The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

A Scalable Two Stage Approach to Computing Optimal Decision Sets*

Alexey Ignatiev', Edward Lam'?, Peter J. Stuckey', Joao Marques-Silva>

"Monash University, Melbourne, Australia
2CSIRO Data61, Melbourne, Australia
3 ANITI, IRIT, CNRS, Toulouse, France
{alexey.ignatiev,edward.lam,peter.stuckey } @monash.edu, joao.marques-silva @irit.fr

Abstract

Machine learning (ML) is ubiquitous in modern life. Since it
is being deployed in technologies that affect our privacy and
safety, it is often crucial to understand the reasoning behind
its decisions, warranting the need for explainable Al. Rule-
based models, such as decision trees, decision lists, and de-
cision sets, are conventionally deemed to be the most inter-
pretable. Recent work uses propositional satisfiability (SAT)
solving (and its optimization variants) to generate minimum-
size decision sets. Motivated by limited practical scalability
of these earlier methods, this paper proposes a novel approach
to learn minimum-size decision sets by enumerating indi-
vidual rules of the target decision set independently of each
other, and then solving a set cover problem to select a subset
of rules. The approach makes use of modern maximum satis-
fiability and integer linear programming technologies. Exper-
iments on a wide range of publicly available datasets demon-
strate the advantage of the new approach over the state of the
art in SAT-based decision set learning.

1 Introduction

Rapid advances in artificial intelligence and, in particular, in
machine learning (ML), have influenced all aspects of hu-
man lives. Given the practical achievements and the over-
all success of modern approaches to ML (LeCun, Bengio,
and Hinton 2015; Jordan and Mitchell 2015; Mnih et al.
2015), one can argue that it will prevail as a generic com-
puting paradigm and it will find an ever growing range of
practical applications. Unfortunately, the most widely used
ML models are opaque, which makes it hard for a human
decision-maker to comprehend the outcomes of such mod-
els. This motivated efforts on validating the operation of ML
models (Ruan, Huang, and Kwiatkowska 2018; Katz et al.
2017) but also on devising approaches to explainable artifi-
cial intelligence (XAl) (Ribeiro, Singh, and Guestrin 2016;
Lundberg and Lee 2017; Monroe 2018).

One of the major lines of work in XAl is devoted to train-
ing logic-based models, e.g. decision trees (Bessiere, He-
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brard, and O’Sullivan 2009; Narodytska et al. 2018; Hu,
Rudin, and Seltzer 2019; Aglin, Nijssen, and Schaus 2020),
decision lists (Angelino et al. 2017; Rudin and Ertekin 2018)
or decision sets (Lakkaraju, Bach, and Leskovec 2016; Ig-
natiev et al. 2018; Malioutov and Meel 2018; Ghosh and
Meel 2019; Yu et al. 2020), where concise explanations can
be obtained directly from the model. This paper focuses on
the decision set (DS) model, which comprises an unordered
set of if-then rules.

One of the advantages of decision sets over other rule-
based models is that rule independence makes it straight-
forward to explain a prediction: a user can pick any rule
that “fires” the prediction and the rule itself serves as the
explanation. As a result, generation of minimum-size deci-
sion sets is of great interest. Recent work proposed SAT-
based methods for generating minimum-size decision sets
by solving a sequence of problems that determine whether
a decision set of size K exists, with K being the number of
rules (Ignatiev et al. 2018) or the number of literals (Yu et al.
2020) s.t. the decision set agrees with the training data. Un-
fortunately, scalability of both approaches is limited due to
the large size of the propositional encoding.

Motivated by this limitation, our work proposes a novel
approach that splits the DS generation problem into two
parts: (1) exhaustive rule enumeration and (2) computing a
subset of rules agreeing with the training data. In general,
this novel approach enables a significantly more compact
propositional encoding, which makes it scalable for problem
instances that are out of reach for the state of the art. The
proposed approach is inspired by the standard setup used
in two-level logic minimization (Quine 1952, 1955; Mc-
Cluskey 1956). While the first part can be done using enu-
meration of maximum satisfiability (MaxSAT) solutions, the
second part is reduced to the set cover problem, for which
integer linear programming (ILP) is effective. Experiments
on a wide range of datasets indicate that this approach out-
performs the state of the art. The remainder of this paper
presents these developments in detail.

2 Preliminaries

Satisfiability and Maximum Satisfiability. We use the
standard definitions for propositional satisfiability (SAT)



and maximum satisfiability (MaxSAT) solving (Biere et al.
2009). SAT and MaxSAT admit Boolean variables. A literal
over Boolean variable x is either the variable x itself or its
negation —w. (Given a constant parameter o € {0, 1}, we use
notation x@ to represent literal x if ¢ = 1, and to represent lit-
eral —x if 0 = 0.) A clause is a disjunction of literals. A ferm
is a conjunction of literals. A propositional formula is said to
be in conjunctive normal form (CNF) or disjunctive normal
form (DNF) if it is a conjunction of clauses or disjunction of
terms, respectively. Whenever convenient, clauses and terms
are treated as sets of literals. Formulas written as sets of sets
of literals (either in CNF or DNF) are described as clausal.
We will make use of partial maximum satisfiability (Par-
tial MaxSAT) (Biere et al. 2009, Chapter 19), which can be
formulated as follows. A partial CNF formula can be seen
as a conjunction of hard clauses H (which must be satis-
fied) and soft clauses S (which represent a preference to sat-
isfy those clauses). The Partial MaxSAT problem consists in
finding an assignment that satisfies all the hard clauses and
maximizes the total number of satisfied soft clauses.

Classification Problems and Decision Sets. We follow
the notation used in earlier work (Bessiere, Hebrard, and
O’Sullivan 2009; Lakkaraju, Bach, and Leskovec 2016; Ig-
natiev et al. 2018; Yu et al. 2020). Consider a set of features
F ={1,...,K}. The domain of possible values for feature
r € [K] is D,. The complete space of feature values (or fea-
ture space (Han, Kamber, and Pei 2012)) is F = [TX, D,.
The vector f = (f1,...,fk) of K variables f, € D, refers to
a point in F. Concrete (constant) points in [ are denoted by
v=(v1,...,vk), with v, € D,. For simplicity, all the features
are assumed to be binary, i.e. D, = {0, 1},Vr € [K]; categor-
ical and ordinal features can be mapped to binary features
using standard techniques (Pedregosa et al. 2011). There-
fore, whenever convenient, a Boolean literal on a feature r
can be represented as f; (or —f;, resp.), denoting that feature
fr takes value 1 (value O, resp.).

Consider a standard classification scenario with training
data & ={ej,...,em}. A data instance (or example) e; € £ is
a pair (v;,¢;) where v; € T is a vector of feature values and
¢; € C is a class. An example ¢; can be seen as associating
a vector of feature values v; with a class ¢; € C. This work
focuses on binary classification problems, i.e. C = {©,®}
but the proposed ideas are easily extendable to the case of
multiple classes. Given example ¢; = (v;,¢;) € £ and the pib

. 1—v; - . L
component v;, of v;, literal f; """ is said to discriminate e;

because f; " £ -y, i.e. £ falsifies example ¢; when
it is considered as a conjunction of feature literals. The con-
cept of example discrimination can be extended to terms.

Examples ¢;,e; € £ associating the same set of feature
values with the opposite classes are referred to as over-
lapping. We assume wlog. that the training data £ is per-
fectly classifiable, i.e. £ partially defines a Boolean function
¢ : F — C — in other words, there are no overlapping ex-
amples in £. Otherwise, either ¢; or e j can be removed from
dataset £, incurring an error of 1. In general, repeated “col-
lisions” can be resolved by taking the majority vote, which
results in highest possible accuracy on training data.
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The objective of classification in ML is to devise a func-
tion ¢ that matches the actual function ¢ on the train-
ing data £ and generalizes suitably well on unseen test
data (Firnkranz, Gamberger, and Lavrac 2012; Han, Kam-
ber, and Pei 2012; Mitchell 1997; Quinlan 1993). In many
settings, function ¢ is not required to match ¢ on the com-
plete set of examples £ and instead an accuracy measure
is considered. Furthermore, in classification problems one
conventionally has to optimize with respect to (1) the com-
plexity of @, (2) the accuracy of the learnt function (to make
it match the actual function ¢ on a maximum number of ex-
amples), or (3) both. As this paper assumes that the training
data does not have overlapping instances, we aim solely at
minimizing the representation size of the target ML models.

This paper focuses on learning representations of ¢ cor-
responding to decision sets (DS) (Lakkaraju, Bach, and
Leskovec 2016; Ignatiev et al. 2018; Malioutov and Meel
2018; Ghosh and Meel 2019; Yu et al. 2020). A decision
set is an unordered set of rules. Each rule m is from the
set R = [15.,{f,,~f,,u}, where u represents a don’t care
value. For each example e € £, a rule of the form & = ¢,
7w € R, ¢ € C is interpreted as “if the feature values of ex-
ample e agree with 7 then the rule predicts that example e
has class ¢”. Hereinafter, we will be dealing with learning
minimum-size decision sets, with the size measure being ei-
ther the number of rules in the decision set or the total num-
ber of literals in it (sometimes referred to as fotal size). Note
that because rules in decision sets are unordered, some rules
may overlap, i.e. multiple rules ; € R may agree with some
instance of the feature space F. It may also happen that none
of the rules of a decision set apply to some instances of I
Example 1. Consider the following dataset of four data in-
stances representing the “ro date or not to date?” example
by Domingos (2015):

# Day Venue Weather TV Show Date?
e;  Weekday Dinner Warm Bad No
er  Weekend Club Warm Bad Yes
e3  Weekend Club Warm Bad Yes
eq  Weekend Club Cold Good No

This data serves to predict whether a friend accepts an invi-
tation to go out for a date given various circumstances. An
example of a valid decision set for this data is the following:

IF TV Show = Good THEN Date = No
IF Day = Weekday THEN Date = No
IF TV Show = Bad A Day = Weekend THEN Date = Yes

This DS has 3 rules and a rotal size of 7 (1 for each literal
on the left and right, or alternatively, 1 for each literal on the
left and 1 for each rule). It does not exhibit rule overlap for
examples in [F while the following decision set does:

IF TV Show = Good THEN Date = No
IF Day = Weekday THEN Date = No
IF Weather = Warm A Day = Weekend THEN Date = Yes

Here, the first and third rules overlap for all examples with
feature values Weather = Warm and TV Show = Good. [



3 Related Work

Rule-based ML models can be traced back to around the
70s and 80s (Michalski 1969; Shwayder 1975; Hyafil and
Rivest 1976; Breiman et al. 1984; Quinlan 1986; Rivest
1987). To our best knowledge, decision sets first appear as
an unordered variant of decision lists (Rivest 1987; Clark
and Niblett 1989) in (Clark and Boswell 1991). The use
of logic and optimization for synthesizing a disjunction of
rules matching a given training dataset was first tried in (Ka-
math et al. 1992). Recently, (Lakkaraju, Bach, and Leskovec
2016) argued that decision sets are more interpretable than
decision trees and decision lists.

Our work builds on (Ignatiev et al. 2018; Yu et al. 2020)
where SAT-based models were proposed for training deci-
sion sets of smallest size. The method of (Ignatiev et al.
2018) minimized the number of rules in perfect decision
sets, i.e. those that agree perfectly with the training data,
which is assumed to be consistent; it was also shown to
significantly outperform the smooth local search approach
of (Lakkaraju, Bach, and Leskovec 2016). Rule minimiza-
tion was then followed by minimization of the total number
of literals used in the decision set, which resulted in a lexico-
graphic approach to the minimization problem. In contrast,
(Yu et al. 2020) focused on minimizing the total number of
literals in the target DS. This work showed that minimiz-
ing the number of rules is more scalable for solving the per-
fect decision set problem since the optimization measure, i.e.
the number of rules, is more coarse-grained. However, min-
imizing the total number of literals was shown to produce
significantly smaller and, thus, more interpretable target de-
cision sets. Furthermore, they showed that sparse decision
sets (minimizing either the number of literals or the num-
ber or rules) provide a user with yet another way to produce
a succinct classifier representation, by trading off its accu-
racy for smaller size. Sparse decision sets were also consid-
ered in (Malioutov and Meel 2018; Ghosh and Meel 2019)
where the authors proposed a MaxSAT model for represent-
ing one target class of the training data. ILP was also applied
to compute a variant of sparse decision sets (Dash, Giinliik,
and Wei 2018). As was shown in (Yu et al. 2020), sparse
decision sets, although are much easier to compute, achieve
lower test accuracy compared to perfect decision sets. As a
result, the focus of this work is solely on improving scala-
bility of computing perfect decision sets, i.e. sparse models
are excluded from consideration.

4 Decision Sets by Rule Enumeration

Similar to the recent logic-based approaches to learning de-
cision sets (Ignatiev et al. 2018; Malioutov and Meel 2018;
Ghosh and Meel 2019), our approach builds on state-of-the-
art SAT and MaxSAT technology. These prior works con-
sider a SAT or MaxS AT model that determines whether there
exists a decision set of size N given training data £ with
|€| = M examples. The problem is solved by iteratively vary-
ing size N and making either a series of SAT calls or one
MaxSAT call. The main limitation of prior work is the en-
coding formula size, which is O(N x M x K), where N is the
target size of decision set (which is determined either as the
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number of rules (Ignatiev et al. 2018) or as the total num-
ber of literals (Yu et al. 2020)), M is the number of training
data instances and K is the number of features in the training
data. This limitation significantly impairs scalability of these
approaches and hence restricts their practical applicability.
In contrast to the above works, our approach does not aim
at devising a decision set in one step and instead consists of
two phases. The first phase sequentially enumerates all in-
dividual minimal rules given an input dataset. The second
phase computes a minimum-size subset of rules (either in
terms of the number of rules or the total number of literals in
use) that covers all the training data instances. As such, the
approach trades off large encoding size and thus potentially
hard SAT oracle calls for computing a complete decision set
with a (much) larger number of simpler oracle calls, each
computing a single rule, followed by solving the set cover
problem. This algorithmic setup is, in a sense, inspired by
the effectiveness of the standard clausal formula minimiza-
tion approach (Quine 1952, 1955; McCluskey 1956; Bray-
ton et al. 1984; Ignatiev, Previti, and Marques-Silva 2015).

4.1 Decision Sets as DNF Formulas

First, recall that we consider binary classification, i.e. C =
{©,®} but the ideas of this section can be easily adapted
to multi-class problems, e.g. by using one-hot encoding (Pe-
dregosa et al. 2011). Next, let us split the set of training ex-
amples £ into the sets of examples &g, and &5 for the respec-
tive classes s.t. £ =Ey UE5 and Eg NES = 0.

Recall that a decision set is an unordered set of if-then
rules @ = ¢, each associating a set of literals 7 € R, R =

f:l{fr,—' fr,u}, over the feature-values present in rule 7
with the corresponding class ¢ € {©,®}. Following (Ig-
natiev et al. 2018), observe that each set of literals 7 in the
rule forms a term and so every class ¢; € {©,®} in a de-
cision set can be represented logically as a disjunction of
terms, each term representing a conjunction of literals in 7.

Example 2. Consider our example dataset shown in Exam-
ple 1. Assume that features Day, Venue, Weather, and TV
Show are represented with Boolean variables fi, f>, f3, and
fa, respectively. Observe that all the features f,, r € [4],
in the example are binary, and thus each value for feature
fr can be represented either as literal f,. or literal —f,. Let
us map the original feature values to {0,1} such that the
alphabetically-first value is mapped to O while the other is
mapped to 1. The classes No and Yes are mapped to © and
@, respectively. As a result, our dataset becomes

fi L i fa ¢
0 1 1 0 &
1 0 1 0 @
1 0 1 0 &
1 0 0 1 &

Using this binary dataset and the first decision set from Ex-
ample 1 the classes ¢ = © and ¢ = @ are represented as the
DNF formulas ¢ 2 (f2) V (=f1) and ¢ = (=fa A fi) O

In this work, we follow (Ignatiev et al. 2018; Yu et al.
2020) and compute minimum-size decision sets in the form
of disjunctive representations ¢ and @z of classes © and



@. Even though it is simpler to construct rules for one class
when there are only two classes (Malioutov and Meel 2018;
Ghosh and Meel 2019), computing both ¢ and ¢4 achieves
better interpretability. Specifically, if both classes are explic-
itly represented, it is relatively easy to extract explicit and
succinct explanations for any class, but this is not the case
when only one class is computed. This approach also imme-
diately extends to problems with three or more classes.

Without loss of generality, we focus on computing a dis-
junctive representation @g for the class ¢ = @. The same
reasoning can be applied to compute @=. The target DNF
@z must be consistent with the training data, i.e. every term
T € @g, must (1) agree with at least one example ¢; € g and
(2) discriminate all examples e; € 5. Furthermore, each
term T € ¢ must be irreducible, meaning that any subterm
7' C 7 does not fulfill one of the two conditions above.

4.2 Learning Rules

This section describes the first phase of the proposed ap-
proach, namely, how a term 7 satisfying both of the condi-
tions above can be obtained separately of the other terms.
Every term is computed as a MaxSAT solution to a partial
CNF formula
VEHAS 1)
with A and S being the hard and soft parts, described below.
Consider two sets of Boolean variables P and N, |P| =
IN| =K. For every feature f;., r € [K], define variables p, € P
and n, € N. The idea is inspired by the dual-rail encoding
(DRE) of propositional formulas (Bryant et al. 1987), e.g.
studied in the context of logic minimization (Manquinho
et al. 1997; Jabbour et al. 2014). Variables p, and n, are
referred to as dual-rail variables. We assume that p, = 1 iff
fr =1 while n, = 1 iff f, = 0. Moreover, for every feature
fr r € [K], a hard clause is added to H to forbid the feature
taking two values at once:

vre[K] (=prV —ny) 2
The other combinations of values for p, and n, encode the
fact that feature r occurs in the target term 7 positively, neg-
atively, or does not occur at all (when p, = n, =0).
The set of soft clauses S represents a preference to discard
the features from a target term 7 and thus contains a pair of
soft unit clauses expressing that preference:

S= {(=pr), (=ny) | 7 € [K]} 3)
By construction of S and given a MaxSAT solution for (1),
the target term 7 is composed of all features f,, for which
one of the dual-rail variables (either p, or n,) is assigned

to 1 by the solution, i.e. the corresponding soft clauses are
falsified.

Discrimination Constraints. Every example ¢; = (v;,©)
from £ must be discriminated. This can be enforced by us-

. 1—vj, .
ing a clause (V, ¢k fr ""), where constant v;, is the value

of the " feature in example e ;- To represent this in the dual-
rail formulation, we add the following hard clauses to H.:

Viteen V' Sirs

re(K]

“
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where J;, is to be replaced by dual-rail variable p, if v;, =0
and replaced by the opposite dual-rail variable n, if v;. = 1.
Example 3. Consider instance e; = (f1 =0,/ =1,f3 =
1, fs = 0) € & of the running example. To discriminate it,
we add a hard clause (p; Vny Vi3V ps). Indeed, to satisfy
this clause, we have to pick one of the literals discriminating
example ej, e.g. if p; =1 then literal f; occurs in term 7,
which discriminates instance e;. O

Coverage Constraints. To enforce that every term 7 cov-
ers at least one training instance of &, we can use simi-
lar reasoning. Observe that a term & € R covers instance
e; = (vi,ci) € &g iff none of its literals discriminates e;, i.e.
f,liv"" ¢ 1t for any r € [K]. For each example ¢; = (v;,¢;) €
Ea, we introduce an auxiliary variable #; defined by:

K
1 <> —|(\/ 5,',«),

r=1

&)

where §;, is to be replaced by dual-rail variable p, if v;, =0
and replaced by the opposite dual-rail variable n, if v;, = 1.
Now, variable #; is true iff term 7 covers example e;.
Example 4. Consider instance e, = (fi = 1,/ =0, f3 =
1, f4 = 0) € & of the running example. Introduce variable
tr <> =(n1V p2 Vi3V pa) as shown above. If 1, = 1, the liter-
als in the target term 7 cannot discriminate example e;. [

Once auxiliary variables #; are introduced for each exam-
ple ¢; € &y, the hard clause

Vicpen)

can be added H to ensure that any term 7 agrees with at least
one of the training data instances.

The overall partial MaxSAT model (1) comprises hard
clauses (2), (4), (5), (6) and also soft clauses (3). The num-
ber of variables used in the encoding is O(K + M) while
the number of clauses is O(K x M). Recall that earlier
works proposed encoding with O(N x M x K) variables and
clauses, which in some situations makes it hard (or infeasi-
ble) to prove optimality of large decision sets.

Example 5. Consider our aim at computing rules for class &
in the running example. By applying the DRE, one obtains
the formula y = H A S where

(6)

(=p1V—np) A(=p2V—ng)A
(=p3V —n3) A(=paV —ng)A

(p1VmaVn3V pg)A
(n1 V paVp3 \/n4)/\

[tz > —|(n1 V p2Vn3 \/p4)] N
[t3 — ﬁ(nl V p2Vn3 \/p4)] AN
(nV13)

and



Any assignment satisfying the hard clauses H of the dual-
rail MaxSAT formula (1) constructed above defines a term 7
that discriminates all examples of £ and covers at least one
example of Eg; soft clauses S ensure minimality of terms 7.
More importantly, one can exhaustively enumerate all solu-
tions of (1) to compute the set of all such terms (i.e. one can
use the standard trick of adding a hard clause blocking the
previous solution and ask for a new one until no more solu-
tions can be found). Let us refer to this set of terms as 7.
Finally, we claim that as soon as exhaustive solution enumer-
ation for formula (1) is finished, the set of terms 7y covers
every example ¢; € &;. The rationale is that if sets &g and
Eo do not overlap then for any example e; € & there is a
way to cover it by a term 7 s.t. all examples of £ are dis-
criminated by 7. This means that, by construction of (1), for
every variable #;, the hard part H of the formula has a sat-
isfying assignment assigning #; = 1. (Recall that we assume
training data to be perfectly classifiable.)

Example 6. Consider our running example. Observe that a
valid solution for formula y above is {p;,ns} from which
we can extract a term 7w = (fj A —fs) for the target class
¢ = @. The term 7 is added to Tg. Observe that 7 covers
both examples e, and e3 and discriminates examples e; and
e4 from class ©. O

4.3 Smallest Rule Cover

Once the set 7, of all terms for class ¢ = @ is obtained, the
next step of the approach is to compute a smallest size cover
@ of the training examples &g . Concretely, the problem is
to select the smallest size subset @g, of 7Tz that covers all
the training examples. The size can be the either the num-
ber of terms used or the total number of literals used in ¢g;.
Therefore, the problem to solve is essentially the set cover
problem (Karp 1972). Assume that |7g| = L and create a
Boolean variable b; for every term 7; € 7y, indicating that
rule j is selected. Also, consider L x M', M’ = |Eg|, Boolean
constant values a;; s.t. a;; = 1 iff term j covers example i.
Then, the problem of computing the cover with the fewest
number of terms can be stated as:

L
minimize Z bj @)
j=1
L
subject to Y a;;-bj > 1,Vi € [M'] (8)
=1

=
Alternatively, the objective function can be modified to
minimize the total number of literals. Concretely, create a
constant s; € Z s.t. s; = |mj|, © € Te. The problem is then to
L
minimize ) s;-b;
j=1

©))

L
subject to Y a;;-bj > 1,Vi € [M'] (10)
j=1
Example 7. For our running example,
being:
To ={(HAB)(ANS1), (L AB) (R fa)}

The set cover problem for ¢ = & can be seen as the table:

Te| = 4, with terms
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o

111
4ji 1111

sji 2 2 2 2

V(%) 3 T4

This example has trivial solutions because every term covers
all examples of &, i.e. every a;; = 1. When minimizing the
number of terms using the set cover problem (7) and (8), ev-
ery optimal solution contains exactly one term. When mini-
mizing the number of literals using the problem (9) and (10),
every optimal solution contains exactly one term of size 2.

Now, consider class ¢ = &; |Ts| = 4, with terms being
Te =4{(—11),(f2),(=f3),(f1)}. The set cover problem for
¢ = © can be seen as the following table:

m V(%) 3 Ty

si 11 1 1

A valid solution picks columns 7; and 73 as they together
cover £s. Thus, when minimizing the number of terms, the
fewest number of columns to pick s.t. every row has at least
one value “1” is 2, i.e. any optimal solution has cost2. [

Breaking Symmetric Rules. Observe in Example 7 that
the two terms 7r; and 7, in 7 cover the same examples from
Eg. In the context of the set cover problem, such terms are
described as symmetric. It is straightforward that at most one
term in a set of symmetric terms can appear in a solution
because of the minimization in the set cover problem.

Symmetric terms can become an issue if the total number
of terms is exponential on the number of features. This kind
of repetition can be avoided by using the instance coverage
variables #;. Concretely, given a term 7 € 7g, covering a set
&L, C &g of datainstances, one can add a clause (Vg \ e, 1i)
enforcing that any terms discovered later must cover at least
one instance e¢; uncovered by term 7.

While the terms are symmetric for objective (7), there is a
dominance relation for objective (9). Consider a term 7 with
the same coverage as another term p s.t. |p| > 7| — term
7 dominates term p. Given a set cover solution SU{p}, we
can always replace p by 7 to get a no worse solution SU{x}.
Therefore, term p can be ignored during selection.

As term enumeration is done with MaxSAT, i.e. smaller
terms come first, we can use the same method above for
symmetry to eliminate dominated terms, since a dominating
term (a smallest term with the same coverage) will always
be discovered first. Clearly, optimality for objectives (7) and
(9) is still guaranteed if breaking symmetric rules is applied.
Example 8. By breaking symmetric terms, the enumeration
procedure computes only one term for class @ and two terms
for class ©. (Recall that we previously got |Ts| = |Ts| =4.)
Note that all of them are included in the solutions for the
corresponding set cover problems. O

5 Experimental Results

This section evaluates the proposed rule enumeration based
approach in terms of scalability and compares it with the
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Figure 1: Scalability of the competitors.

state of the art of SAT-based learning of minimum-size deci-
sion sets on a variety of publicly available datasets. The ex-
periments were performed in Debian Linux on an Intel Xeon
Silver-4110 2.10GHz processor with 64GByte of memory.
Following the setup of recent work (Yu et al. 2020), the time
limit was set to 1800s for each individual process to run. The
memory limit was set to 8GByte per process.

Prototype Implementation and Selected Competition.
A prototype! of our rule enumeration based approach was
developed as a set of Python scripts, in the following re-
ferred to as ruler. The implementation of rule enumera-
tion was done with the use of the state-of-the-art MaxSAT
solver RC2 (Ignatiev, Morgado, and Marques-Silva 2018,
2019), which proved to be the most effective in MaxSAT
model enumeration?. As a result, the terms are computed
in a sorted fashion, i.e. the smallest ones come first. For
the second phase of the approach, i.e. computing the set
cover, we attempted to solve the problem both (1) with the
RC2 MaxSAT solver and (2) with the Gurobi ILP solver’.
The corresponding configurations of the prototype are called
rulerfc2 and rulerflp, where ‘*’ can either be ‘r’ or ‘I’ mean-
ing that the solver minimizes either the number of rules or
the total number of literals.* Configurations ruler’+b apply
symmetry breaking constraints to reduce the number of im-
plicant rules computed in the first phase of the approach. Fi-
nally, all configurations were set to compute explicit optimal
DNF representations for all classes given a dataset.

The competiting approaches include SAT-based meth-
ods (Ignatiev et al. 2018) MinDS, and MinDS? referred to as
mds, and mds3. The former tool computes the fewest num-
ber of rules while the latter lexicographically minimizes the

! Available as part of https:/github.com/alexeyignatiev/minds.

Zhttps://maxsat-evaluations.github.io/2020.

3hitp://www.gurobi.com.

4We also tried using Gurobi for the first phase but it was signif-
icantly outperformed by the MaxSAT-based solution.
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number of rules and then the number of literals. The second
competitor is a recent SAT-based approach that minimizes
the total number of literals in the model (Yu et al. 2020), in
the following referred to as opt. Note that as the main objec-
tive of this experimental assessment is to demonstrate scala-
bility of the proposed approach, the methods for computing
sparse decision sets (Malioutov and Meel 2018; Ghosh and
Meel 2019; Yu et al. 2020) are intentionally excluded due to
the significant difference in the problem they tackle.

Benchmarks. All datasets considered in the evaluation
were adopted from (Yu et al. 2020) and used unchanged.
These datasets originated from the UCI Machine Learning
Repository” and the Penn Machine Learning Benchmarks®.
The total number of datasets is 1065. The number of one-hot
encoded (Pedregosa et al. 2011) features (training instances,
resp.) per dataset in the benchmark suite varies from 3 to 384
(from 14 to 67557, resp.). Also, since ruler can handle only
perfectly classifiable data, it processes each training dataset
by keeping the largest consistent (non-overlapping) set of
examples. This technique is applied in (Ignatiev et al. 2018;
Yu et al. 2020) as well, which enables one to achieve the
highest possible accuracy on the training data. Motivated by
one of the conclusions of (Yu et al. 2020) stating that per-
fectly accurate decision sets, if successfully computed, are
significantly more accurate than sparse and also heuristic
models, here we do not compare test accuracy of the com-
petitors — we assume test accuracy to be (close to) identical
for all the considered approaches.

Raw Performance. Figure la shows scalability of all
the selected approaches. Observe that the mixed solution
rulery; ,+b demonstrates the best performance being able to
train decision sets for 802 datasets. Second best approach is

rulerfl p+b and copes with 800 benchmarks. Pure MaxSAT-

Shttps://archive.ics.uci.edu/ml.
Shttps://github.com/EpistasisLab/penn-ml-benchmarks.
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Figure 2: Model size comparison.

based ruler’,+b and ruler! ,+b perform worse with 734
and 669 instances solved. This is not surprising because the
structure of set cover problems naturally fits the capabilities
of modern ILP solvers.

Disabling symmetry breaking constraints affects the per-
formance of all configurations of ruler}, which drops sig-
nificantly. When it is disabled, the best such configura-
tion (rulerll.lp) solves 686 benchmarks while the worst one

(ruler’ ,) tackles 556. Here, we should say that the maxi-
mum and average number of rules enumerated if symme-
try breaking is disabled is 326399 and 19604 .4, respectively.
Breaking symmetric rules decreases these numbers to 8865
and 563.7, respectively.

As for the rivals of the proposed approach, the best of
them (mds,) is far behind ruler;, p+b and successfully trains
578 models even though it targets rule minimization, which
is arguably a much simpler problem. Another competitor
(mmds3) lexicographically minimizes the number of rules and
then the number of literals, which is unsurprisingly harder
to deal with, as it solves 398 benchmarks. Finally, the worst
performance is demonstrated by opt, which learns 351 mod-
els. We reemphasize that both opt and rulerll.[p+b compute
minimum-size decision sets in terms of the number of liter-
als. However, the proposed solution outperforms the compe-
tition by 449 benchmarks. Note that due to the large encod-
ing size, opt (mds,, resp.) is practically limited to optimal
models having a few dozens of literals (rules, resp.). There
is no such limitation in ruler} — in our experiments, it could
obtain minimum-size models having thousands of literals in
total within the given time limit. The runtime comparison
for rulerfl p+b and opt is detailed in Figure 1b — observe that

except for a few outliers, rulerfl p+b outperforms the rival by
up to four orders of magnitude.

Rules vs. Literals. Here we demonstrate that literal mini-
mization results in smaller and thus more interpretable mod-
els than rule minimization. Figure 2a compares the total
number of literals in the models of mds, and rulerf.lp+b

while Figure 2b compares the model sizes for mds3 and
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rulerflp+b. To make a valid comparison, we used only in-
stances solved by both approaches in each pair. Among the
datasets used in of Figure 2a, the average number of literals
obtained by mds; and rulerflp+b is 116.2 and 62.2, respec-
tively — the advantage of literal minimization is clear. Also,
as shown in Figure 2b, lexicographic optimization results in
models almost identical in size to the models produced by
rulerfl p+b. This suggests that applying the approach of mds?
may in general pay off in terms of solution size, by signif-
icantly sacrificing scalability compared to mds, and, more
importantly, to rulerflp+b (398 vs. 578 vs. 800 instances
solved, which represents 37.4%, 54.7%, and 75.1% of all
1065 benchmarks, respectively).

6 Conclusions

This paper has introduced a novel approach to learning
minimum-size decision sets based on individual rule enu-
meration. The proposed approach has been motivated by the
standard twofold methods applied in two-level logic mini-
mization (Quine 1952, 1955; McCluskey 1956) and split the
problem into two parts: (1) exhaustively enumerating indi-
vidual rules followed by (2) solving the set cover problem.
The basic approach has been additionally augmented with
symmetry breaking, enabling us to significantly reduce the
number of rules produced. The approach has been applied
to computing minimum-size decision sets both in terms of
the number of rules and in terms of the total number of lit-
erals. The proposed approach has been shown to outperform
the state of the art in logic-based learning of minimum-size
decision sets by a few orders of magnitude.

As the proposed approach targets computing perfectly ac-
curate decision sets, a natural line of future work is to ex-
amine ways of applying it to computing sparse decision sets
that trade off accuracy for size. Another line of work is to
address the issue of potential rule overlap wrt. the proposed
approach. Finally, it is of interest to apply similar rule enu-
meration techniques for devising other kinds of rule-based
ML models, e.g. decision lists and decision trees.
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