (i = 1, ..., N) is the ith spectral vector with L dimen-
sions in the original data space. Denoting the dictionary as
D = [d1, · · · ,di, · · · ,d2k] ∈ Rl×2k, we focus on minimiz-
ing the low-rank optimization with a closed-form solution in
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Figure 2: Overview of our LREN-based HAD with k Gaussian mixture-components. Note that the spectral mapping parame-
terized by θe and θd, and the density estimation parameterized by θes are jointly learned.

a low-dimensional manifold as follows:
min
W

||W||∗ + λ||A||2,1

s.t., Ψ(H) = DW + A,
(1)

where ||W||∗ represents the nuclear norm of the weight ma-

trix W ∈ R2k×N and ‖A‖2,1 =
L∑

i=1

√
N∑
j=1

(ai,j)
2 denotes

the `2,1-norm of the anomaly matrix A. Ψ(·) represents the
spectral mapping function from the high-dimensional da-
ta space to the low-dimensional representation space. The
weight matrix W is the coefficient for Ψ(H) with respect to
the dictionary D. The latent representation matrix Ψ (H) =
[Ψ (h1) , · · · ,Ψ (hi) , · · · ,Ψ (hN )] ∈ Rl×N , (l � L) con-
taining most of the critical information in the original data
space, where Ψ(hi) is the ith spectral representation with l
dimensions.

To make Eq. (1) convex, we should achieve spectral map-
ping and dictionary construction. It is worth noting that L-
REN innovatively takes into account both the spectral map-
ping function and the dictionary as shown in Figure 2, that
is, the features extracted in the deep latent space are cus-
tomized for dictionary construction in an end-to-end man-
ner. We next discuss in detail the optimized solution to Eq.
(1) via the unified network.

Network Architecture
Instead of separately modeling the spectral mapping and dic-
tionary as in Eq. (1), we present a deep network, i.e., LREN,
to directly model the latent representation and its dictionary,
which learns the intrinsic characterization that is customized

for HAD implicitly. In this way, both the spectral mapping
module and the dictionary construction module can be joint-
ly learned in an unsupervised manner as

min
θe,θd,θes

1

N

N∑
i=1

[∥∥∥hi − ĥi

∥∥∥2 + Φ (Ψ (hi;θe) ;θes)

]
s.t., ĥi = Π (Ψ (hi;θe) ;θd) ,

(2)

where Ψ (·;θe) denotes the proposed spectral encoder net-
work that takes the observed spectral vector hi as input and
outputs the latent spectral representation zi = Ψ (hi;θe)
that is input into the proposed spectral decoder Π (·; θd) to
generate the reconstructed version of hi. The second ter-
m is the proposed objective function for density estimation
Φ (·; θes) with the goal of constructing a strongly represen-
tative and discriminating dictionary.

Spectral mapping module. We describe the spectral map-
ping module in detail in Figure 2. The spectral mapping au-
toencoder takes the original spectral vector hi as the input,
whereas the reconstructed spectral vector ĥi is the output as
follows:

zi = Ψ (hi;θe) , (3)

ĥi = Π (zi;θd) . (4)

Note that both the mapping function Ψ (·;θe) from the in-
put to the latent representation parameterized by θe and the
mapping function Π (·; θd) from the latent representation to
the reconstructed version of the input parameterized by θd
contain multi-layer fully connected layers followed by the
tanh activation. We solve the following problem to learn the
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spectral mapping module.

min
θe,θd,θes

1

N

N∑
i=1

∥∥∥hi − ĥi

∥∥∥2. (5)

This objective function makes the reconstructed spectral
vector ĥi approximate to the input spectral vector as much
as possible. The features of the latent space can be construct-
ed entirely with spectral vectors that are consistent with the
input. Consequently, the objective function, in essence, aims
to dig out the representative and discriminative information
of the original high-dimensional spectral vector, which is
defined as Ψ (H) = [Ψ (h1) , · · · ,Ψ (hi) , · · · ,Ψ (hN )] ∈
Rl×N in Eq. (1).

Dictionary construction module. The density estimation
Φ (·; θes) parameterized by θes in Eq. (2) is the key problem
in the dictionary construction module. The proposed estima-
tion discovers a set of clusters from the latent representation,
denoted as k, and assigns the centroid of each cluster as the
basis to form a dictionary atom. To further reflect the size of
each cluster, we select the sample farthest from the centroid
and let it act as a dictionary atom along with the centroid in
D. Notably, a critical issue is the establishment of Φ (·; θes)
on the latent representation for the high-efficiency purpose
of density estimation. We define the objective function for
density estimation parameterized by θes as

min
θe,θd,θes

1

N

N∑
i=1

Φ (Ψ (hi;θe) ;θes). (6)

In the proposed LREN, the output Φ (Ψ (hi;θe) ;θes) is
input to the softmax activation to obtain a k-dimensional
vector for the mixture-component prediction, i.e.,

βi = softmax (Φ(hi;θe) ;θes) . (7)

Considering the complexity of HSIs, we further formulate
our proposed density estimation as

min
θe,θd,θes

− 1

N

N∑
i=1

ln

(
k∑

i=1

φiN (Ψ (hi;θe) ;θes)

)

s.t.,
k∑

i=1

φi = 1, 0 6 φi 6 1,

(8)

following the framework of GMM because of its strong rep-
resentational capability of complex data. Here, θes contains
the mean vector µi and the covariance matrix Γi for com-
ponent i. φi is the nonnegative weight that sums to 1. All
these parameters are trained and updated efficiently by the
proposed LREN given a batch of Q spectral samples as fol-
lows:

φk =

Q∑
i=1

βik
Q
, (9)

µk =

∑Q
i=1 βikΨ (hi;θe)∑Q

i=1 βik
, (10)

Γk =

∑Q
i=1 βik (Ψ (hi;θe)− µk) (Ψ (hi;θe)− µk)

T∑Q
i=1 βik

.

(11)
The parameters of the density estimation network are
learned together with the parameters of the previous latent
representation network in our LREN. Once the parameters
are updated to the optimum, the dictionary D ∈ Rl×2k is
constructed by the centroid of each cluster (i.e., βi) along
with the sample farthest from the centroid.

Solving the Optimized Model
Given the latent representation Ψ (H) and the dictionary D,
we can solve the convex function Eq. (1) with a closed-form
solution by the alternating direction method in (Liu, Lin, and
Yu 2010). An auxiliary variable J which is used as a split
variable to replace W, is introduced to make the objective
function separable. Thus, the first term ||W||∗ in the objec-
tive function can be replaced with ||J||∗. And the original
problem (1) can be reformulated as the following problem:

min
W

||W||∗ + λ||A||2,1

s.t.,
{

Ψ (H) = DW + A

W = J
. (12)

The augmented Lagrangian function of (12) is

L =||J||∗ + λ||A||2,1 + tr[YT
1 (Ψ(H)−DW −A)]

+ tr[YT
2 (W − J)]

+
µ

2
(||Ψ(H)−DW −A||2F + ||W − J||2F )

=||J||∗ + λ||A||2,1 +
µ

2
(||J− (W + Y2/µ)||2F

+ ||A− (Ψ(H)−DW + Y1/µ)||2F )

− 1

2µ
(||Y1||2F + ||Y2||2F ),

(13)
where Y1 and Y2 are Lagrange multipliers, µ > 0 denotes
the penalty parameter, tr(·) refers to the trace of a matrix,
and || · ||F refers to the Frobenius norm. Therefore, the prob-
lem becomes:

min
W,J,A,YT

1 ,YT
2

||J||∗ + λ||A||2,1

+
µ

2
(||J− (W + Y2/µ)||2F

+ ||A− (Ψ(H)−DW + Y1/µ)||2F )

− 1

2µ
(||Y1||2F + ||Y2||2F ).

(14)
Problem (14) can be solved with the alternating direction
method by alternatively updating only one variable a time
while fixing the others. During the kth iteration, the problem
can be divided into the following steps:

1) J step:

min
J
||J||∗ +

µ

2
(||J− (W + Y2/µ)||2F . (15)
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2) W step:

min
W

µ

2
(||J− (W + Y2/µ)||2F

+ ||A− (Ψ(H)−DW + Y1/µ)||2F )
(16)

W = (DTD + I)−1[
1

µ
(DTY1 −Y2)

+ DTΨ(H)−DTA + J].

(17)

3) A step:

min
A

λ||A||2,1+||A−(Ψ(H)−DW+Y1/µ)||2F ). (18)

4) Y1,Y2 step:

Y1 = Y1 + µ(Ψ(H)−DW −A), (19)

Y2 = Y2 + µ(W − J). (20)

Once the optimization is finished, the anomaly matrix A
can be extracted, and the anomaly score for the ith spectrum
xi can be determined as ||Ai||1, where Ai is the ith column
of anomaly matrix A.

Experiments
Experimental Settings
Datasets We evaluate our LREN on four benchmark hy-
perspectral datasets, including SanDiego (Xu et al. 2016),
Hydice (Li and Du 2014), Coast (Kang et al. 2017), and
Pavia (Kang et al. 2017). SanDiego dataset collected by the
Airborne Visible/ Infrared Imaging Spectrometer (AVIRIS)
sensor consists of 100 × 100 pixels and 189 spectral band-
s covering the wavelength range from 400 to 2500nm.
Three aircrafts with structural information are considered as
anomalous targets of interest. Hydice dataset was collect-
ed by the Hyperspectral Digital Imagery Collection Exper-
iment (HYDICE) airborne sensor over an urban area, CA,
USA. There are 80× 100 pixels and 162 spectral bands in a
wavelength range of 400 to 2500nm. The vehicles and roof-
s are considered as anomalies and their pixels account for
about 0.24% of the entire scene. Coast dataset was also ac-
quired by the AVIRIS sensor, which contains 10000 spec-
tral vectors, each with 207 channels, covering a range of
450 to 1350nm. Buildings of different scales are regarded as
anomalies. Pavia dataset was acquired by the Reflective Op-
tics System Imaging Spectrometer (ROSIS-03) sensor over
Pavia city, which consists of 100× 100 pixels and 102 spec-
tral bands ranging from 430 to 860nm. The vehicles are con-
sidered as anomalies containing 63 pixels and account for
0.63% of the entire scene. It is worth noting that the datasets
we used contain both point and structural anomalies, and are
in the form of different scales.

Evaluation metrics To quantitatively evaluate the perfor-
mance of our LREN and the state-of-the-art approaches, the
receiver operating characteristic curve (ROC) together with
the area under it are used. The area under the ROC curve of
(Pd, Pf ) demonstrates the detection accuracy, and the closer
this value is to 1, the better the detection capability. Con-
versely, the closer the area value under the (Pf , τ ) is to 0,

Figure 3: Effects of the parameter λ for SanDiego, Hydice,
Coast, and Pavia.

the better the false alarm rate. Here, Pd, Pf and τ represent
the true positive rate, false positive rate and threshold, re-
spectively. Besides, Box-Whisker Plot (Manolakis and Shaw
2002) is also used to indicate the degree of background sup-
pression and separation from the anomaly.

Implementation details The proposed LREN is com-
posed of encoder, decoder and estimator, and each part is
composed of a two-layer fully connected network. The num-
ber of hidden nodes in the deep latent space is set to 9. We
train LREN with SGD in an end-to-end fashion setting the
learning rate to 10−4 and the batch size to the number of
input spatial pixels. Intuitively, it is reasonable to estimate
the distribution of complex HSIs with the larger parameter
k, however, it takes too much time to search the dictionary
atom. In LREN, we empirically set the number of Gaussian
mixture-components k to 7 considering the tradeoff between
detection performance and searching time. We terminate the
learning process in 1000 epochs. In order to get a better un-
derstanding of the anomaly in HSIs, we evaluate the effect
of different values of λ in problem (1) on detection. With λ
varying from 10−4 to 1, the optimal λ values for differen-
t datasets are shown in Figure 3. We can see that the AUC
scores achieve the bests when λ is 10−2 for SanDiego, Hy-
dice, Coast datasets, and 10−3 for Pavia dataset, respective-
ly. We implement our method by TensorFlow on one NVIDI-
A 2080 Ti GPUs with 8 GB memory.

Ablation Study
In this section, we conduct an ablation study to evaluate the
contribution of different components in the proposed LREN
to HAD. In detail, the following five scenarios are designed:
(A) Our proposed LREN eliminates `1,2-norm of the anoma-
ly. (B) The proposed dictionary construction module is re-
placed with Kmeans algorithm. (C) We search the lowest
rank representation in the original space. (D) The spectral
mapping module and the dictionary construction module are
separately learned. (E) We consider the full proposed model,
LREN. The results are summarized in Table 1.

As displayed in Table 1, the LREN achieves a 0.9951
AUC score of (Pd, Pf ) on average. By removing `1,2 -norm
of the anomaly, we can see that the result is decreased to
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Figure 4: Visual quality comparison on four typical scenes in HSI datasets. The pseudocolor image, ground truth, and detection
map of the compared methods for (a) SanDiego, (b) Hydice, (c) Coast, and (d) Pavia.

Description (Pd, Pf ) (Pf , τ )

(A) 0.8692 0.1418

(B) 0.7677 0.2180

(C) 0.9843 0.0329

(D) 0.9428 0.1554

(E) 0.9951 0.0236

Table 1: Average results of ablation study for LREN per-
formed on four datasets. The best result is highlighted.

0.8692, delivering a decreasement of 0.1259, which indi-
cates that the `1,2 -norm of the anomaly is effective in HAD.
In the (B) row, by simply replacing the density estimation
network with Kmeans, the AUC score of (Pd, Pf ) is signif-
icantly reduced to 0.7677 and the AUC score of (Pd, Pf ) is
increased to 0.2180, which illustrates the density estimation
network has a positive influence on HAD. The (C) row vali-
dates that the low-rank optimization in the latent space is al-
so effective in our LREN. Besides, decomposing the matrix
on the low-dimensional latent space reduces the complexity
of decomposition on the higher-dimensional original space.
When jointly learning the spectral mapping and dictionary
construction modules, we find that it raises the AUC score
of (Pd, Pf ) from 0.9428 to 0.9951 and decreases the AUC

Method RX LRX ADLR PAB DC AAE Proposed

SanDiego 0.9403 0.9687 0.9894 0.9861 0.9595 0.9897

Hydice 0.9763 0.9327 0.9962 0.9983 0.9218 0.9998

Coast 0.9946 0.9926 0.9937 0.9870 0.9681 0.9982

Pavia 0.9887 0.9840 0.9507 0.9000 0.9822 0.9925

Average 0.9750 0.9695 0.9825 0.9679 0.9579 0.9951

Table 2: AUC scores of (Pd, Pf ) for different algorithms on
four datasets. The best and second best results are highlight-
ed and underlined.

score of (Pf , τ ) from o.1554 to 0.0236 as listed in (D) and
(E) rows.

Evaluation of HAD Algorithm
For comparison, five commonly used methods, including
RX (Reed and Yu 1990), LRX (Matteoli et al. 2013), ADL-
R (Qu et al. 2018), PAB DC (Huyan et al. 2019), and AAE
(Xie et al. 2020), are selected. All these methods are reim-
plemented according to their papers and open-source codes.
The quantized AUC scores of (Pd, Pf ) and (Pf , τ ) are list-
ed in Table 2 and Table 3, respectively. From Table 2 and
Table 3, we can observe that the proposed model outper-
forms the competing methods on these benchmark datasets.
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RX LRX ADLR PAB_DC AAE Proposed

Figure 5: ROC curves of (Pd, Pf ) for different algorithms on (a) SanDiego, (b) Hydice, (c) Coast, and (d) Pavia.

RX LRX ADLR PAB_DC AAE Proposed

(a) (b) (c) (d)

Figure 6: ROC curves of (Pf , τ ) for different algorithms on (a) SanDiego, (b) Hydice, (c) Coast, and (d) Pavia.

Method RX LRX ADLR PAB DC AAE Proposed

SanDiego 0.0599 0.0025 0.3049 0.1193 0.0324 0.0134

Hydice 0.0390 0.0050 0.0060 0.0060 0.0106 0.0102

Coast 0.0145 0.0015 0.4658 0.0067 0.0433 0.0276

Pavia 0.0268 0.0178 0.4615 0.3425 0.0189 0.0433

Average 0.0351 0.0067 0.3096 0.1186 0.0263 0.0236

Table 3: AUC scores of (Pf , τ ) for different algorithms on
four datasets. The best and second best results are highlight-
ed and underlined.

Specifically, relative to the AUC score of (Pd, Pf ), it ex-
ceeds the second-best ADLR by an average of 1.26%. More
notably, its AUC score of (Pf , τ ) is an order of magnitude
less than that of ADLR on average. The corresponding visu-
al detection maps, ROC curves of (Pd, Pf ), and ROC curves
of (Pd, τ ) over four datasets are shown in Figure 4, Figure
5, and Figure 6, respectively. It is easy to observe that the
detection maps obtained by the proposed LREN are closest
to the ground truths. Meanwhile, the proposed LREN usual-
ly demonstrates higher Pd as Pf varying from 10−4 to 1 as
shown in Figure 5.

Conclusion
One key issue in HAD is how to develop a unified HAD
model for performing a joint feature extraction and density
estimation without labeled samples, which has not been ad-
equately resolved under the previous two-step framework.
We propose an unsupervised low-rank learner called LREN
to solve the HAD task as a low-rank optimization in a low-
dimensional manifold. In consideration of the physically
mixing properties in HS imaging, we design a trainable den-
sity estimation module in the deep latent space to construc-
t a dictionary that can better characterize the complex H-
SIs. Our approach shrinks the solution space to the latent
space of a low-dimensional closed-form solution which can
not only maximize the respective strengths of feature extrac-
tion and density estimation through joint learning but also
avoid the difficulty of decomposing high-dimensional data.
Extensive experiments are conducted to validate the LREN
has higher performance than those state-of-the-art approach-
es for different anomalies.
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