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Abstract

Tensor decomposition is one of the most effective techniques
for multi-criteria recommendations. However, it suffers from
data sparsity when dealing with three-dimensional (3D) user-
item-criterion ratings. To mitigate this issue, we consider ef-
fectively incorporating the side information and cross-domain
knowledge in tensor decomposition. A deep transfer tensor
decomposition (DTTD) method is proposed by integrating
deep structure and Tucker decomposition, where an orthog-
onal constrained stacked denoising autoencoder (OC-SDAE)
is proposed for alleviating the scale variation in learning ef-
fective latent representation, and the side information is in-
corporated as a compensation for tensor sparsity. Tucker de-
composition generates users and items’ latent factors to con-
nect with OC-SDAEs and creates a common core tensor to
bridge different domains. A cross-domain alignment algo-
rithm (CDAA) is proposed to solve the rotation issue between
two core tensors in source and target domain. Experiments
show that DTTD outperforms state-of-the-art related works.

Introduction
With the data explosion in recent years, recommen-
dations are becoming increasingly attractive. Traditional
single-criterion recommendation typically operates on two-
dimensional (2D) user-item ratings (Gai et al. 2019; Xiao,
Liang, and Meng 2019a). In single-criterion recommenda-
tion, there are two primary categories of algorithms: content-
based methods and collaborative filtering (CF) based meth-
ods, where matrix factorization is effective in learning ef-
fective latent factors for users and items (Xiao, Liang, and
Meng 2019b; Xiao et al. 2019). However, they cannot work
well for multi-criteria recommendations that contain multi-
ple criterion-specific ratings. With the emergence of multi-
modal data, multi-criteria recommendation becomes more
important(Lakiotaki, Matsatsinis, and Tsoukias 2011). Fig-
ure 1 shows an example in TripAdvisor: customers rate ho-
tels using multiple criteria (in red) such as value, service,
atmosphere, food and overall, where the side information of
customers and hotels is provided (in blue).

Prior multi-criteria techniques can be briefly classi-
fied into three categories: heuristic neighborhood-based
∗Corresponding author.
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Figure 1: Multi-criteria ratings and the side information

approaches (Lakiotaki, Matsatsinis, and Tsoukias 2011),
aggregation-based approaches (Lakiotaki, Tsafarakis, and
Matsatsinis 2008), and model-based approaches (Sahoo
et al. 2012). Heuristic neighborhood-based approaches at-
tempt to use various multi-criteria similarity metrics to col-
lect the neighbors of a targeted user, and then estimate un-
known ratings based on the known ratings of those neigh-
bors (Mikeli, Apostolou, and Despotis 2013). Aggregation-
based approaches aim to build a mapping to aggregate
multiple criterion-specific ratings by assuming that there
is a certain relation between the overall rating and other
criterion-specific ratings (Lakiotaki, Tsafarakis, and Mat-
satsinis 2008). Model-based approaches learn a model by
leveraging the observed multi-criteria ratings and then em-
ploying the model to execute prediction (Sahoo et al. 2012).

Tensor decomposition is a milestone of model-based tech-
niques. Many related techniques have been developed for
multi-criteria recommendations (Bhargava et al. 2015; Yao
et al. 2015), but all these suffer from sparsity problem. Al-
though single-criterion recommendations using matrix fac-
torization consider to absorb the side information and the
knowledge from relevant domains to enrich priors and con-
front sparsity (Chen, Wang, and Yin 2021; Dong et al. 2017),
no prior work in multi-criteria recommendations incorpo-
rates such information into tensor decomposition.

In this paper, we integrate the side information and knowl-
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edge transfer into Tucker decomposition to solve the spar-
sity issue in multi-criteria recommendations. The key chal-
lenges are as follows: 1) How to transfer knowledge from
source to target domain in cross-domain Tucker decompo-
sition? 2) How to make sure that effective latent represen-
tations learned via deep structure in different domains have
an approximately identical scale? 3) And how to overcome
the rotation between two core tensors that are decomposed
respectively in source and target domains?

In this paper, we propose a deep transfer tensor decompo-
sition (DTTD) scheme. To overcome the first challenge, the
core tensor in tucker decomposition is taken as a bridge to
transfer knowledge from source to target domain. Previous
works (Malik and Becker 2018) show that the Tucker de-
composition is generally not unique. This intuitively follows
from the fact that the core tensor can be arbitrarily struc-
tured and might allow interactions between any component.
Imposing orthogonal constraint can therefore lead to more
relaxed uniqueness properties. Moreover, we propose an or-
thogonal constrained stacked denoising autoencoder (OC-
SDAE) to learn effective latent representation.For the third
challenge, a cross-domain alignment algorithm (CDAA) is
proposed to rotate the core tensor in target domain to ac-
complish alignment with that in source domain. In DTTD,
Tucker decomposition in each of domains generates pri-
vate users and items’ latent factors that are used to connect
with two OC-SDAEs, and learns a common core tensor to
connect different domains. To the best of our knowledge,
no prior work incorporates the side information and cross-
domain knowledge in Tucker decomposition based multi-
criteria recommendations. The contribution of this paper can
be summarized as follows: 1) To solve data sparsity prob-
lem in multi-criteria ratings, we propose DTTD to integrate
deep structure and cross-domain Tucker decomposition; 2)
OC-SDAE is proposed to learn effective latent representa-
tion that has a small scale variation; CDAA is proposed to
rotate the core tensor in target domain to accomplish align-
ment with that in source domain; 3) An alternative optimiza-
tion algorithm is proposed because joint-optimization is un-
available in this case; 4) Experiment results on three datasets
demonstrate the effectiveness of our proposed DTTD.

Related Work
Multi-criteria recommendation has been studied over
decades and can be briefly grouped into three categories:
heuristic neighborhood-based approaches (Adomavicius
and Kwon 2007; Lakiotaki, Matsatsinis, and Tsoukias 2011;
Mikeli, Apostolou, and Despotis 2013), aggregation-based
approaches (Lakiotaki, Tsafarakis, and Matsatsinis 2008;
Jannach, Karakaya, and Gedikli 2012), and model-based ap-
proaches (Sahoo et al. 2012). Model-based approaches aim
to learn a predictive model and then employ the model to
estimate the ratings. Many techniques have been proposed
for recommendations, including a probabilistic mixture al-
gorithm (Sahoo et al. 2012), an adaptive neuro-fuzzy infer-
ence and self-organizing map clustering (Nilashi, Ibrahim,
and Ithnin 2014), and a multi-linear singular value decom-
position (Li, Wang, and Geng 2008).
Tensor decomposition: This is a milestone of model-based

Figure 2: Rating tensor

approaches and various variants are developed for wide ap-
plications (Lakiotaki, Matsatsinis, and Tsoukias 2011). A
tensor decomposition based ranking is presented in (Ren-
dle et al. 2009) to predict tags for users. Based on ten-
sor decomposition, Bhargava et al. (Bhargava et al. 2015)
tackle context-aware collaborative recommendation by ten-
sor while Yao et al. (Yao et al. 2015) present an applica-
tion in point-of-interest recommendations. And Zhang et
al.(Zhang and Aeron 2017) present a tensor SVD (t-SVD)
that can perfectly recover a tensor with low tubal-rank under
certain standard incoherent condition.
Deep learning: (Hamada and Hassan 2018) uses networks
to learn an aggregation function in multi-criteria recom-
mendation. Its training process is accomplished via parti-
cle swarm optimization. Tallapally et al. (Tallapally et al.
2018) utilize an autoencoder to learn the relationship be-
tween criteria and overall rating. Chen et al. (Chen, Gai,
and Wang 2019) propose a CP factorization based model
which combines side information by integrating deep repre-
sentation learning. However, these works only consider the
single-domain multi-criteria ratings.

Preliminary
Problem Definition. This paper aims to cope with the
data sparsity problem in multi-criteria recommendation and
the rotation problem between two core tensors of source
and target domains. Based on various specific criterion,
multi-criteria recommender systems are to leverage mul-
tiple categories of ratings to make recommendation (Jan-
nach, Zanker, and Fuchs 2014; Lakiotaki, Matsatsinis, and
Tsoukias 2011). Figure 3 shows an example of a 3D user-
item-criterion rating tensor, where each user rates on various
criterion of a given item, and the mark ”?” means an unob-
served rating. Each rating, rijl, corresponds to the case that
the user i rates on the criterion l of item j. Given the sparse
user-item-criterion rating tensor, the goal is to simultane-
ously learn user latent factor, item latent factor and criteria
latent factor, and finally predict the unobserved ratings.
Tucker Decomposition. For convenience, define by Ds
source domain and Dt target domain. And the domain in-
dices are denoted as d ∈ {s, t}. In a recommendation set-
ting, the user-item-criterion matrix Rd ∈ RId×Jd×L can be
decomposed as a sum of rank-1 tensors across all users as in
Figure 3. So we have

arg min
G ,Ud,Vd,C

‖Rd − G ×1 Ud ×2 Vd ×3 Cd‖2 , (1)
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Figure 3: Tucker decomposition

where Ud ∈ RId×f1 , Vd ∈ RJd×f2 and C ∈ RL×f3 rep-
resent the latent factor matrix for users, items and criteria,
respectively; G ∈ Rf1×f2×f3 is the core tensor with show-
ing the level of interaction between different components; f
is the dimension of latent factor space; and the operator ×n

is the n-mode (matrix) product of a tensor with a matrix.
Specifically, G ×n M indicates the product of a tensor

G ∈ RI1×I2×I3···×In with a matrix M ∈ RJ×In , where the
resulting size becomes I1×I2×I3 · · ·×In−1×J×In+1×
· · · × IN . Elementwise, we have

(G ×n M )i1···in−1jin+1···iN
=

In∑
in=1

gi1i2···iNmjin . (2)

The source domain Ds is connected with the target do-
main Dt via common core tensor G .

Methodology
OC-SDAE. The difference between OC-SDAE and conven-
tional SDAE lies in the orthogonal constraint in the loss
function. In DTTD, the OC-SDAE takes as input the side
information. Considering the OC-SDAE for users in Figure
4, the representation h(u)d,l at each hidden layer and the output
at layer L(u) can be obtained as

h
(u)
d,l = g

(
W

(u)
d,l h

(u)
d,l−1 + b

(u)
d,l

)
,

p̂
(u)
d,i = f

(
W

(u)

d,L(u)h
(u)

d,L(u) + b
(u)

d,L(u)

)
, (3)

where l ∈ {1, 2, · · · , L(u)
d − 1}; g(·) and f(·) are activation

functions for the hidden and output layers. The corrupted
side information p̃

(u)
d,i is the input to the first layer, h(ui)

d,r de-

notes deep representations from the middle layer and p̂
(u)
d,i

denotes the output of the users’ OC-SDAE. OC-SDAE uti-
lizes the orthogonal constraint to alleviate the scale variation
of effective latent factors h(ui)

d,r at the middle layer. By con-
sidering the orthogonal constraint, OC-SADE reconstructs
the input signal using a novel loss function

min
Wu

d
,bu

d

L(u)
d,o =

∑
i

(
p
(u)
d,i − p̂

(u)
d,i

)2
+ λo

∥∥∥I − h
(u)
d,r

T
h
(u)
d,r

∥∥∥2 ,
(4)

where I is the identity matrix. Similar results can be ob-
tained for the items’ OC-SDAE by replacing (u) with (v).
In Figure 4, the users’ (or items’) OC-SDAE takes as input
the side information of users (or items) to learn the latent

representation h
(ui)
d,r (or h

(vj)
d,r ) that is used to compensate

latent factor vectors ud,i (or vd,j) in tensor decomposition.
Cross-Domain Decomposition with CDAA. Cross-domain
Tucker decomposition takes the core tensor as a bridge to
connect different domains. However, as shown in Figure 5,
which looks like a part of Figure 4 but emphasizes more
on the misalignment issue, it is likely that users (or items)
with the similar preference in source and target domains are
placed in different position of rating tensor. In such case,
the knowledge transfer through the core tensor will lead to
a misalignment problem. Therefore, we define an orthogo-
nal transformation matrix in the target domain to align with
the core tensor in the source domain. In order to solve this
problem, the CDAA is proposed by considering a rotation
of core tensor in the target domain. With CDAA, the loss of
cross-domain Tucker decomposition on a rating tensor is

min
θt

Lt =
∑
d

‖Zd � (Rd − G ×1 Ud ×2 Vd ×3 Cd)‖2

+
∥∥∥Us −UtO

(u)
∥∥∥2 + ∥∥∥Vs −VtO

(v)
∥∥∥2 ,

s. t.
(
O(u)

)T
O(u) = I,

(
O(v)

)T
O(v) = I, (5)

where θt =
{
Ud,Vd,Cd,G ,O(u),O(v)

}
; the binary ten-

sor Zd ∈ RId×Jd×Ld is an indicator of sparsity, in which
each element indicates whether the corresponding rating is
observed (= 1) or not (= 0); � is the element-wise produc-
tion; and I is identity matrix.
Loss of DTTD. DTTD learns users, items and criteria’ latent
factor through the following objective function

min
Θ
J =

1

2
(Lt + Lr + La + λfreg) , (6)

where the overall loss function J consists of the loss of
tensor decomposition Lt, the reconstruction loss of the side
information Lr, the approximation error between deep rep-
resentation and latent factors La, and the regularization term
freg preventing overfitting. Firstly, the loss of Tucker de-
composition on a sparse rating tensor is given by Eq. (5).
Secondly, by using the proposed OC-SDAE, the reconstruc-
tion loss of the side information for both users and items is

min
θr={Wu

d
,bu

d
,Wv

d
,bv

d}
Lr =

∑
d

(
αdL(u)

d,o + βdL(v)
d,o

)
, (7)

where θr = {Wu
d ,b

u
d ,W

v
d,b

v
d}, αd and βd are penalty

parameters. Furthermore, the approximation error of deep
representation and latent factor vector for users and items is

min
θa

La =
∑
d

ρd
∑
i

(
ud,i − h

(ui)
d,r

)2
+
∑
d

γd
∑
j

(
vd,j − h

(vj)

d,r

)2
, (8)

where θa =
{
Ud,Vd,W

(u)
d ,b

(u)
d ,W

(v)
d ,b

(v)
d

}
, ρd and γd

are penalty parameters; h(ui)
d,r and h

(vj)
d,r are latent representa-

tion of users and items’ side information, which is extracted
through the OC-SDAE.
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Figure 4: Block diagram of the proposed DTTD

Figure 5: Misalignment in cross-domain decomposition

The last term denotes the regularization term freg as

freg =
∑
d

(∑
i

‖ud,i‖2 +
∑
j

‖vd,j‖2
)
+

∑
d

(
‖W(u)

d ‖
2 + ‖W(v)

d ‖
2 + ‖b(u)

d ‖
2 + ‖b(v)

d ‖
2
)
,

(9)

Optimization of DTTD. Since the latent matrices U and
V are coupled with deep representation, the gradient of core
tensor cannot be derived so the joint-training is unavailable
in this case. Because the core tensor is decoupled from other
components, it can be solved using an alternative optimiza-
tion (Malik and Becker 2018).

To minimize J , we propose an alternative optimization
algorithm that utilizes the following four-step procedure.
Step I: Given all weights Wd and biases bd, the gradients of
J in (6) with respect to ud,i, vd,j , cd,l can be obtained as

r̂d,ijl = g ×1 ud,i ×2 vd,j ×3 cd,l,

∂J
∂ud,i

= −
∑
j

∑
l

zd,ijl
(
rd,ijl − r̂d,ijl

)
+ λud,i

∗ (g ×2 vd,j ×3 cd,l) + ρd
(
ud,i − h

(ui)
d,r

)
,

∂J
∂vd,j

= −
∑
i

∑
l

zd,ijl
(
rd,ijl − r̂d,ijl

)
+ λvd,j

∗ (g ×1 ud,i ×3 cd,l) + γd
(
vd,j − h

(vj)

d,r

)
,

∂J
∂cd,l

= −
∑
i

∑
j

zd,ijl
(
rd,ijl − r̂d,ijl

)
+ λcd,l

∗ (g ×1 ud,i ×2 vd,j) , (10)

where the binary zd,ijl indicates whether the corresponding
rating is observed (=1) or not (=0).
Step II - Update from CDAA: The transformation matrix is
obtained by solving the following optimization problem

O(u) = arg min
O(u)

∥∥∥Us −UtO
(u)
∥∥∥2

s. t.
(
O(u)

)T
O(u) = I. (11)

Update user’s latent representation Ut in target domain as
Ũt = UtO

(u). Similarly, we can update item’s latent repre-
sentation Vt in the target domain as Ṽt = VtO

(v).
Step III: Fixed the private latent factors Ud , Vd and Cd,
the core tensor G can be updated as

R̂d = (G ×1 Ud ×2 Vd ×3 Cd)

G ← G �

√√√√√ ∑
d∈(s,t) Ud

T (Zd �Rd)Vd
TCd

T∑
d∈(s,t) Ud

T
(
Zd � R̂d

)
Vd

TCd
T
.

(12)

Step IV: Fixed the latent factor matrices U, V and C,
all weights and biases in OC-SDAEs can be learned using
stochastic gradient decent (SGD) method. So, we have

∂J
∂W

(u)
d

= −ρd
∑
i

(
ud,i − h

(ui)
d,r

) ∂h(ui)
d,r

∂W
(u)
d
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+ αd

∑
i

(
p
(u)
d,i − p̂

(u)
d,i

) ∂p̂
(u)
d,i

∂W
(u)
d

+ λW
(u)
d

− λ1

∑
i

(
I − h

(ui)
d,r

T
h
(ui)
d,r

) ∂h(ui)
d,r

∂W
(u)
d︸ ︷︷ ︸

Effect of user’s orthogonal constraint

,

∂J
∂W

(v)
d

= −γd
∑
j

(
vd,j − h

(vj)

d,r

) ∂h(vj)

d,r

∂W
(v)
d

+ βd
∑
j

(
p
(v)
d,j − p̂

(v)
d,j

) ∂p̂
(v)
d,j

∂W
(v)
d

+ λW
(v)
d

− λ2

∑
i

(
I − h

(vi)
d,r

T
h
(vi)
d,r

) ∂h
(vi)
d,r

∂W
(v)
d︸ ︷︷ ︸

Effect of item’s orthogonal constraint

, (13)

where λ1 = αd ∗λo, and λ2 = βd ∗λo. ∂J
∂b

(u)
d

and ∂J
∂b

(v)
d

can

be easily obtained by replacing Wd with bd in (13). Iterate
four steps above until convergence.

Experiments
Datasets: To evaluate our proposed algorithm, we use
three public datasets, two from TripAdvisor (TA) and
one from RateBeer (RB). They are commonly used for
evaluating the performance of recommendation (Jannach,
Karakaya, and Gedikli 2012; McAuley, Leskovec, and Ju-
rafsky 2012). All three datasets are independent from each
other. TripAdvisor-12M (TA-12M): This dataset contains
177, 614 records given by 1, 475 users based on 4 criteria
including value, location, service, and overall for 3, 447
hotels. Each user gives at least 2 ratings. The sparsity is
around 99.12%. TripAdvisor-20M (TA-20M): This dataset
contains 246, 698 records given by 4, 503 users based on
8 criteria including value, location, cleanness, checkin,
business, rooms, service, and overall for 6, 702 hotels.
The sparsity is around 99.89%. RateBeer(RB): This dataset
contains 1, 326, 451 records given by 2, 167 users for 3, 109
beers based on 5 criteria including appearance, aroma,
palate, taste and overall. The sparsity is around 96.20%.
Side information: For RB dataset, the side information of
users contains hometown, registration date, favorite style
and 10 different scores, which are encoded into a binary vec-
tor of length 130, by using the method in (Wang et al. 2018).
Similarly, the side information of items contains the item’s
brewery, ABV, and style, which are encoded into a binary
vector of length 30. For TA datasets, the user and item ad-
ditional matrices are generated similarly as RB. The side in-
formation of users contains hometown, registration date, zip
code, contributions and followers, which are encoded into
a binary vector of length 106. And the side information of
items contains the item’s address, the overall rating, and 14
details of hotel amenities, which are encoded into a binary
vector of length 134.
Baselines: In order to evaluate the performance, we consider
the following baselines in our experiments: AFBM: Ag-
gregation function based method (Adomavicius and Kwon

Alg. RB(s) vs TA12M(t) RB(s) vs TA20M(t)
60% 80% 60% 80%

AFBM 1.194 1.152 1.284 1.166
CMF 1.182 1.139 1.268 1.098

HOSVD 1.150 1.059 1.184 1.084
DCF 1.161 1.069 1.216 1.092
HCF 1.083 1.062 1.122 1.070

CCCFNet 1.053 1.043 1.058 1.048
t-SVD 1.149 1.038 1.176 1.061
DTF 0.936 0.922 1.040 0.962

DTTD 0.886 0.876 0.892 0.880
Table 1: Performance comparison in terms of RMSE.

Alg. RB(s) vs TA12M(t) RB(s) vs TA20M(t)
60% 80% 60% 80%

AFBM 0.872 0.806 0.891 0.828
CMF 0.861 0.783 0.886 0.785

HOSVD 0.787 0.721 0.798 0.750
DCF 0.816 0.770 0.825 0.775
HCF 0.738 0.720 0.747 0.744

CCCFNet 0.720 0.713 0.740 0.737
t-SVD 0.747 0.710 0.805 0.744
DTF 0.677 0.663 0.716 0.690

DTTD 0.621 0.608 0.666 0.662
Table 2: Performance comparison in terms of MAE.

2007) employs a matrix factorization to factor the observed
user-criterion rating data, and then uses the learned model
to estimate the ratings of a user on the individual crite-
rion (excluding special overall criterion); CMF: Collective
matrix factorization(Singh and Gordon 2008) is a model
which simultaneously factorizes multiple sources, includ-
ing the user-item matrix and matrices containing the addi-
tional side information; HCF: HCF is a hybrid collabora-
tive filtering model (Dong et al. 2017) which unifies aS-
DAE model with matrix factorization; DCF: Deep collab-
orative filtering (Li, Kawale, and Fu 2015) is a recommen-
dation model which combines probabilistic matrix factor-
ization with marginalized denoising stacked autoencoders
to achieve recommendation; t-SVD: Tensor Singular Value
Decomposition (Zhang and Aeron 2017) is a model to gen-
eralize MF approaches to higher dimensional;
Evaluation metric: Root mean squared error (RMSE),
mean absolute error (MAE), hit ratio (HR) and the nor-
malized discounted cumulative gain (NDCG) (Chen et al.
2021; Chen and Wang 2021; Xiao and Wang 2021) are used
as metrics. We organize TA12M(s) vs TA20M(t), RB(s) vs
TA20M(t) and RB(s) vs TA12M(t) as three pairs for evalu-
ation, where the former acts as the source domain and the
latter acts as the target domain. For all comparison meth-
ods, we train each of them with 60% and 80% percentage
of ratings. We randomly select the training dataset from the
whole dataset, and use the remaining data as the test dataset.
We repeat the evaluation five times with different randomly
selected training data.

Performance Comparison Tables 1 and 2 illustrate the

4014



(a) TA12M(s) vs TA20M(t) (b) RB(s) vs TA20M(t) (c) RB(s) vs TA12M(t)

Figure 6: Top-K recommendation in terms of HR@K.

(a) TA12M(s) vs TA20M(t) (b) RB(s) vs TA20M(t) (c) RB(s) vs TA12M(t)

Figure 7: Top-K recommendation in terms of NDCG@K.

(a) TA12M(s) vs TA20M(t) (b) RB(s) vs TA20M(t) (c) RB(s) vs TA12M(t)

Figure 8: Ablation Study of DTTD.

performance of all methods in terms of the average RMSE
and MAE, where the lowest RMSE/MAE in each dataset
is highlighted in boldface. It is observed that the pro-
posed DTTD achieves the best performance for all cases.
As shown, CCCFNet, HCF, DCF and CMF outperform
AFBM in general cases, and DTTD outperforms t-SVD and
HOSVD, which demonstrate the effectiveness of incorporat-
ing the side information into the multi-criteria ratings (i.e.
3D rating tensor). That DTTD, CCCFNet, HCF and DTF
outperform CMF indicates that deep structure can acquire
a better feature of side information. HCF, DCF, CMF and

AFBM only consider the correlation between arbitrary two
of three dimensions so DTTD and DTF outperform these
methods. And CCCFNet has better performance in RB(s)
vs TA20M(t) and RB(s) vs TA12M(t)(60%) than t-SVD, in-
dicating the effectiveness of cross-domain knowledge and
side information. However, when the multi-criteria ratings
increase and the sparsity of the dataset decreases, t-SVD
has better performance in RB(s) vs TA12M(t)(80%) case.
It shows that multi-criteria ratings play a key role in the pre-
diction of multi-criteria recommendation. That DTTD out-
performs CCCFNet, DCF and HCF indicates that Tucker
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(a) (b) (c)

Figure 9: Analysis of Parameters in terms of NDCG@10:(a) γ and ρ; (b) α and β (c) Dimension of latent factor f .

decomposition method can effectively learn intrinsic inter-
actions among three dimensions, indicating a good fit for
multi-criteria recommendations. DTTD outperforms DTF,
indicating that cross-domain knowledge under orthogonal
constraint can effectively overcome the data sparsity issue.

Top-K Analysis To further evaluate the Top-K item
recommendation, the experimental results of HR@K and
NDCG@K on three datasets with respect to the number of
latent factors are shown in Figure 6 and 7, where K varies
from 2 to 10. It is observed that a similar conclusion could
be drawn from Figure 6 and 7 demonstrating that DTTD
achieves the best performance on three datasets for all cases.
Furthermore, instead of a fixed length of recommendation
list K, Figure 6 and 7 evaluate the Top-K item recommen-
dation by considering a variant K from 2 to 10. Here, the
K we choose is small because users usually pay high atten-
tion to just a few top recommendations. It is observed that as
K increases, the resulting performance gets improved as ex-
pected, because the probability that the target item appears
in the Top-K list is enhanced.

Parameter Analysis To evaluate the effect of various
hyperparameters, we set α, β, γ, ρ in {0.2, 0.4, . . . , 2.0},
and we consider the dimension of latent factor f in
{10, 15, . . . , 40}. In Figure 9(a), NDCG firstly rises up with
the increment of γ, ρ, and then goes down, indicating that the
side information improves accuracy, but it becomes a hold-
back when getting more attention. Figure 9 (b) depicts the
importance of OC-SDAE. The best performance is obtained
when α is set to 0.6 and β is set to 1.0, indicating that users’
side information affects more on NDCG compared to items.
Figure 9 (c) shows that a high dimension of latent factor is
not good to capture implicit information and a relatively low
dimension of latent factors leads to better performance.

Ablation Analysis A careful ablation study is conducted
to justify the effectiveness of DTTD, where each method is
defined as follows:

• DTTDwoTR: DTTD without the knowledge transfer;

• DTTDwoS: DTTD without OC-SDAEs;

• DTTDwoA: DTTD without the alignment algorithm;

• DTTDwoO: Replacing OC-SDAE with SDAE;

• DTTDwoAO: DTTDwoO without alignment algorithm;

• DTTDwoTU: Replacing Tucker decomposition with ma-
trix factorization in DTTD;

All test results of ablation analysis in terms of RMSE are
shown in Figure 8 and a couple of observations are worth
being highlighted as: The best performance is obtained by
DTTD for all cases, indicating that each of components does
contribute to the effectiveness and robustness of the whole
model; DTTD achieves a better performance than DTTD-
woO, indicating that OC-SDAE with the reduction of the
scale variation outperforms SDAE; DTTD achieves a bet-
ter performance than DTTDwoO, indicating that OC-SDAE
with the reduction of the scale variation outperforms SDAE;
DTTD performs better than DTTDwoAO, and DTTDwoAO
performs close to DTTDwoTR indicating that CDAA and
OC-SDAE play a key role in the knowledge transfer via core
tensor, as shown in Figure 5; Removing the side information
leads to a significant drop on the performance especially for
TA datasets, which indicates that incorporating the side in-
formation using OC-SDAE is essential to handle the sparsity
problem in multi-criteria recommendations; Consistent with
the transfer analysis above, the knowledge transfer via core
tensor plays a key role in the performance improvement for
all cases.

Conclusion

In this paper,we propose deep transfer tensor decomposition
(DTTD) method to solve sparsity problem in Tucker decom-
position based recommendations. By considering an orthog-
onal constraint, OC-SDAE has been proposed to acquire
effective latent representation with a small scale-variation.
CDAA has been presented to overcome the rotation between
two core tensors in different domains. The proposed DTTD
can learn effective latent factors by making full use of the
rating tensor, the side information and cross-domain knowl-
edge. We evaluate our DTTD using RMSE, MAE and Top-
K recommendations. Experimental results including vari-
ous detailed analysis demonstrate the effectiveness of cross-
domain Tucker decomposition for sparse multi-criteria rec-
ommendations, exhibiting a superior performance in com-
parison to state-of-the-art techniques.
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