
A Sharp Leap from Quantified Boolean Formula to
Stochastic Boolean Satisfiability Solving

Pei-Wei Chen,1 Yu-Ching Huang,1 Jie-Hong R. Jiang1,2

1 Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
2 Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan

perrypeiweichen@gmail.com, nk930439gj94@gmail.com, jhjiang@ntu.edu.tw

Abstract

Stochastic Boolean Satisfiability (SSAT) is a powerful rep-
resentation for the concise encoding of quantified decision
problems with uncertainty. While it shares commonalities
with quantified Boolean formula (QBF) satisfiability and
has the same PSPACE-complete complexity, SSAT solving
tends to be more challenging as it involves expensive model
counting, a.k.a. Sharp-SAT. To date, SSAT solvers, espe-
cially those imposing no restrictions on quantification lev-
els, remain much lacking. In this paper, we present a new
SSAT solver based on the framework of clause selection and
cube distribution previously proposed for QBF solving. With
model counting integrated and learning techniques strength-
ened, our solver is general and effective. Experimental results
demonstrate the overall superiority of the proposed algorithm
in both solving performance and memory usage compared to
the state-of-the-art solvers on a number of benchmark formu-
las.

1 Introduction
Stochastic Boolean Satisfiability (SSAT) is a formulation of
games against nature (Papadimitriou 1985; Majercik 2009).
While it is a generalization of the satisfiability of Quan-
tified Boolean Formula (QBF) with the addition of ran-
domized quantification, its computational complexity re-
mains the same as QBF in the PSPACE-complete class.
On the one hand, the generality of SSAT makes it able to
concisely encode many interesting decision problems with
uncertainty, such as probabilistic planning (Littman, Ma-
jercik, and Pitassi 2001), trust management (Freudenthal
and Karamcheti 2003), belief network inference (Littman,
Majercik, and Pitassi 2001), and probabilistic equivalence
checking (Lee and Jiang 2018). On the other hand, the ran-
domized quantification of SSAT imposes computation so-
phistication due to its counting nature in calculating the sat-
isfying probability of a formula. It involves not just Boolean
Satisfiability (SAT), asking are there solutions, but the Sharp
Satisfiability (Sharp-SAT), a.k.a. Model Counting, asking
how many solutions. As Sharp-SAT is #P-complete, its
computation is considered more challenging than the SAT
problem of NP-completeness. This challenge is due to the
powerfulness of a counting oracle as manifested by Toda’s

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Theorem (Toda 1991), which states that any problem in the
Polynomial Hierarchy (PH) can be reduced in polynomial
time to a counting problem for a single query to a #P-oracle,
and thus PH ⊆ P#P.

To date, there are only a few SSAT solvers publicly avail-
able. Among the state-of-the-art solvers, DC-SSAT (Majer-
cik and Boots 2005), a Davis-Putnam-Logemann-Loveland
(DPLL)-based SSAT solver, divides the problem into sub-
problems and conquers them by exploiting structural char-
acteristics of completely observable probabilistic planning
(COPP) problems. erSSAT (Lee, Wang, and Jiang 2018)
takes advantage of the idea of clause selection (Janota and
Marques-Silva 2015), a QBF solving technique, to effec-
tively prune the search space of exist-random quantified
SSAT formulas, which is known as E-MAJSAT (Littman,
Goldsmith, and Mundhenk 1998). reSSAT (Lee, Wang, and
Jiang 2017) utilizes modern SAT solvers and model coun-
ters, and employs the generalization of assignments to effi-
ciently explore the search space of random-exist quantified
SSAT formulas. Among the above, DC-SSAT is the only
solver that can cope with general SSAT formulas, without
restricting the quantification structure. In this work, we are
concerned with solving general SSAT formulas.

Unlike DC-SSAT, a DPLL-based search algorithm im-
plemented from scratch, our algorithm takes an off-the-
shelf SAT solver and model counter as blackbox subrou-
tines for computation. Inspired by erSSAT and reSSAT,
which incorporate clause selection and model counting into
SSAT solving for two quantification levels, we devise a gen-
eral algorithm and overcome the level limitation. Devising
the pruning technique and counting method for randomized
quantification levels is the key to general SSAT solving.
Different from erSSAT, which only applies pruning tech-
niques at existential levels, our approach additionally ap-
plies pruning at randomized levels. The pruning technique
and counting method at randomized levels are also different
from those of reSSAT. Particularly reSSAT uses minterm
generalization and the return value of a subproblem is re-
stricted to either 0 or 1. In contrast, we calculate the proba-
bility based on clause selection and deal with return values
of arbitrary probability constant between 0 and 1. These dif-
ferences overcome the limitations of erSSAT and reSSAT
on two-level SSAT formulas and allow us to solve gen-
eral multi-level SSAT formulas. Combined with several en-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

3697

hancement techniques, the performance of the proposed al-
gorithm is further improved. As the algorithm uses a SAT
solver and model counter as standalone engines, it can di-
rectly profit from the advancement of these solvers with-
out modifications. Moreover, the algorithm can be easily
modified for incomplete SSAT by deriving lower and upper
bounds to the exact solution. With evaluation on a variety of
benchmarks, experimental results show the overall superior-
ity of the proposed algorithm in both solving performance
and memory usage compared to the state-of-the-art solvers.

2 Preliminaries
For Boolean connectives, we denote conjunction by “∧”
(sometimes “·” or even being omitted in an expression for
brevity), disjunction by “∨”, biconditional by “↔” (or “≡”),
and negation by “¬” (or an overline). For Boolean values,
TRUE and FALSE are denoted by “>” and “⊥”, respectively.
In a Boolean formula, a literal is either a variable (referred to
as a positive-phase literal) or the negation of a variable (re-
ferred to as a negative-phase literal); a cube is a conjunction
of literals; a clause is a disjunction of literals. A Boolean
formula is in the conjunction normal form (CNF) if it is ex-
pressed as a conjunction of clauses. A cube is referred to as
a minterm with respect to a set of variables if all variables
in the set appear in the cube. The corresponding variable of
a literal l is denoted as var(l). For notational convenience,
we treat a cube and a clause as a set of literals, and a CNF
formula as a set of clauses.

A Boolean formula φ over a set of variables X defines a
unique Boolean function B|X| → B, where |X| is the car-
dinality of X . An assignment τ over a set of variables X ,
denoted as τ(X), is a mapping τ : X → B. An assignment
τ is called full if every variable x ∈ X is mapped by τ to
some Boolean value, i.e., τ(x) ∈ {⊥,>}; otherwise, it is
called partial. We alternatively treat an assignment τ(X) as
a cube consisting of literals {l | l = x for τ(x) = >, l =
¬x for τ(x) = ⊥, and x ∈ X}. By abusing the notation,
we use x ∈ τ to mean τ(x) = > and ¬x ∈ τ to mean
τ(x) = ⊥. The application of an assignment τ to a Boolean
formula φ, called cofactoring, results in a new formula φ′
obtained by substituting every occurrence of each variable
x in φ with Boolean value τ(x). Given a Boolean formula
φ and a cube c, the cofactor of φ on c, denoted as φ|c, is
derived by iteratively cofactoring φ on each literal l ∈ c.

2.1 Stochastic Boolean Satisfiability
An SSAT formula over variables X =

⋃i=n
i=1 Xi, with Xi 6=

∅, Xi ∩ Xj = ∅ for i 6= j, can be expressed in the prenex
form

Φ = Q1X1, ..., QnXn.φ(X1, ..., Xn) (1)

where Q1X1...QnXn, for Qi ∈ {∃,

R

} being either an ex-
istential ∃ or randomized

R

quantifier and Qi 6= Qi+1, is
called the prefix, and φ, a quantifier-free Boolean formula,
is called the matrix. We denote the sets of existentially and
randomly quantified variables as X∃ and X R, respectively.
For variable x ∈ Xi, we define the quantification level
of x, denoted level(x), to be i. We also extend the notion
of quantification level to a literal l, with level(l) meaning

level(var(l)). When a randomized quantifier is applied on a
variable x ∈ X R, it is associated with a probability px in in-
terval [0, 1], denoted as

Rpxx, indicating x = > and ⊥ with
probabilities px and (1− px), respectively. In the sequel, we
shall assume φ being expressed in CNF.

The semantics of an SSAT formula Φ is concerned with its
expectation of satisfaction by the following interpretation.
Let x be the outermost variable in the prefix of Φ. Then the
satisfying probability of Φ, denoted as Pr[Φ], can be com-
puted recursively by the rules:

1. Pr[>] = 1,
2. Pr[⊥] = 0,
3. Pr[Φ] = max{Pr[Φ|¬x],Pr[Φ|x]}, if x ∈ X∃
4. Pr[Φ] = (1− px) Pr[Φ|¬x] + px Pr[Φ|x], if x ∈ X R

We remark that an SSAT formula can be extended by
further allowing the universal quantifier ∀. This extension,
however, does not affect the PSPACE-complete computation
complexity of SSAT. Under this extension, the quantified
Boolean formula (QBF) is a special case of SSAT without
randomized quantifiers. As the extension does not change
much the formulation, for simplicity we focus on solving
SSAT formulas involving only existential and randomized
quantifiers.

2.2 Model Counting
Given a CNF formula φ over variables X , the model count-
ing, or Sharp-SAT, problem asks how many satisfying as-
signments are there. Generally, one may ask a weighted ver-
sion of model counting with respect to some weight function
ω : LX → N , where LX = {x,¬x | x ∈ X} is the literal
set of X and N is a set of weight values. The weight of an
assignment τ is defined as the product of the weights of the
literals in τ . In this work, the weight function is specialized
with ω(x) ∈ [0, 1], and ω(¬x) = 1 − ω(x) for any x ∈ X .
Thereby, ω(x) corresponds to the probability Pr[x = >],
and the summation of the weights of all satisfying assign-
ments of a given CNF formula corresponds to its satisfying
probability with respect to ω.

A model counting algorithm can be exact (Sang et al.
2004; Sang, Beame, and Kautz 2005) or approximate
(Gomes, Sabharwal, and Selman 2006; Gomes et al. 2007;
Chakraborty, Meel, and Vardi 2016) depending on whether
it gives an exact answer. An approximate model counter
may possibly provide some upper and/or lower bound on
the weight summation of satisfying assignments with some
confidence level.

2.3 Clause Selection in QBF Solving
Clause selection (Janota and Marques-Silva 2015) is a QBF
solving technique to track the clause satisfaction status and
to facilitate learning using abstract variables. Given a QBF
with its matrix φ = C1 ∧ · · · ∧Cn, the subclause of a clause
Ci consisting of literals {l ∈ Ci | level(l) ./ k} with respect
to some k is denoted as C./ki , where ./ ∈ {=, <,≤, >,≥}.
For conciseness, we abbreviate C=k

i as Cki in the sequel.
A clause Ci is said to be selected at quantification level

k if all literals in C≤ki are valuated to ⊥; otherwise, Ci is

3698

said to be deselected at quantification level k. Note that once
a clause is deselected at quantification level j, it remains
deselected at quantification levels greater than j, regardless
of the valuations of the literals in C>ji . To track whether
clauses have been deselected, for each quantification level
j a selection variable sji ≡ ¬C

≤j
i is introduced for each

clause Ci.
The way clause selection works can be intuitively ex-

plained under the game interpretation of QBF played be-
tween the ∃-player and the ∀-player. In round j withQj = ∃
(resp. ∀) for j = 1, . . . , n in order, the ∃-player (resp. ∀-
player) assigns the variables in Xj , with the intention to sat-
isfy (resp. falsify) the matrix. The QBF is true if and only
if there exists a winning strategy for the ∃-player that sat-
isfies the matrix, regardless of how the ∀-player plays. The
clause selection technique explores the search space by find-
ing possible selection statuses of clauses and adding learnt
information to exclude failing strategies for each player. For
example, if the matrix evaluates to⊥, meaning that there is a
set SC of clauses which remain selected at some round of the
game, the ∃-player loses under the current assignments. To
rectify the strategy of the ∃-player, the clause selection tech-
nique backtracks to some previous level and adds a learnt
constraint to enforce a deselection of at least one clause in
SC at the level.

3 From QBF to SSAT Solving
A key observation that enables the extension of the clause
selection framework from QBF to SSAT is explained as fol-
lows. In contrast to QBF solving, for clause-selection-based
SSAT solving, one must explore all possible assignments at
a randomly quantified level before returning to some previ-
ous level. Also, the learning and backtracking conditions in
SSAT are much more stringent than those in QBF. To make
SSAT solving feasible, we introduce the local selection vari-
able tji ≡ ¬C

j
i , which checks whether the valuations of lit-

erals in Cji deselects Ci. If all literals in Cji are valuated to
⊥, we say that Ci is locally selected at level j; otherwise, it
is locally deselected at level j.

Let Tj be the set of local selection variables at level j.
The formula ψj(Xj , Tj) =

∧
Ci∈φ(tji ≡ ¬C

j
i) is called

the selection relation of φ. The application of an assignment
τj(Xj) to φ corresponds to a selection status of clauses at
quantification level j, which can be described by a selec-
tion minterm mTj

= ψj |τj , obtained by applying τj to ψj .
A selection cube cTj

is a selection minterm with some lit-
erals being removed subject to retaining the same satisfying
probability (to be formally stated in Property 2).

Example 1. Consider the SSAT formula Φ:

R0.5x1,

R0.7x2, ∃y1, ∃y2, ∃y3,

R0.4z1,

R0.8z2.

(x1 ∨ y2 ∨ z1)(y3 ∨ z1)(x1 ∨ y1 ∨ y2 ∨ y3)(x2 ∨ y2 ∨ z2)

over variables X1 = {x1, x2}, X2 = {y1, y2, y3}, and
X3 = {z1, z2} in three quantification levels, and with four
clauses in the matrix. For each quantification level j, a local
selection variable tji is introduced for each clause Ci. The

selection relation at level 1, for example, is

ψ1 = (t11 ≡ x1)(t12 ≡ >)(t13 ≡ ¬x1)(t14 ≡ x2).

The assignment τ1 = x1¬x2 over X1 locally selects C1 and
C2 and deselects C3 and C4. The selection status can be
seen from mT1

= ψ1|τ1 = t11t
1
2¬t13¬t14.

4 Algorithm Overview
Consider an SSAT formula of Eq. (1). For each quantifica-
tion level j, we maintain a SAT routine to work on solving
the selection relation ψj . The solving process is performed
recursively. Starting from level 1, we obtain an assignment
τ1 over X1 from solving ψ1 and apply it to Φ, which pro-
duces a subproblem Φ′ = Q2X2, . . . , QnXn.φ|τ1 . By re-
cursively solving Φ′, it returns a probability to the first level.
We then add a learnt clause to ψ1 and create another sub-
problem Φ′′ if SAT(ψ1) = >; otherwise, the space spanned
by variables X1 is completely searched, and the resulting
satisfying probability p is returned. The same procedure is
performed for each subproblem. Depending on the quantifi-
cation type of Q1, different operations are done to obtain
the learnt clause and the returned probability, as detailed in
Algorithms 1 and 2, to be elaborated in Sections 5 and 6,
respectively.

Extended from a similar statement in the context of E-
MAJSAT in (Lee, Wang, and Jiang 2018), Property 1 holds
for general SSAT formulas, and allows effectively search
space pruning for both existential and randomized levels.

Property 1 (Matrix Containment Property). For two
SSAT formulas Φ1 = Q1X1, ..., QnXn.φ1 and Φ2 =
Q1X1, ..., QnXn.φ2 sharing the same prefix, if φ1 ⊆ φ2,
then Pr[Φ2] ≤ Pr[Φ1].

For φ1 ⊆ φ2, any assignment satisfying φ2 satisfies
φ1. Hence all assignments contributing to Pr[Φ2] also con-
tributes to Pr[Φ1]. Observe that Property 1 holds regardless
of the quantifier types at each level. It plays a key role in the
following sections.

Note that in the following sections, a considered SSAT
formula can be an induced formula after some variables be-
ing assigned. That is, only the selected clauses and unas-
signed variables remain in the considered formula.

5 Solving Existentially Quantified Levels
Consider an SSAT formula of the form

Φ = ∃X1, ..., QnXn.φ

To compute the satisfying probability of Φ, it suffices to
enumerate and apply all possible assignments τ(X1) and
solve the induced subproblems Φ|τ . Clearly, this brute-force
approach is computationally expensive. Extending the idea
from the E-MAJSAT solver erSSAT to cope with multi-
level SSAT formulas, this problem can be solved more effi-
ciently with clause selection introduced.

Consider an assignment τ1(X1) and its application to φ
which is φ|τ1 . For any other assignments τ2(X1) where
φ|τ1 ⊆ φ|τ2 , by Property 1, we get Pr[Φ|τ2] ≤ Pr[Φ|τ1].
Because Q1 = ∃ and Pr[Φ|τ2] ≤ Pr[Φ|τ1], assignment τ2

3699

Algorithm 1 SolveSSAT-∃(Φ)

Input: Φ : Φ = ∃X1...QnXn.φ where Qi ∈ {∃,

R

}
Output: pmax : the satisfying probability of Φ,

τmax : the assignment over X1 s.t. Pr[Φ|τmax] = pmax

1: pmax := 0
2: τmax := ∅
3: if n = 1 // Last level
4: if SAT(φ) = >
5: pmax := 1
6: τmax := the found model of φ
7: else
8: ψ1(X1, T1) :=

∧
Ci∈φ(t1i ≡ ¬C1

i)

9: while SAT(ψ1) = >
10: τ := the found model of ψ1 for variables in X1

11: p := SolveSSAT-

R

(Φ|τ)
12: if p > pmax

13: pmax := p
14: τmax := τ
15: cT1 := RemoveNegativeLits(ψ1|τ)
16: CL := ¬cT1

17: ψ1 := ψ1 ∧ CL
18: if p = 0
19: AddLearntClausesToPriorLevels(CL)
20: return (pmax, τmax)

needs not be explored if τ1 has been explored. For all such
assignments τ2, they should be blocked once τ1 is explored.

To prevent from obtaining assignment τ2 such that φ|τ2 is
a superset of φ|τ1 , at least one of the clauses in φ|τ1 should
be deselected. A learnt clause CL, which can be obtained
by negating the selection minterm mT1

= ψ1|τ1 and keep-
ing the negative-phase literals, is added to ψ1 to enforce
the selection. The largest satisfying probability of subprob-
lems and the corresponding assignments to existential vari-
ables are kept throughout the process and returned when
SAT(ψ1) = ⊥. Algorithm 1 sketches the procedure in detail,
where the subroutine RemoveNegativeLits in line 15 obtains
the selection cube by removing the negative-phase literals in
the selection mintermψ1|τ , and line 19 runs an enhancement
technique to be discussed in Section 7.
Example 2. Continue Example 1. The subproblem Φ|τ , for
τ = x1x2, equals

∃y1, ∃y2, ∃y3,

R0.4z1,

R0.8z2.(y2 ∨ z1)(y3 ∨ z1)(y2 ∨ z2),

and the selection relation ψ2 at the second level is
ψ2 = (t21 ≡ y2)(t22 ≡ y3)(t23 ≡ ¬y1¬y2¬y3)(t24 ≡ ¬y2).

Suppose the first tried partial assignment τ1(X2) is τ1 =
¬y1¬y2¬y3, which locally deselects C1 and C2 and mT2

=
ψ2|τ1 = ¬t21¬t22t23t24. By invoking the weighted model
counter on the subproblem Φ|ττ1 =

R0.8z2.(¬z2), we obtain
Pr[Φ|ττ1] = 0.2. The learnt clauseCL = (¬t23∨¬t24) is then
added to ψ2 to prevent C1 and C2 from being deselected si-
multaneously. Note that ¬t23 can be discarded from CL since
C3 is already deselected at the first level. Suppose the next
tried partial assignment is τ2 = ¬y1y2¬y3, which locally
deselects C2, C3, and C4. The satisfying probability of the
subproblem Φ|ττ2 =

R0.4z1.(z1) equals 0.4, and another
learnt clause CL = (¬t21) is added to ψ2. As SAT(ψ2) = ⊥,
the process ends and we conclude that Pr[Φ|τ] = 0.4.

Algorithm 2 SolveSSAT-

R

(Φ)

Input: Φ : Φ =

R

X1...QnXn.φ where Qi ∈ {∃,

R

}
Output: p : the satisfying probability of Φ
1: p := 0
2: if n = 1 // Last level
3: if SAT(φ) = >
4: p := WeightedModelCount(

R

X1.φ)
5: else
6: V := ∅
7: ψ1(X1, T1) :=

∧
Ci∈φ(t1i ≡ ¬C1

i)

8: ψ2(X2, T2) :=
∧
Ci∈φ(t2i ≡ ¬C2

i)

9: while SAT(ψ1) = >
10: τ1 := the found model of ψ1 for variables in X1

11: (p, τ2) := SolveSSAT-∃(Φ|τ)
12: τ ′2 := MaximalPruning(ψ1|τ1 , ψ2, τ2)
13: cT1 := PruneSelection(ψ1|τ1 , ψ2|τ ′2)

14: V.CollectProbabilitySelectionCubesPair(p, cT1)
15: CL := ¬cT1

16: ψ1 := ψ1 ∧ CL
17: if p = 0
18: AddLearntClausesToPriorLevels(CL)
19: p := ComputeProbability(V)
20: return p

6 Solving Randomly Quantified Levels
Consider an SSAT formula of the form

Φ =

R

X1, ..., QnXn.φ

Since randomly quantified levels require to compute the
weighted sum of Pr[Φ|τ] with weight ω(τ) over all possible
assignments τ(X1), the difficulty in solving such formula
lies in the exponentially growing number of possible assign-
ments. Based on the clause selection framework, we propose
our solution below.

Notice that the valuations of different assignments may
result in the same selection of clauses, thus the same sub-
problem. According to this observation, instead of enumer-
ating all possible assignments, we could list the possible se-
lections of clauses, represented as selection cubes, and solve
the corresponding subproblems. Similar to Section 5, this
can be done by solving and adding learnt clauses, which
block the previously searched selection cubes, to ψ1 until
SAT(ψ1) = ⊥. However, since randomly quantified levels
require to compute the aggregated satisfying probability of
all assignments, the pruning technique in Section 5 cannot
be applied. At the end of the solving process, all searched
selection cubes and the return values of the corresponding
subproblems are used to compute the satisfying probability
of Φ, which will be explained in Section 6.2. The solving
procedure is made precise in Algorithm 2. The subroutine
PruneSelection in line 13 is the pruning technique to be ex-
plained in Section 6.1, and lines 14 and 19 perform interme-
diate information collection and satisfying probability com-
putation as to be detailed in Section 6.2. Also, lines 12 and
18 are enhancement techniques to be presented in Section 7.

Notice that the number of selection cubes could be of ex-
ponential size in the number of clauses. To accelerate the
solving process, we propose the pruning technique described
in Section 6.1 to effectively prune the search space.

3700

6.1 Pruning in Randomly Quantified Levels

In this section, we take two quantification levels,

R

X1∃X2,
into account and take advantage of the following property to
prune the search space.

Property 2 (Selection Pruning Property). Given an SSAT
formula

Φ =

R

X1∃X2, ..., QnXn.φ (2)

and selection minterms mT1
= ψ1|τ1 and mT2

= ψ2|τ2 ,
with τ1 over X1 and τ2 over X2, assume τ2 gives the max-
imum probability pmax of subproblem Φ|τ1 , i.e., Pr[Φ|τ1] =
Pr[Φ|τ1τ2] = pmax. If ¬t1i ∈ mT1 and ¬t2i ∈ mT2 , then
Pr[Φ|τ ′

1
] = pmax, where ψ1|τ ′

1
= m′T1

= cT1 ∪ {t1i }, for
cT1 = mT1 \ {¬t1i }.

The correctness of the property can be understood by the
following observation. First, since φ|τ1 ⊆ φ|τ ′

1
, by Prop-

erty 1 we know

Pr[Φ|τ ′
1
] ≤ Pr[Φ|τ1] = pmax (3)

which serves as the upper bound. To check whether Pr[Φ|τ ′
1
]

attends its upper bound, we look at the subproblem Φ|τ ′
1
.

Notice that since Φ|τ1 and Φ|τ ′
1

differ by a clause Ci and τ2
locally deselects Ci, applying τ2 to Φ|τ ′

1
results in the same

subproblem as Φ|τ1τ2 , i.e. Φ|τ ′
1τ2

= Φ|τ1τ2 . Considering that
Pr[Φ|τ ′

1τ2
] = Pr[Φ|τ1τ2] = pmax and Q2 = ∃, we obtain

Pr[Φ|τ ′
1
] ≥ pmax (4)

Hence, from Eq. (3) and (4), we get Pr[Φ|τ ′
1
] = pmax.

Property 2 can be exploited to prune literals from a selec-
tion minterm to form a selection cube (as mentioned in Sec-
tion 3) as follows. After obtaining the assignment τ2 which
maximizes the satisfying probability of subproblem Φ|τ1 , if
a clause Ci is locally deselected by both τ1 and τ2 at levels 1
and 2, respectively, for Q1 =

R

and Q2 = ∃, we can deduce
that selecting Ci at level 1 while keeping the selection sta-
tus of other clauses unchanged leads to the same satisfying
probability. That is, whether or not we select Ci at level 1
does not affect the satisfying probability. According to this
observation, we can remove the local selection literals that
satisfy the above conditions from mT1

to obtain a selection
cube cT1

with fewer literals.
Also, consider the case where pmax = 0 or 1. If pmax = 0

(resp. 1), selecting (resp. deselecting) the originally dese-
lected (resp. selected) clauses at the first level will result
in satisfying probability p ≤ 0 (resp. p ≥ 1). Hence, the
negative-phase (resp. positive-phase) literals in mT1

can be
removed.

The above operations are done by the PruneSelection sub-
routine in line 13 of Algorithm 2. The resulting selection
cube cT1

in line 13 associated with the satisfying probability
p in line 11 is added to a set Sp. The pair (p, Sp) is then col-
lected as a vector V , as in line 14 of Algorithm 2. A stronger
learnt clause CL is then obtained by negating cT1

and added
to ψ1 in lines 15 and 16, respectively, of Algorithm 2.

6.2 Weight Computation
In Algorithm 2 line 9, upon SAT(ψ1) = ⊥, the solving pro-
cess ends and the pairs (p, Sp) stored in V are used to com-
pute Pr[Φ] as described in Theorem 1.
Theorem 1. Given a vector V of pairs (p, Sp) that are
collected until SAT(ψ1) = ⊥ for selection relation ψ1 at
level 1, the satisfying probability of Φ can be computed by

Pr[Φ] =
∑

(p,Sp)∈V

p× Pr[

R

X1.ϕ] (5)

with
ϕ =

∨
cT1
∈ Sp

(∃T1.ψ1|cT1
) (6)

where X1 and T1 are the set of variables and the set of local
selection variables at quantification level 1.

Proof. First, since SAT(ψ1) = ⊥, all possible selections of
clauses, or selection minterms, have been explored. To com-
pute Pr[Φ], we take the weighted summation of all proba-
bilities p collected in V . Each probability p is weighted by
wp, which is the probability of assignments τ(X1) to pro-
duce subproblems Φ′ for Pr[Φ′] = p. Each of such assign-
ments τ(X1) corresponds to a selection minterm mT1 . Ob-
serve that τ(X1) satisfies θ = ∃T1.ψ1|cT1

, where cT1 is a se-
lection cube obtained from ψ1|τ = mT1

. That is, all assign-
ments τ(X1) that produce some mT1

covered by cT1
satisfy

θ. Since all selection minterms associated with satisfying
probability p are covered by some selection cubes cT1

∈ Sp,
the disjunction of θ with respect to each cT1

∈ Sp, expressed
as ϕ in Eq. (6), exactly characterizes all assignments that
produce such selection minterms. Note that despite a selec-
tion minterm may be covered by multiple selection cubes,
the assignments producing that selection minterm are only
counted once. Thus, by randomly quantifying X1 and in-
voking a model counter, we get wp = Pr[

R

X1.ϕ]. Finally,
by taking the weighted summation as in Eq. (5), we get
Pr[Φ]. The computation of the satisfying probability is done
by ComputeProbability in line 19 of Algorithm 2.

Example 3. Consider the SSAT formula Φ and the selec-
tion relation ψ1 in Example 1. Let the first tried assignment
τ1 be ¬x1¬x2, which selects C2 and C3 and deselects C1

and C4. As assignment τ = ¬y1y2¬y3 satisfies the subprob-
lem Φ|τ1 , we get Pr[Φ|τ1] = 1. Now, consider two selection
minterms mT1

= ψ1|τ1 = ¬t11t12t13¬t14 and mT2
= ψ2|τ =

t21¬t22¬t23¬t24. Since ¬t14 ∈ mT1
and ¬t24 ∈ mT2

, ¬t14 can
be removed from mT1

. Moreover, since Pr[Φ|τ1] = 1, the
learnt clause is strengthened as CL = (t11). Let the second
tried assignment τ2 be x1¬x2, which selects C1 and C2 and
deselects C3 and C4. As assignment τ = y1¬y2¬y3 satis-
fies the subproblem Φ|τ2 , we get Pr[Φ|τ2] = 1. Similar to
the process above, since ¬t13 ∈ mT1 = ψ1|τ2 = t11t

1
2¬t13¬t14

and ¬t23 ∈ mT2 = ψ2|τ = ¬t21¬t22¬t23t24 and Pr[Φ|τ2] = 1,
the learnt clause could be strengthened as CL = (t14). Let
the third tried assignment τ3 be x1x2, which by applying it
to Φ produces the subproblem described in Example 2. From
Example 2, we know that τ = ¬y1y2¬y3 gives the maximum
satisfying probability Pr[Φ|τ3] = 0.4. Since ¬t13 ∈ mT1

=

3701

ψ1|τ2 = t11t
1
2¬t13t14 and ¬t23 ∈ mT2 = ψ2|τ = t21¬t22¬t23¬t24,

we obtain the learnt clause CL = (¬t11 ∨ ¬t12 ∨ ¬t14).
As SAT(ψ1) = ⊥, the resulting vector V we get is V =
{(1, {¬t11,¬t14}), (0.4, {t11t12t14})} where the selection cubes
are obtained by negating the learnt clauses. Finally, we ob-
tain Pr[Φ] = 0.79 by Eq. (5).

7 Enhancement Techniques
The performance of clause-selection-based approach is
deeply affected by the strength of the learnt clauses. We in-
troduce three enhancement techniques, 1) cube distribution,
2) maximal clause pruning, and 3) non-chronological back-
tracking, to further enhance the learning ability.

Cube Distribution: In (Chen and Jiang 2019), a cube-
distribution-based QBF solver CUED is proposed, which
interprets QBF solving as a process of distributing cubes
(clause selection conditions) into the onsets and offsets of
Skolem functions. It effectively allows two clauses with the
same variable but opposite literal phases to be deselected
simultaneously. It thus increases the deselection of clauses
per try, and strengthens the learning in existential quantifi-
cation levels. It turns out that the cube distribution concept
can also be applied to SSAT solving under the clause de-
selection framework. Our SSAT algorithm is implemented
based on CUED.

Maximal Clause Pruning: Consider the SSAT formula
Φ in Eq. (2). As discussed in Section 6.1, if a clause Ci is
locally deselected by τ1 ∈ X1 and τ2 ∈ X2 and Pr[Φ|τ1] =
Pr[Φ|τ1τ2], the selection literal ¬t1i can be discarded from
the selection minterm mT1 = ψ1|τ1 . However, the removal
of such selection literals may not be maximal. If there ex-
ists an assignment τ ′2(X2) such that it preserves the selec-
tion status of clauses in φ|τ1 , i.e. φ|τ1τ2 = φ|τ1τ ′

2
, and apart

from the already deselected ones, locally deselects clauses
Ci ∈ φ \ φ|τ1 where ¬t1i ∈ mT1

, ¬t1i can be discarded
from mT1

and a stronger learnt clause can be obtained. The
subroutine MaximalPruning in Algorithm 2 accomplishes
this by solving ψ2 under the assumption that at least one
such clause should be deselected while the selection status
of clauses in φ|τ1 is preserved.

Non-chronological Backtracking: Consider the SSAT
formula Φ in Eq. (1). According to Sections 5 and 6, if a sub-
problem Φ|τ1 where τ1(X1) has satisfying probability equal
to 0, a learnt clause is added to enforce the deselection of
at least one of the selected clauses at the first level to ex-
clude the subproblems unworthy of trying. However, if the
deselection is impossible at the current quantification level,
say, level k, it must be done at a lower level; that is, the par-
ent problems of Φ. By finding the maximum quantification
level, also known as the backtrack level (btlev), which the
deselection is possible, a learnt clause can be added at that
level and the solving process may continue from there.1 In

1In our recursive implementation, if the deselection of clauses
is impossible at current level k (no literals of level k exist in the
clauses), a learnt clause is added only at level k − 1 to enforce the
deselection at level k − 1. If the deselection is still impossible at
level k − 1 (no literals of level k − 1 exist in the clauses), another
learnt clause is added at level k − 2. The backtrack process con-

Algorithms 1 and 2, AddLearntClausesToPriorLevels adds
learnt clauses to ψj where btlev ≤ j < k if the deselection
is impossible at current level k.

Example 4. Consider the SSAT formula Φ and its selection
relations ψ1 and ψ2 at the first and second levels, respec-
tively, with

Φ = ∃x,

R0.4y, ∃z1, z2.(x)(x ∨ y ∨ z1)(x ∨ z2)(x ∨ z2),

ψ1 = (t11 ≡ ¬x)(t12 ≡ x)(t13 ≡ x)(t14 ≡ x),

ψ2 = (t21 ≡ >)(t22 ≡ ¬y)(t23 ≡ >)(t24 ≡ >).

Let the tried assignments be τ1 = x, τ2 = ¬y, and
τ3 = z1z2, which deselect C1, C2, and C3. A conflict caused
by C3 and C4 can be detected at level 3. Because the de-
selection of C3 and C4 is impossible at levels 2 and 3,
with non-chronological backtracking, we add a learnt clause
(¬t13 ∨ ¬t14) to ψ1 at level 1, and get Pr[Φ|τ1] = 0. After
trying τ4 = ¬x, which falsifies C1, we get Pr[Φ|τ4] = 0,
add (¬t11) to ψ1, and find SAT(ψ1) = ⊥. We thus obtain
Pr[Φ] = 0.

In contrast, without non-chronological backtracking, we
will return to level 2 and explore τ5 = y (an additional SAT
call), find the conflict at level 3 (an additional SAT call), and
add a learnt clause (¬t23 ∨ ¬t24) to ψ2 to deselect C3 or C4

at level 2. After finding SAT(ψ2) = ⊥ (an additional SAT
call), we add a learnt clause (¬t12 ∨ ¬t13 ∨ ¬t14) to ψ1, and
get τ6 = τ4 = ¬x. This process requires three additional
SAT calls to learn the root cause of the conflict at level 1.

8 Bounds for Incomplete SSAT
The proposed algorithm can be easily modified to provide
upper and/or lower bounds on the satisfying probability un-
der computation in case the solving cannot be completed in
time. Since the proposed algorithm considers all variables
at each level simultaneously, the intermediate information is
valid and useful for deriving bounds to the exact satisfying
probability. Depending on the quantification type Q1 of the
first level, the bounds can be computed as follows.

For Q1 = ∃, the encountered largest satisfying probabil-
ity of subproblems serves as a lower bound. On the other
hand, since we cannot tell whether there exists an assign-
ment τ(X1) letting Pr[Φ|τ] = 1 until SAT(ψ1) = ⊥, the
upper bound 1 cannot be reduced. However, for an SSAT
formula whose matrix negation is available, the upper bound
can be tightened by solving the lower bound of the formula
that is same as the original one but with the matrix being
negated. For a CNF formula converted from a circuit by
Tseitin transformation, its negation can be obtained easily.

For Q1 =

R

, from Section 6.2, since the collected se-
lection cubes characterize the searched space and are valid
throughout the solving process, the lower bound LB can
be computed by Eq. (5). The upper bound UB can be ob-

tinues until the deselection is found possible at btlev < k. Note
that the above visits to levels greater than btlev are purely due to
our recursive implementation and involves only simple syntactic
checking whether the learnt clause has a literal of the current quan-
tification level. The backtrack is essentially non-chronological.

3702

tained by treating the satisfying probabilities of the unex-
plored subproblems as 1, which can be expressed as

UB = LB + 1× (1−
∑

(p,Sp)∈V

Pr[

R

X1.ϕ]),

where p, Sp, V , and ϕ are the same as those defined in The-
orem 1.

9 Experimental Results
The proposed clause-selection-based algorithm, named
ClauSSat, was implemented2 in the C++ language un-
der the QBF framework of CUED (Chen and Jiang 2019).
Glucose-4.1 (Audemard and Simon 2009), which is
based on Minisat-2.2 (Eén and Sörensson 2003), and
Cachet (Sang et al. 2004; Sang, Beame, and Kautz 2005)
were adopted as the underlying SAT and model counting en-
gines, respectively.3 All experiments were conducted on a
Linux machine with Intel Core i7-8700 CPU of 3.2 GHz and
32 GB RAM. A time limit of 1000 seconds was imposed on
solving an instance in the experiments. No memory limita-
tion was imposed, but the maximum memory usage during
execution was recorded.

We compared ClauSSat with the state-of-the-art multi-
level SSAT solver DC-SSAT (Majercik and Boots 2005),
and the two-level solvers erSSAT (Lee, Wang, and Jiang
2018) and reSSAT (Lee, Wang, and Jiang 2017), both
of which use Minisat-2.2 as the underlying SAT en-
gine. We note that the performance of ClauSSat was lit-
tle affected by the choice of engines Minisat-2.2 and
Glucose-4.1 in our experiments. The solvers were eval-
uated on 23 families of 318 SSAT formulas in total. Among
them, 13 families consist of multi-level formulas and 10 con-
sist of two-level ones. Due to space limit, we only reported
the results of 16 families, each with up to 3 sampled formu-
las, in Table 1. Those not included are mostly either easy or
hard for all the solvers compared. In the table, the first 9 fam-
ilies are multi-level formulas converted from QBF instances
on QBFLIB (Giunchiglia, Narizzano, and Tacchella 2001)
by substituting randomized quantifiers for universal quan-
tifiers with probabilities p randomly chosen ∈ [0, 1]. The
next 5 and last 2 families are exist-random and random-exist
quantified SSAT formulas used in (Lee, Wang, and Jiang
2018) and (Lee, Wang, and Jiang 2017), respectively. In
particular, Families 1-4 include formulas that encode plan-
ning problems; Families 5-7 encode verification problems;
Families 8-9 encode modal logic formulas (Pan and Vardi
2003); Families 10-12 encode conformant planning prob-
lems; Family 13 encode the quantitative information flow
(QIF) problem (Fremont, Rabe, and Seshia 2017); Families
14-15 encode the probabilistic equivalence checking prob-
lem (Lee and Jiang 2018); Family 16 encode the strategic
companies problem (Cadoli, Eiter, and Gottlob 1997).

2Available at https://github.com/NTU-ALComLab/ClauSSat
3We used Cachet, but not other more advanced model coun-

ters, in order to demonstrate that ClauSSat is superior to
erSSAT (which provides Cachet and BDD options for model
counting and uses BDD as its default option for better perfor-

9.1 Comparison to State-of-the-Art Solvers
In the experiments, ClauSSat is evaluated with all 3 en-
hancement techniques of Section 7 enabled. The results are
shown in Table 1, where Columns 2-5 report the prefix, the
numbers of existentially and randomly quantified variables
(#V∃ and #V R, respectively), and the number of clauses
(#C) of each benchmark. In the second column, the notation
Σi (resp. Πi) indicates that the prefix starts with an exis-
tential (resp. randomized) quantifier and has i quantification
levels in total. For ClauSSat, erSSAT, and reSSAT, the
time (T1) spent to reach the lower bound (LB) and the en-
tire runtime (T2) are reported. If the solver fails to give exact
answers before timeout, T2 will be left as “-”. Also, for the
formulas where Q1 =

R

, since ClauSSat and reSSAT
gives lower and upper bounds (UB) at the end of the pro-
gram, T1 is equal to T2. If no bounds are solved, all entries
are left as “-”. DC-SSAT, as an exact solver, either exactly
solves the formula (reporting satisfying probability (Pr) and
runtime (T)) or timeouts (both left as “-”). While the results
of ClauSSat and DC-SSAT are shown in Columns 6-9
and 10-11, respectively, those of erSSAT and reSSAT are
shown jointly in Columns 12-15 without ambiguity due to
their distinct applicability on the formulas.

As can be seen, the results show that ClauSSat out-
performs the others in most of the families. Specifically,
for the QBF converted SSAT formulas, ClauSSat exactly
solved or derived tightest lower bounds, while DC-SSAT
failed to solve most of the cases. For Adder and k ph p,
ClauSSat derived lower bounds for more formulas than
DC-SSAT. For ev-pr-4x4 and k branch n, DC-SSAT per-
formed particularly well. These two families seem to be easy
for search based solvers but not for clause-selected based
solvers as evidenced by the fact that their original QBF
counterparts can be efficiently solved by DepQBF (Lon-
sing and Egly 2017) but not by CUED. For E-MAJSAT
families, including MPEC, Toilet-A, Conformant, and QIF,
ClauSSat outperformed all the others in terms of the
number of achieved tightest lower bounds. In particular,
ClauSSat exactly solved the most cases in Toilet-A and
reached the lower bounds achieved by erSSAT in shorter
time. For Sand-Castle, DC-SSAT outperformed ClauSSat
and erSSAT without much surprise because it is de-
signed to solve such conformant planning problems, while
ClauSSat still achieved lower bounds greater than 0.99.
For PEC, ClauSSat derived reasonable bounds for all
formulas. In contrast, DC-SSAT solved one and reSSAT
failed to solve any. For stracomp, although ClauSSat took
longer than reSSAT, both solvers outperformed DC-SSAT
by exactly solving all the formulas. Besides the above com-
parison, we also experimented with the E-MAJSAT solver
MaxCount (Fremont, Rabe, and Seshia 2017), which per-
formed superior to all other solvers on program synthesis
benchmarks, but inferior to erSSAT on planning bench-
marks. As comparisons between erSSAT and MaxCount
are available in (Lee, Wang, and Jiang 2018), we omitted
showing the results of MaxCount from Table 1.

mance) not due to the Sharp-SAT improvement but due to the al-
gorithmic advancement.

3703

benchmark statisitcs ClauSSat DC-SSAT {erSSAT, reSSAT}
family/formula pfx #V∃ #V R #C LB UB T1 T2 Pr T LB UB T1 T2

Connect2
3x5 w Σ17 2956 24 9.1k 2.78e-1 2.78e-1 2 391 - - - - - -
3x6 w Σ19 4141 27 13.1k 1.76e-1 1 2 - - - - - - -
3x7 w Σ19 5521 33 17.8k 1.39e-1 1 2 - - - - - - -

ev-pr-4x4
5-3-0-0-1-lg Σ5 884 12 6.0k 1 1 1 1 1 0 - - - -
7-3-0-0-1-lg Σ7 1233 18 8.3k - - - - 1 0 - - - -
9-3-0-0-1-lg Σ9 1582 24 10.6k - - - - 1 0 - - - -

pipesnotankage
02 5 Σ5 477 2 9.8k 9.99e-1 1 14 - - - - - - -
02 6 Σ5 504 2 9.7k 9.49e-1 1 188 - - - - - - -
02 7 Σ5 510 2 9.6k 2.53e-1 1 465 - - - - - - -

depots
01 5 Σ5 360 2 5.8k 5.16e-1 1 4 - - - - - - -

QBF-Hardness
10-error01...-22 Π46 5488 240 25.0k 1.00e0 1 - - - - - - - -
10-error01...-23 Π48 5749 250 26.6k 1.00e0 1 - - - - - - - -
10-error01...-24 Π50 6011 260 28.2k 2.61e-1 1 - - - - - - - -

Counter
03 Σ5 77 3 0.2k 9.80e-1 1 56 - - - - - - -

03e Σ5 88 3 0.2k 9.94e-1 1 6 - - - - - - -
03r Σ5 88 3 0.2k 9.93e-1 1 7 - - - - - - -

Adder
Adder2-2-c Σ7 224 12 0.3k 8.82e-1 8.82e-1 42 174 8.82e-1 0 - - - -

adder-2-unsat Σ3 44 9 0.1k 1.00e0 1.00e0 19 19 1.00e0 1 - - - -
adder-4-unsat Σ3 194 38 0.5k 1.00e0 1.00e0 3 3 - - - - - -

k branch n
3 Σ11 502 13 1.5k - - - - 1 0 - - - -
5 Σ15 1124 25 3.9k - - - - 1 0 - - - -
7 Σ19 1994 33 7.5k - - - - 1 0 - - - -

k ph p
2 Σ5 42 2 0.1k 9.25e-1 9.25e-1 6 6 9.25e-1 0 - - - -
3 Σ5 95 4 0.3k 1.00e0 1.00e0 1 1 1.00e0 1 - - - -
4 Σ5 175 5 0.6k 9.68e-1 1 392 - - - - - - -

ToiletA
10 05.3 Σ3 240 10 12.0k 3.13e-2 1 4 - - - 1.56e-2 1 0 -
10 05.4 Σ3 320 10 12.7k 1.25e-1 1 827 - - - 1.56e-2 1 182 -
10 10.2 Σ3 160 10 11.3k 1 1 673 673 - - 1 1 2 2

conformant
cube c9...-11 Σ3 918 10 24.5k 3.12e-1 1 724 - - - 2.89e-1 1 111 -

emptyroom...-22 Σ3 2144 8 20.2k 5.47e-2 1 178 - - - 3.91e-3 1 134 -
emptyroom...-44 Σ3 4256 8 32.4k 1.25e-1 1 797 - - - 3.91e-3 1 247 -

Sand-Castle
SC-15 Σ3 62 75 0.3k 9.93e-1 1 135 - 9.94e-1 0 9.94e-1 1 692 -
SC-16 Σ3 66 80 0.3k 9.95e-1 1 687 - 9.96e-1 1 9.95e-1 1 990 -
SC-17 Σ3 70 85 0.3k 9.96e-1 1 618 - 9.97e-1 3 9.95e-1 1 898 -

QIF
bin-search-16 Σ3 1432 16 5.8k 1.04e-2 1 837 - - - 1.95e-3 1 62 -

CVE-2007-2875 Σ3 752 32 1.7k 1 1 0 0 - - 1 1 1 1
reverse Σ3 197 32 0.3k 3.40e-5 1 610 - - - 5.96e-7 1 471 -
MPEC

c880-er Σ3 449 2 1.2k 2.34e-1 1 76 - - - 1.25e-1 1 0 -
c5315-er Σ3 908 10 2.2k 3.30e-1 1 376 - - - 4.14e-1 1 71 -
c7552-er Σ3 643 5 1.3k 4.87e-1 1 0 - - - 2.34e-1 1 0 -

PEC
c432 re Π2 297 33 0.9k 1.67e-2 1.67e-2 99 99 - - - - - -
c880 re Π2 396 55 1.2k 4.00e-6 8.26e-2 - - - - - - - -

c1908 re Π2 239 31 0.7k 1.07e-4 7.54e-4 - - 7.45e-4 66 - - - -
stracomp

x75.4 Π2 2254 75 7.0k 1 1 576 576 - - 1 1 111 111
x75.9 Π2 2254 75 7.0k 1 1 237 237 - - 1 1 158 158

x75.19 Π2 2254 75 7.0k 1 1 310 310 - - 1 1 121 121
Maximum memory usage (GB) 2.4 32.1 3.1

Table 1: Results for solver performance comparison.

3704

By examining the instances, e.g. the family Sand-Castle,
on which DC-SSAT performs better than ClauSSat, we
observed that they exhibit the decomposability exploited by
DC-SSAT. ClauSSat currently does not exploit such a de-
composition strategy, but the applicability of such a divide-
and-conquer approach can be further studied.

In summary, among the whole collection of 318 formulas,
ClauSSat exactly solved 188 and derived tightest bounds
for 98 while DC-SSAT exactly solved 169. On the other
hand, among the 215 two-level SSAT instances, ClauSSat
(resp. erSSAT and reSSAT combined) exactly solved 127
(resp. 119) and derived tightest bounds for 71 (resp. 23).
Also, for maximum memory usage, ClauSSat consumes
memory an order of magnitude less than that of DC-SSAT,
and is comparable to that of erSSAT and reSSAT. The re-
sults suggest the advancement of ClauSSat over the state-
of-the-art.

9.2 Evaluation of Enhancement Techniques
To investigate the efficacy of the enhancement techniques,
we ran ClauSSat under different settings. Let the en-
abled enhancement techniques be referred to as c for
cube distribution, m for maximal clause pruning, and b
for non-chronological backtracking. ClauSSat-{mc} ex-
actly solved 11 more formulas and provided tighter bounds
for 23 more formulas than ClauSSat-{m}. Further,
ClauSSat-{mcb} exactly solved 18 more formulas and
provided tighter bounds for 34 more formulas compared to
ClauSSat-{mc}. The statistics reveal the effectiveness of
the enhancement techniques.

10 Conclusions and Future Work
We have lifted the clause-selection framework of QBF solv-
ing to the SSAT domain. A new SSAT solver ClauSSat
has been developed and strengthened. Experiments have
demonstrated the superiority of our solver compared to other
state-of-the-art solvers on various application formulas. For
future work, as approximate model counting gains recent ad-
vancements (Soos, Gocht, and Meel 2020), we would like to
study its applicability in our SSAT solving framework. Also
we would like to generalize our solving techniques to depen-
dency SSAT (DSSAT) (Lee and Jiang 2021).

Acknowledgments
This work was supported in part by the Ministry of Science
and Technology of Taiwan under Grant No. 108-2221-E-
002-144-MY3 and 108-2218-E-002-073. JHJ was supported
in part by the Alexander von Humboldt Foundation.

References
Audemard, G.; and Simon, L. 2009. Predicting Learnt
Clauses Quality in Modern SAT Solvers. In Proceedings
of International Joint Conference on Artificial Intelligence
(IJCAI), 399–404.

Cadoli, M.; Eiter, T.; and Gottlob, G. 1997. Default Logic as
a Query Language. IEEE Transactions on Knowledge and
Data Engineering 9(3): 448–463.

Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2016. Algo-
rithmic Improvements in Approximate Counting for Proba-
bilistic Inference: From Linear to Logarithmic SAT Calls. In
Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), 3569–3576.

Chen, L.-C.; and Jiang, J.-H. R. 2019. A Cube Distribution
Approach to QBF Solving and Certificate Minimization. In
Principles and Practice of Constraint Programming, 529–
546.

Eén, N.; and Sörensson, N. 2003. An Extensible SAT-solver.
In Proceedings of International Conference on Theory and
Applications of Satisfiability Testing (SAT), 502–518.

Fremont, D. J.; Rabe, M. N.; and Seshia, S. A. 2017. Maxi-
mum Model Counting. In Proceedings of National Confer-
ence on Artificial Intelligence (AAAI), 3885–3892.

Freudenthal, E.; and Karamcheti, V. 2003. QTM: Trust Man-
agement with Quantified Stochastic Attributes. NYU Com-
puter Science Technical Report TR 2003-848.

Giunchiglia, E.; Narizzano, M.; and Tacchella, A. 2001.
Quantified Boolean Formulas Satisfiability Library
(QBFLIB). http://www.qbflib.org (last accessed in March
2020).

Gomes, C. P.; Hoffmann, J.; Sabharwal, A.; and Selman, B.
2007. From Sampling to Model Counting. In Proceedings
of International Joint Conference on Artificial Intelligence
(IJCAI), volume 2007, 2293–2299.

Gomes, C. P.; Sabharwal, A.; and Selman, B. 2006. Model
Counting: A New Strategy for Obtaining Good Bounds.
In Proceedings of National Conference on Artificial Intel-
ligence (AAAI), 54–61.

Janota, M.; and Marques-Silva, J. 2015. Solving QBF by
Clause Selection. In Proceedings of International Joint Con-
ference on Artificial Intelligence (IJCAI), 325–331.

Lee, N.-Z.; and Jiang, J.-H. R. 2018. Towards Formal Eval-
uation and Verification of Probabilistic Design. IEEE Trans-
actions on Computers 67(8): 1202–1216.

Lee, N.-Z.; and Jiang, J.-H. R. 2021. Dependency Stochas-
tic Boolean Satisfiability: A Logical Formalism for NEXP-
TIME Decision Problems with Uncertainty. In Proceedings
of National Conference on Artificial Intelligence (AAAI).

Lee, N.-Z.; Wang, Y.-S.; and Jiang, J.-H. R. 2017. Solv-
ing Stochastic Boolean Satisfiability under Random-Exist
Quantification. In Proceedings of International Joint Con-
ference on Artificial Intelligence (IJCAI), 688–694.

Lee, N.-Z.; Wang, Y.-S.; and Jiang, J.-H. R. 2018. Solving
Exist-Random Quantified Stochastic Boolean Satisfiability
via Clause Selection. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), 1339–1345.

Littman, M. L.; Goldsmith, J.; and Mundhenk, M. 1998. The
Computational Complexity of Probabilistic Planning. Jour-
nal of Artificial Intelligence Research 9: 1–36.

Littman, M. L.; Majercik, S. M.; and Pitassi, T. 2001.
Stochastic Boolean Satisfiability. Journal of Automated Rea-
soning 27(3): 251–296.

3705

Lonsing, F.; and Egly, U. 2017. DepQBF 6.0: A Search-
based QBF Solver Beyond Traditional QCDCL. In Proceed-
ings of International Conference on Automated Deduction
(CADE), 371–384.
Majercik, S. M. 2009. Stochastic Boolean Satisfiability. In
Handbook of Satisfiability, 887–925. IOS Press.
Majercik, S. M.; and Boots, B. 2005. DC-SSAT: A Divide-
and-Conquer Approach to Solving Stochastic Satisfiability
Problems Efficiently. In Proceedings of National Confer-
ence on Artificial Intelligence (AAAI), 416–422.
Pan, G.; and Vardi, M. Y. 2003. Optimizing a BDD-based
Modal Solver. In Proceedings of International Conference
on Automated Deduction (CADE), 75–89.
Papadimitriou, C. 1985. Games Against Nature. Journal of
Computer and System Sciences 31(2): 288–301.
Sang, T.; Bacchus, F.; Beame, P.; Kautz, H. A.; and Pitassi,
T. 2004. Combining Component Caching and Clause Learn-
ing for Effective Model Counting. In Proceedings of Inter-
national Conference on Theory and Applications of Satisfi-
ability Testing (SAT).
Sang, T.; Beame, P.; and Kautz, H. A. 2005. Performing
Bayesian Inference by Weighted Model Counting. In Pro-
ceedings of National Conference on Artificial Intelligence
(AAAI), volume 5, 475–481.
Soos, M.; Gocht, S.; and Meel, K. S. 2020. Tinted, De-
tached, and Lazy CNF-XOR Solving and Its Applications
to Counting and Sampling. In Proceedings of International
Conference on Computer Aided Verification (CAV), 463–
484.
Toda, S. 1991. PP Is as Hard as the Polynomial-Time Hier-
archy. SIAM Journal on Computing 20(5): 865–877.

3706

