
New Length Dependent Algorithm for Maximum Satisfiability Problem

Vasily Alferov,3 Ivan Bliznets 1 2

1 HSE University
2 St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

3 JetBrains Research
vasily.v.alferov@gmail.com, iabliznets@gmail.com

Abstract

In this paper, we study the computational complexity of the
MAXIMUM SATISFIABILITY problem in terms of the length
L of a given formula. We present an algorithm with running
time O(1.0927L), hence, improving the previously known
best upper bound O(1.1058L) developed more than 20 years
ago by Bansal and Raman. Theoretically speaking, our al-
gorithm increases the length of solvable formulas by 13.3%
(compare this to the recent breakthrough result for MAXI-
MUM SATISFIABILITY problem with respect to the number of
clauses by Xu et al. in 2019 giving a 7.5% improvement). Be-
sides, we propose a significantly simpler algorithm with run-
ning time O(1.1049L). The algorithm outperforms Bansal’s
and Raman’s algorithm in simplicity and running time.

Introduction
The SATISFIABILITY problem is a well-known problem that
plays a tremendous role in Computer Science, Artificial In-
telligence, and has a lot of applications. In this paper we
consider its optimisation version called MAXIMUM SATIS-
FIABILITY, MAXSAT for short. This problem also has lots
of applications: bioinformatics, hardware debugging, soft-
ware debugging, scheduling, probabilistic reasoning, elec-
tronic markets, to name a few. More details about applica-
tions of MAXSAT can be found in the survey (Morgado
et al. 2013).

In the MAXIMUM SATISFIABILITY problem one is given
a boolean formula in Conjunctive Normal Form (CNF) and
the goal is to satisfy the maximum number of clauses si-
multaneously. It is one of the first problems that was shown
to be NP-hard. So the existence of an efficient exact algo-
rithm for this problem is unlikely. That is why almost all
possible approaches and methods were used to cope with
the computational hardness of the problem. Researchers
tried to study special cases of the problem (Williams 2005;
Belova and Bliznets 2020), designing randomized and ap-
proximation algorithms (Goemans and Williamson 1994;
Poloczek et al. 2017), constructing exact (Bansal and Raman
1999; Xu et al. 2019) and parameterized algorithms (Crow-
ston et al. 2014), as well as developing different heuris-
tics (Berg, Saikko, and Järvisalo 2015; Ignatiev, Morgado,

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Running time References
O∗(1.3803m) (Niedermeier and Rossmanith 1999)
O∗(1.3412m) (Bansal and Raman 1999)
O∗(1.3248m) (Chen and Kanj 2004)
O∗(1.2989m) (Xu et al. 2019)

Table 1: Progress for MAXSAT in terms of m

Running time References
O∗(1.618k) (Mahajan and Raman 1999)
O∗(1.400k) (Niedermeier and Rossmanith 1999)
O∗(1.381k) (Bansal and Raman 1999)
O∗(1.370k) (Chen and Kanj 2002)
O∗(1.358k) (Bliznets and Golovnev 2012)
O∗(1.325k) (Chen, Xu, and Wang 2015)

Table 2: Progress for MAXSAT in terms of k

and Marques-Silva 2019). There is even an annual competi-
tion among MAXSAT solvers, called MAXSAT Evaluation
(maxsat-evaluations.github.io).

The main goal of the paper is to improve upper bound
on the worst-case computational complexity of the MAXI-
MUM SATISFIABILITY problem. So we are interested in an
exact algorithm for MAXSAT. Generally, the complexity of
an input instance of some problem is measured in its input
size. For the MAXIMUM SATISFIABILITY problem there are
four natural measures which describe the complexity of an
instance of MAXSAT: n – the number of different variables,
m – the number of clauses, k – the number of clauses that
one wants to satisfy, L – the overall number of literals in
the instance. The last measure is the closest to the bit-size
measure. We note that even solving SATISFIABILITY prob-
lem in time O∗((2 − ε)n) is a big open problem and many
conjectured that actually, this is impossible to do (Strong Ex-
ponential time Hypothesis (Impagliazzo and Paturi 2001)).
The situation is different for other measures and there is a
significant line of research that attempts to solve MAXSAT
in terms of m, k and L, see tables 1, 2, 3.

First of all, we compare our results with the result of
Bansal and Raman in terms of L (previously best known up-
per bounds, see table 3). Our first algorithm is just slightly
faster. However, its main advantage is simplicity, as it con-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

3634

Running time References
O∗(1.1279L) (Niedermeier and Rossmanith 1999)
O∗(1.1057L) (Bansal and Raman 1999)
O∗(1.1049L) this paper
O∗(1.0927L)

Table 3: Progress for MAXSAT in terms of L

tains 7 branching rules while Bansal’s algorithm consists of
11 branching rules and some of these branching rules have
complicated structure with subcases. Our second result sig-
nificantly improves Bansal’s algorithm. Theoretically, it al-
lows us to handle inputs 13.3% longer than before. That is,
having the same computational power and ignoring poly-
nomial factors (as they are not important for sufficiently
large inputs, this is theoretical assumption) new input can
be log(1.1057)

log(1.0927) − 1 times longer and answer will be computed
within the same time.

It is hard to compare our results with the results
from (Chen, Xu, and Wang 2015; Xu et al. 2019) since
they are given with regard to different measures. We note
that these recent improvements theoretically make it pos-
sible to increase possible values of k and m respectively
by 8.7% and 7.5% compared to the previous best upper
bounds, while our improvement allows to increase the length
by 13.3%. However, we cannot say that our algorithm is
superior to those presented in (Chen, Xu, and Wang 2015;
Xu et al. 2019). So, Xu et al. algorithm is preferable when
clauses have relatively long length. Our algorithm is prefer-
able when the input formula has a noticeable number of
short clauses of length 1. For example, if we are given a for-
mula F where each clause has length at most 3 and at least
5% of clauses have length 1, then our upper bound is better
than one given in (Xu et al. 2019).

Moreover, our improvement is achieved using a com-
pletely different approach from the approach used in pre-
vious works dedicated to the study of the general case of
MAXIMUM SATISFIABILITY. We achieve our improvement
mainly because of using a new measure called discounted
length equal to L − n3 where n3 is the number of vari-
ables appearing exactly three times. So our main power is
a measure-and-conquer approach, while the rest of the re-
sults presented in tables 1, 2, 3 were achieved by designing
novel branching and reduction rules. It is worth mentioning
that in (Xu et al. 2019) there are 16 reduction rules, half of
which are new. However, almost all of the new reduction
rules are inapplicable in our case, since they might increase
the total length of a formula which is unacceptable for a re-
duction rule in our case. We note that measure-and-conquer
was applicable before only for special cases of MAXIMUM
SATISFIABILITY like MAX-2-SAT (each clause has length
at most 2) (Kojevnikov and Kulikov 2006) or SATISFIABIL-
ITY problem (Chen and Liu 2009). We note that even though
SAT and MAXSAT are related problems they might require
different approaches, see (Liu and De Melo 2017). And in
our case, a significant difference lies in clauses of length
one. Clauses of length one are trivially resolved in case of

the SATISFIABILITY problem while in case of MAXIMUM
SATISFIABILITY they cause major problems as a satisfac-
tion of such clause decrease the length measure only by one.

Preliminary
In the paper we assume familiarity with such notions like
boolean variable, literal, clause. We refer interested reader
to book (Marek 2009) for details.

The length of a clause is defined as the number of literals
in the clause. A clause of length one is called a unit-clause.
In this work we denote clauses by capital letters C, D, E.
A formula is in Conjunctive Normal Form (CNF for short)
if it is a conjunction of clauses. For example, the formula
x∧ y ∧ z ∧ (x∨ y)∧ (y ∨ z)∧ (x∨ z) is in CNF. The length
of a formula is defined as the total number of literals in all
of its clauses.

An assignment is a function that assigns to each variable
from the formula value 0 or 1. A clause is satisfied by an
assignment if some of its literals gets the value 1. An as-
signment is optimal if it satisfies the maximum number of
clauses.

A variable is called k-variable if it appears exactly k times
in a formula. If a variable appears at least k times, it is called
a k+-variable, and if it appears at most k times, it is called a
k−-variable. Similarly, we define k-literals, k+-literals and
k−-literals. If for a variable x the literal x appears k times in
the formula and the literal x appears l times in the formula, x
is called a (k, l)-variable. Similarly, we define (k, l)-literals.
Since replacing variable x with x in the entire formula does
not change the answer for the problem instance, we always
assume k ≥ l for (k, l)-variables.

A subformula is a subset of clauses of the initial formula.
A subformula is called closed if no literal of a variable with
literals inside the subformula appear outside the subformula.

Variables x and y are called neighbors if there is a clause
in the formula with literals of both x and y. Similarly, literals
l andm are called neighbors if there’s a clause in the formula
containing both l and m.

Our algorithms follow standard branch-and-bound tech-
nique enhanced with measure-and-conquer approach. As
other algorithms with such technique our algorithms con-
sist of reduction and branching rules. A reduction rule (R-
Rule for short) is a polynomial-time algorithm that trans-
forms an instance of MAXSAT into an equivalent instance
with the same or smaller measure value (discounted length
in case of this paper). A branching rule (B-Rule for short) is
a polynomial-time algorithm that transforms an instance of
MAXSAT into several instances with smaller measure value,
on which the algorithm is launched recursively. A branch-
ing rule is correct if the initial instance is a YES-instance
if and only if one of the transformed instances is a YES-
instances. If a branching rule transforms in polynomial time
an instance with measure L to several instances with mea-
sures L − a1, L − a2, . . . , L − ak we call (a1, a2, . . . , ak)
– the branching vector of this rule. The only positive root
of the polynomial xL = xL−a1 + xL−a2 + · · · + xL−ak

is called the branching number of the corresponding rule. If
an algorithm uses only branching rules with branching num-
bers c1, c2, . . . , ct then the running time of the algorithm is

3635

bounded by (maxti ci)
Lpoly(L). More detailes about branch

and bound technique can be found in book (Fomin and
Kratsch 2010). R-Rules and B-Rules are applied exhaus-
tively to an instance in the order they appear in the descrip-
tion of the algorithm.

Branching on a variable x is a B-Rule that transforms a
formula F into two formulas Fx=0 and Fx=1 (same formula
assuming x = 0 and x = 1, respectively). Clearly, this rule
is always correct.

Instead of measuring the complexity of our algorithm in
terms of L we analyze it in terms of so called discounted
length. The discounted length d(F) (sometimes me simply
write d when F is clear from the context) for formula F is
equal to L − n3 = 2n3 + 4n4 + 5n5 + . . . , where L is
the length of a formula F and ni is the number of variables
that appear exactly i times in the F . We note that the mea-
sure plays a significant role in the proof of the worst case
analysis, without its usage we cannot prove the bound. It is
obvious that if we obtain O(cd) algorithm we also obtain
O(cL) algorithm since d ≤ L.

Simple Algorithm
First of all we list some known reduction rules. Note that
all these rules do not increase the discounted length d of
the formula. We write (F, k) → (F ′, k′) if reduction rule
transforms formula F into F ′ and it is possible to satisfy k
clauses in F if and only if it is possible to satisfy k′ clauses
in F ′.

Known Reduction and Branching Rules
R-Rule 1. Let x be a variable such that both literals x and
x are contained in the same clause x ∨ x ∨ C. Then we can
remove this clause, i.e. ((x∨x∨C)∧F ′, k)→ (F ′, k−1).

R-Rule 2. Let l be a literal such that l does not appear in the
formula. Then we can set l = 1.

R-Rule 3. Let C be a clause and x be a variable such that
both clauses x∨C and x∨C appear in the formula. Then we
can replace both clauses with one clause C, i.e. ((x ∨ C) ∧
(x ∨ C) ∧ F ′, k)→ (C ∧ F ′, k − 1).

In particular, if R-Rule 3 is not applicable, for any vari-
able x at most one of the literals x and x can appear in unit
clauses.

R-Rule 4. Let x be a (1, 1)-variable in formula F = (x ∨
C) ∧ (x ∨D) ∧ F ′ then we can replace clauses with x with
clause C ∨D, i.e. (F, k)→ ((C ∨D) ∧ F ′, k − 1).

R-Rule 5. Let l be an (i, j)-literal that appears in t unit
clauses, and t ≥ j. Then we can set l = 1, i.e. (F, k) →
(F[l=1], k − i).

R-Rule 6 ((Xu et al. 2019)). Let x be a (i, 1)-variable
(i ≥ 2) such that every clause containing x contains the
same literal l. Then we can remove l from all clauses con-
taining x and add it to the clause containing x, i.e. ((x ∨ l ∨
C1)∧ (x∨ l∨C2)∧ · · · ∧ (x∨ l∨Ci)∧ (x∨D)∧F ′, k)→
((x∨C1)∧ (x∨C2)∧ · · ·∧ (x∨Ci)∧ (x∨ l∨D)∧F ′, k).

R-Rule 7. If in F there is a closed subformula F1 on five or
fewer variables then find the answer for F1 in constant time.

Lemma 1. Let x be a (i, 1)-variable in formula F = (x ∨
C1) ∧ · · · ∧ (x ∨ Ci) ∧ (x ∨ D). Then branching on the
following two cases is correct:

1. x = 1

2. x = 0,D = 0, and for each j such that |Cj | = 1, Cj = 1.

Proof. Consider an optimal assignment with x = 0. If
D = 1 in this assignment, setting x = 1 would satisfy
at least the same number of clauses (thereby being an op-
timal assignment). Similarly, if Cj = 0 for some j, setting
x = 1 would also satisfy at least the same number of clauses.
Hence, there’s always an optimal assignment satisfying one
of these cases.

Discounted Length
In the subsection we provide some intuition why we are us-
ing discounted length as well as we prove some useful prop-
erties of this measure.

(n, i)-MAXSAT is a special case of MAXSAT where
each variable occurs at most i times. There is an O(1.191n)
algorithm for (n, 3)-MAXSAT. That is equivalent to
O(1.06L) running time since in this case L = 3n. So, in-
stances with 3 variables have efficient algorithm and it is rea-
sonable to allocate some ”bonus” if instance become closer
to instance of MAXSAT where each variable appears at most
three times. Such bonus scheme is realised by decrease of
the measure when a 4-variable becomes a 3-variable.

Lemma 2. Let x be an (i, j)-variable (i+j ≥ 4) in formula
F = (x∨C1)∧ . . .∧ (x∨Ci)∧ (x∨D1)∧ . . .∧ (x∨Dj)∧
F ′. Let Fx=1 be the formula obtained by setting x = 1 in
F and exhaustive application of R-Rules 1-7. Then d(F) −
d(Fx=1) ≥ i+ j +

∑i
k=1 |Ck|.

Proof. As neither of R-Rules 1-7 create a new variable, we
consider the measure decrease as the sum of decreases of
weights of variables affected by the branching.

As variable x is eliminated, it contributes i+ j to the total
decrease of d.

Now, consider a neighbor y of the literal x. If y is a 4+-
variable in both F and Fx=1, its weight decreases exactly
by the number of its occurrences in all of Cs. If it is a 3-
variable in Fx=1, its weight decreases even more. If it is a
2−-variable in Fx=1, it is instantly eliminated by R-Rules 2
or 4. Finally, if it was a 3-variable in F , it must have been a
(2, 1)-variable, and hence couldn’t appear all three times in
Cs (otherwise R-Rule 6 would be applicable). Hence, it had
at most two occurrences in all of Cs, and as it is instantly
eliminated in Fx=1, its weight is decreased by two.

Thus, since every neighbor of x loses at least number of
its occurrences in Cs in weight, the measure decreases at
least by i+ j +

∑i
k=1 |Ck|.

Lemma 3. Let x be an (i, j)-variable (i + j ≥ 4) in the
formula (x∨C1)∧. . .∧(x∨Ci)∧(x∨D1)∧. . .∧(x∨Dj)∧F ′.

3636

Then branching on x gives at least a (i+j+
∑i

k=1 |Ck|, i+
j +

∑j
k=1 |Dk|) branching vector on measure d.

Proof. Apply lemma 2 to both sides of the branch.

The last lemma allows us to directly introduce a branching
rule for 6+-variables.

B-Rule 1. If there’s a 6+-variable x, branch on it.
This gives at least a (7, 7)-branching, i.e. in all cases

branching numbers are not bigger than branching number
of branching vector (7, 7).

Proof. If x is a 7+-variable, this gives at least a (7, 7)-
branching.

If x is a (5, 1)-variable, after R-Rules 3 and 5 it can only
appear negatively in unit clauses. Hence, Lemma 3 guaran-
tees at least a (6, 11)-branching.

If x is a (4, 2)-variable, after R-Rules 3 and 5 it can either
appear only positively in unit clauses (at most once), or only
negatively. Hence, Lemma 3 guarantees at least a (8, 9)- or
a (6, 10)-branching.

If x is a (3, 3)-variable, after R-Rules 3 and 5 it can appear
in at most two unit clauses, either only positively or only
negatively. Hence, Lemma 3 guarantees at least a (7, 9)-
branching.

Rules for 5-variables
It is obvious that a 5-variable is either a (4, 1)-variable or a
(3, 2)-variable. At first we consider the case when the for-
mula contains (4, 1)-variable. WLOG formula has the fol-
lowing type:

(x∨C1)∧ (x∨C2)∧ (x∨C3)∧ (x∨C4)∧ (x∨D)∧ F ′

R-Rule 8. Let x be a (4, 1)-variable. Suppose there’s such
j that |Cj | = 1 and the literal from Cj appears in D. Then
we can set x = 1.

Proof. Denote the literal from Cj as l. Consider an optimal
assignment. If l = 1 in this assignment, then setting x = 1
in such assignment would satisfy all clauses with x. If l = 0
and x = 0, then setting x = 1 would satisfy at least the
same amount of clauses, thereby being an optimal assign-
ment.

B-Rule 2. Let x be a (4, 1)-variable such that R-Rule 8 is
not applicable. Branch on two cases:

1. x = 1

2. x = 0, D = 0, and for each j such that |Cj | = 1, Cj = 1.

This gives at least a (7, 9)-branching.

Proof. Correctness of this rule is guaranteed by lemma 1.
Note that after R-Rule 5 all of Cs are not empty.
If |D| > 0, this is at least a (7, 9)-branching: at least 9

literals are eliminated in the first branch, giving decrease of
at least 9 in the first case by lemma 3, and in the second case
a 5-variable x and at least one 3+-variable are eliminated,
thus giving decrease of at least 7.

If |D| = 0, and |Cj | = 1 for some j, this is at least a
(7, 9)-branching. Similarly, in the first case d decreases by

at least 9, and in the second case a 5-variable x and a 3+-
variable Cj are eliminated.

Finally, if |D| = 0, and |Cj | > 1 for each j, lemma 3
guarantees at least a (5, 13)-branching.

From now on, we can assume that every 5-variable is a
(3, 2)-variable. If F has 5-variable then it has the following
type:

(x∨C1)∧ (x∨C2)∧ (x∨C3)∧ (x∨D1)∧ (x∨D2)∧F ′

Now, we consider cases when D1 = D2 = ∅.
R-Rule 9. If x is a (3, 2)-variable such that D1 = D2 = ∅,
and the union ofCs contains complementary literals then set
x = 0.

Proof. In this case at least one of Cs is satisfied in any as-
signment. Hence, setting x = 0 would satisfy at least three
clauses with the variable x, while setting x = 1 would sat-
isfy exactly three of them.

B-Rule 3. If x is a (3, 2)-variable such that D1 = D2 = ∅,
branch on two cases:

1. x = 0

2. x = 1 and C1 = C2 = C3 = 0

This gives at least a (5, 10)-branching vector.

Proof. First, we prove the correctness of the rule.
Consider an optimal assignment with x = 1. If any of Cs

is satisfied in this assignment, then setting x = 0 would sat-
isfy at least three clauses with x, while in the initial assign-
ment exactly three of them were satisfied. Hence, there ex-
ists an optimal assignment with either x = 0 or with x = 1
and all Cs unsatisfied.

Now we prove that the branching gives at least (5, 10)
branching vector.

If the union of Cs contains literals of at least three distinct
variables, it is at least a (5, 11)-branching: in both cases a
5-variable x is eliminated, and in the second case three 3+-
variables are also eliminated.

If the union of Cs contains literals of exactly two dis-
tinct variables, they are not both 3-variables. Indeed, after
R-Rules 9 and 6 are inapplicable, a 3-variable can appear in
the union of Cj at most once, and there are at least three
literals in this union. Hence, one of those two variables is a
4+-variable and it is similarly at least a (5, 11)-branching.

Finally, if the union of Cs contains literals of exactly one
variable, it must be a 5-variable. Indeed, if it were a 4−-
variable, after R-Rule 9 is inapplicable, this variable must
have three identical literals in the union of Ci, which is only
possible for (3, 1)-variables. But then R-Rule 6 would be
applicable. Hence, we have at least a (5, 10)-branching vec-
tor.

From now on we can assume that D1 ∪D2 6= ∅
B-Rule 4. If x is a (3, 2)-variable such that |D1|+|D2| > 0,
branch on x.

This gives at least a (6, 8)-branching vector.

3637

Proof. If |Ci| > 0 for all i then we have at least a (6, 8)-
branching by lemma 3.

If |C1| = 0, then all of C2, C3, D1, D2 are non-empty
and hence we have at lest a (7, 7)-branching.

Rules for 4-variables
In this section all formulas contain only variables that appear
at most 4 times. Hence, our measure d = 2n3 + 4n4.

Lemma 4. Let x be a 4-variable in (n, 4)-MAXSAT for-
mula such that literal x has t neighbors. Let Fx=1 be the
formula obtained by setting x = 1 in F and exhaustive ap-
plication of R-Rules 1-7. Then d(F) − d(Fx=1) ≥ 4 + 2t

Proof. As in lemma 2, we count the total measure decrease
as the sum of weight decreases for all affected variables.

For x, which is a 4-variable, the weight decreases by 4.
If y is a neighbor of the literal x, and y is a 4-variable, it

becomes a 3−-variable, and its weight decreases by at least
2.

If y is a neighbor of the literal x, and y is a 3-variable,
it becomes a 2−-variable, which is instantly eliminated, and
its weight decreases by 2.

Hence, the measure decreases by at least 4 + 2t.

Lemma 5. Let x be a 4-variable in (n, 4)-MAXSAT for-
mula such that the literal x has a neighbors, and literal
x has b neighbors. Then branching on x gives at least a
(4 + 2a, 4 + 2b)-branching.

Proof. Apply lemma 4 to both sides of the branching.

We proceed with the rules for 4-variables. A 4-variable
is either a (2, 2)-variable or a (3, 1)-variable. In the case of
(2, 2)-variables the formula has the following type:

(x ∨ C1) ∧ (x ∨ C2) ∧ (x ∨D1) ∧ (x ∨D2) ∧ F ′

Recall that only one clause of the C1, C2, D1, D2 can be
empty. WLOG if one of them is empty, then it is D2.

First of all we deal with the case when C1 ∪ C2 contains
only literals of one variable. Note that these literals cannot
be complementary by R-Rule 3. If they are identical, the fol-
lowing rule is applicable:

R-Rule 10. If x is a (2, 2)-variable, and y is such literal that
C1 = C2 = y, set y = x.

Proof. First, we prove that y = 0 implies x = 1.
Indeed, if we set y = 0, then x is left a 4−-variable with

two positive occurrences in unit clauses. By R-Rule 5 it is
instantly assigned with value 1.

Now, we prove that y = 1 implies x = 0. Indeed, if we
set y = 1, by R-Rule 2 x is instantly assigned with value
0.

Note that after this rule is applied, the formula remains an
(n, 4)-MAXSAT instance. Indeed, at least four literals of a
new 8-variable are instantly eliminated by R-Rule 1.

After application of this rule, the union of Cj contains
literals of at least two distinct variables. Hence, the next rule
follows from Lemma 5 and gives at least a (6, 8)-branching.

B-Rule 5. If x is a (2, 2)-variable, branch on x.

Now, we are left with (3, 1)-variables and 3-variables.
If the formula contains (3, 1)-variables then it has the fol-

lowing type:

(x ∨ C1) ∧ (x ∨ C2) ∧ (x ∨ C3) ∧ (x ∨D) ∧ F ′

Note that the union of Ci contains literals of at least two
distinct variables. Indeed, complementary literals of exactly
one variable are prohibited by R-Rule 3, and same literals of
exactly one variable are prohibited by R-Rule 6.

For this case we provide two similar branching rules:

B-Rule 6. If x is a (3, 1)-variable, and |D| > 0, branch on
two cases:

1. x = 1

2. x = 0, D = 0, and for each j such that |Cj | = 1, Cj = 1.

This gives at least an (8, 6)-branching.

Proof. Correctness of this rule is guaranteed by lemma 1.
In the first case d decreases by at least 8 by Lemma 5, and

in second case we eliminate a 4-variable x and at least one
3+-variable from D, hence, d decreases by at least 6.

B-Rule 7. If x is a (3, 1)-variable, branch on two cases:

1. x = 1

2. x = 0, and for each j such that |Cj | = 1, Cj = 1

This gives at least a (6, 8)-branching.

Proof. Correctness of this rule is guaranteed by lemma 1.
If |Cj | = 1 for some j, it is at least a (6, 8)-branching: in

the first case d decreases by at least 8 by Lemma 5, and in
second case we eliminate a 4-variable x and a 3+-variable,
and hence d decreases by at least 6.

Otherwise,
∑
|Ci| ≥ 6.

First, note that no variable can appear in the union of Cj

three times. Indeed, for (2, 1)-variables it is prohibited by
R-Rule 6. Three positive occurrences of a (3, 1)-variable are
also prohibited by R-Rule 6. And since B-Rule 6 is inappli-
cable, any negative occurrence of a (3, 1)-variable is prohib-
ited.

If there are literals of at least four distinct variables in the
union of Cj , by lemma 5 it is at least a (4, 12)-branching.

Otherwise, there are exactly three distinct variables in the
union of Cj , each appearing exactly twice.

If there is a 4-variable among those variables, it is also
at least a (12, 4)-branching, as it is instantly eliminated in
the first branch and hence its weight decreases by at least
4, while weights of other variables decrease by at least two
each.

Otherwise, all three variables are 3-variables. Each of
those variables have exactly one literal out of the union of
Cj . If any of them has new neighbor (i.e different from x
and any of those three variables), in the first case number
of occurrences of this neighbor decreases, and hence it is at
least a (12, 4)-branching. Otherwise, x and these three vari-
ables form a closed subformula on 4 variables that is solved
by R-Rule 7.

3638

Note that the two rules above are essentially the same.
They are split in two in order to simplify the branching vec-
tor analysis.

Time Analysis
Theorem 1. MAXSAT can be solved in O(1.1049d) time.
Hence, MAXSAT is also solvable in O(1.1049L) time.

Proof. After exhaustive application of all above rules we
are left with an instance of (n, 3)-MAXSAT. We run al-
gorithm from (Belova and Bliznets 2020) on it. This algo-
rithms solves (n, 3)-MAXSAT inO(1.191n) = O(1.191n3)
time (Belova and Bliznets 2020). Since for (n, 3)-MAXSAT
d = 2n3, the time bound with respect to d is O∗(1.0912d).

During the whole algorithm we perform branch-
ings with at least the following branching vectors
(5, 10), (7, 7), (6, 8). These branching vectors have the
following branching numbers 1.1011, 1.1041, 1.1049 cor-
respondingly. So, since (n, 3)-MAXSAT is solvable in
O∗(1.0912d) the total running time of our algorithm is at
most O(1.1049d).

This result provides a slight improvement for the previous
bound of O∗(1.1057L) (Bansal and Raman 1999).

Main Algorithm
In this section we provide a more involved algorithm and de-
tailed analysis for the measure d. This allows us to construct
a significantly faster algorithm for MAXSAT. We note that
here we reuse all R-rules described before as well as B-Rules
1-3,6 with a more detailed analysis. Due to space constraints
all proofs in this section are omitted.

Rules for 5+-variables
The first observation is that B-Rule 1 in fact guarantees a
better branching vector.
Lemma 6. B-Rule 1 gives at least a (6, 10) branching vec-
tor.

For (4, 1)-variables R-Rule 8 and B-Rule 2 already give a
(7, 9) branching vector. So we can assume that if F contains
a 5-variable then the formula can be represented as: (x ∨
C1) ∧ (x ∨ C2) ∧ (x ∨ C3) ∧ (x ∨D1) ∧ (x ∨D2) ∧ F ′

At first we consider case |D1| = |D2| = 0. For this case,
we provide a tight analysis of B-Rule 3

As long as R-Rule 9 is inapplicable, the union of Ci does
not contain a pair of complementary literals. Another special
case is C1 = C2 = C3 = l for some literal l.
R-Rule 11. If x is a (3, 2)-variable such that |D1| = |D2| =
0, and all literals in the union of Cs are literals of the same
variable (which means, after R-Rule 9 is inapplicable, that
C1 = C2 = C3 = l for some literal l), set x = 0 and l = 1.

This rule allows us to obtain better branching vector for
B-Rule 3.
Lemma 7. If R-Rule 11 is inapplicable, B-Rule 3 gives at
least a (5, 12)-branching.

Another special case for (3, 2)-variables is when one of
Cs is empty. In this case, both D1 and D2 are not empty.

R-Rule 12. If x is a (3, 2)-variable, one of Cs is empty,
and D1 and D2 contain a pair of complementary literals, set
x = 1.
B-Rule 8. If x is a (3, 2)-variable, one of Cs is empty, and
the above rule is inapplicable, branch on two cases: (i) x =
1; (ii) x = 0, D1 = D2 = 0. This gives at least a (7, 9)-
branching.

At this point, all Cs and at least one of Ds are non-empty.
For this case, we start with the correctness of the following
two generic branching rules.
Lemma 8. If x is a (3, 2)-variable, the above rules are in-
applicable, |C1| = 1, and there exists an assignment that
satisfies C2 and C3 and does not satisfy C1, D1 and D2,
then branching on the following three cases: (i) x = 1, (ii)
x = 0, C1 = 1, (iii) x = 0, C1 = 0, if for j = 2 or j = 3
holds |Cj | = 1, Cj = 1, and if for some j holds |Dj | > 0,
Dj = 0, is correct.
Lemma 9. If x is a (3, 2)-variable, the above rules are in-
applicable, |C1| = 1, and there is no assignment that sat-
isfies C2 and C3 and does not satisfy C1, D1 and D2, then
branching on the following two cases: (i) x = 1, (ii) x = 0,
C1 = 1, is correct.

Now consider several cases on lengths of Cs and Ds
B-Rule 9. Let x be a (3, 2)-variable such that the above
rules are inapplicable. If

∑
|Ci| +

∑
|Di| ≥ 6, branch on

x. This gives at least a (6, 10)-branching.
In particular, this rule applies if

∑
|Ci| ≥ 5. At this point,

3 ≤
∑
|Ci| ≤ 4.

Now we provide several rules for the case of x having
small number of neighbors.
B-Rule 10. Let x be a (3, 2)-variable such that the above
rules are inapplicable. If there exists such j that |Cj | = 1
and the literal from Cj occurs in Ds, branch on two cases:
(i) x = 1, (ii) x = 0, Ck = 1, where k 6= j and |Ck| = 1.
This gives at least a (8, 8)-branching.
B-Rule 11. Let x be a (3, 2)-variable such that the above
rules are inapplicable, and let j be such an index that |Cj | =
1. Denote Cj = l. If l appears in Ds, branch on two cases:
(i)x = 1, (ii) x = 0, l = 1. This gives at least a (7, 9)-
branching.
B-Rule 12. Let x be a (3, 2)-variable. If there exist i and j
such that |Ci| = |Cj | = 1 and Ci = Cj , then branch on two
cases: (i) x = 1, (ii) x = 0, Ci = 1. This gives at least a
(8, 9)-branching.

Note that the same case for complementary clausesCi and
Cj is prohibited by R-Rule 3.

After B-Rule 9 is inapplicable,
∑
|Ci| can be either equal

to 3 or 4. In the next few rules we consider the case
∑
|Ci| =

4. Note that this implies
∑
|Di| = 1. For simplicity we will

assume |D1| = 1 and |D2| = 0.
B-Rule 13. Let x be a (3, 2)-variable such that

∑
|Ci| = 4

and
∑
|Di| = 1. If the above rules are inapplicable, and the

union of Cs consists of literals of exactly two 3-variables
(two literals from each of them), branch on any of those 3-
variables. This gives at least a (9, 9)-branching.

3639

B-Rule 14. Let x be a (3, 2)-variable such that
∑
|Ci| = 4

and
∑
|Di| = 1. If the above rules are inapplicable, and

there is a variable in either union of Cs or Ds that is not a
5-variable appearing in this union once, branch on x. This
gives at least a (6, 10)-branching.
B-Rule 15. Let x be a (3, 2)-variable such that

∑
|Ci| = 4

and
∑
|Di| = 1 and the above rules are inapplicable. De-

note |C1| = 2. Then branch on three cases: (i) x = 1, (ii)
x = 0, C2 = 1, (iii) x = 0, C2 = 0, C3 = 1, D1 = 0. This
gives at least a (9, 11, 20)-branching.

At this moment,
∑
|Ci| = 3 and 1 ≤

∑
|Di| ≤ 2.

B-Rule 16. Let x be a (3, 2)-variable such that
∑
|Ci| = 3,

and one of the following conditions hold:
1.

∑
|Di| = 2, and there’s a variable in the union of Cs and

Ds that is not a 5-variable appearing in this union once.
2.

∑
|Di| = 1, and in the union of Cs and Ds there’s more

than one 4−-variable.
Branching on x in this situation gives at least a (6, 10)-

branching.
B-Rule 17. Let x be a (3, 2)-variable such that

∑
|Ci| = 3

and the above rules are inapplicable. Let C1 contain a literal
of 5-variable. Then branch on three cases: (i) x = 1, (ii)
x = 0, C1 = 1, (iii) x = 0, C1 = 0, C2 = C3 = 1,
D1 = D2 = 0. This gives at least a (8, 11, 24)-branching.

Rules for 4-variables and Time Analysis
For (2, 2)-variables we start with a rule similar to B-Rule 5.
B-Rule 18. Let x be a (2, 2)-variable such that the above
rules are inapplicable and x does not appear in unit clauses.
Then branch on x. This gives at least a (8, 8)-branching.

At this point, if there’s a (2, 2)-variable left in the formula,
it necessarily appears in a unit clause. Without loss of gen-
erality, we consider |D2| = 0. The next few reduction rules
deal with some special cases of such variables.
R-Rule 13. Let x be a (2, 2)-variable appearing in unit
clauses. If C1 and C2 contain complementary literals, set
x = 0.

In particular, a 3-variable can occur at most once in Cs:
same appearances are prohibited by R-Rule 6 and comple-
mentary appearances are prohibited by R-Rule 13.
R-Rule 14. Let x be a (2, 2)-variable appearing in a unit
clause. Suppose |D1| = 1. Denote D1 = l. If l is a literal of
a 3-variable, and l appears in either C1 or C2, set x = 0.
R-Rule 15. Let x be a (2, 2)-variable appearing in a unit
clause. Suppose |D1| = 1. Denote D1 = l. If l is a literal of
a 3-variable, l appears in either C1 or C2, and l appears in
F ′, set x = l.
R-Rule 16. Let x be a (2, 2)-variable appearing in a unit
clause. Suppose |D1| = 1. Denote D1 = l. If l is a literal of
a 3-variable, l appears in either C1 or C2, and l appears in
F ′, apply the following rule:

((l ∨ E) ∧ (x ∨ l ∨ C ′1) ∧ (x ∨ C2) ∧ (x ∨ l) ∧ x ∧ F ′′, k)
→ ((x ∨ C ′1 ∨ E) ∧ (x ∨ C2) ∧ x ∧ F ′′, k − 2)

After R-Rules 13 – 15, if D1 contains a single literal of a
3-variable, this variable cannot appear in Cs.

B-Rule 19. Let x be a (2, 2)-variable appearing in a unit
clause. If the above rules are inapplicable, branch on two
cases: (i) x = 0, (ii) x = 1, and, if |D1| = 1, D1 = 1. This
gives at least a (6, 10)-branching.

After this rule, any 4-variable left is a (3, 1)-variable.
For (3, 1)-variables we start with an accurate analysis of

B-Rule 6.

Lemma 10. B-Rule 6 gives at least a (6, 10)-branching.

The last is the case of (3, 1)-variables with empty D. We
start with another use of lemma 1.

B-Rule 20. Let x be a (3, 1)-variable such that |D| = 0
and there exists such index i that |Ci| = 1. Then branch on
two cases: (i) x = 1, (ii) x = 0, and, for each j such that
|Cj | = 1, Cj = 1. This gives at least a (6, 10)-branching.

Now, |D| = 0, and |Ci| ≥ 2 for each i. For this case, we
provide several rules that work when x has few neighbors.

Note that no variable can appear three times in Cs. In-
deed, for 3-variables it is prohibited by R-Rule 6, three pos-
itive appearances of a (3, 1)-variable are also prohibited by
R-Rule 6, and negative appearances of (3, 1)-variables are
prohibited by B-Rule 6 enhanced by Lemma 10.

R-Rule 17. If x is a (3, 1)-variable such that the above rules
are inapplicable, and y is a 3-variable appearing in Cs twice,
remove x from the clause with the positive appearance of y,
i,e. apply the following rule: ((y ∨E)∧ (x∨ y ∨C ′1)∧ (x∨
y ∨C ′2) ∧ (x ∨C3) ∧ x ∨ F ′′, k)→ ((y ∨E) ∧ (y ∨C ′1) ∧
(x ∨ y ∨ C ′2) ∧ (x ∨ C3) ∧ x ∨ F ′′, k)
B-Rule 21. If x is a (3, 1)-variable such that the above rules
are inapplicable, branch on x. This gives at least a (4, 14)-
branching.

Theorem 2. MAXSAT can be solved in O∗(1.0927d) time.
Hence, MAXSAT can be solved in O∗(1.0927L) time.

Conclusion
In the paper we have presented two algorithms for the MAX-
IMUM SATISFIABILITY problem beating the previous result
of Bansal and Raman (Bansal and Raman 1999) both in
terms of simplicity and running time. The improvement is
achieved by using a new carefully chosen measure and usage
of the measure-and-conquer approach. This novelty allows
us to handle inputs 13.3% longer than before which is a sig-
nificant improvement for the worst-case analysis. Our the-
oretical finding can bring new insights into designing prac-
tical MAXSAT solvers. For example, some solvers contain
branch-and-bound techniques at their core. Our research jus-
tifies that it is meaningful to use more involved measures
that assess instance difficulty than simple standard measures
like the number of clauses or input length. That is the deci-
sion on which variable to branch is taken based on the de-
crease of some new discounted measures and not straight-
forward measure input length. Newly developed reduction
and branching rules also might be useful in practice. Appli-
cability of our theoretical findings needs further research.

3640

Acknowledgements
Research presented in Section ”Main Algorithm” is sup-
ported by RSCF grant 18-71-10042. Research presented in
Section ”Simple Algorithm” is supported by HSE University
and JetBrains Research.

References
Bansal, N.; and Raman, V. 1999. Upper bounds for MaxSat:
Further improved. In International symposium on algo-
rithms and computation, 247–258. Springer.

Belova, T.; and Bliznets, I. 2020. Algorithms for (n, 3)-
MAXSAT and parameterization above the all-true assign-
ment. Theoretical Computer Science 803: 222–233.

Berg, J.; Saikko, P.; and Järvisalo, M. 2015. Improving the
effectiveness of SAT-based preprocessing for MaxSAT. In
Twenty-Fourth International Joint Conference on Artificial
Intelligence. Citeseer.

Bliznets, I.; and Golovnev, A. 2012. A new algorithm for
parameterized MAX-SAT. In International Symposium on
Parameterized and Exact Computation, 37–48. Springer.

Chen, J.; and Kanj, I. A. 2002. Improved exact algorithms
for MAX-SAT. In Latin American Symposium on Theoreti-
cal Informatics, 341–355. Springer.

Chen, J.; and Kanj, I. A. 2004. Improved exact algorithms
for Max-Sat. Discrete Applied Mathematics 142(1-3): 17–
27.

Chen, J.; and Liu, Y. 2009. An Improved SAT Algorithm in
Terms of Formula Length. In Workshop on Algorithms and
Data Structures, 144–155. Springer.

Chen, J.; Xu, C.; and Wang, J. 2015. Dealing with 4-
variables by resolution: an improved MaxSAT algorithm.
In Workshop on Algorithms and Data Structures, 178–188.
Springer.

Crowston, R.; Gutin, G.; Jones, M.; Raman, V.; Saurabh, S.;
and Yeo, A. 2014. Fixed-parameter tractability of satisfying
beyond the number of variables. Algorithmica 68(3): 739–
757.

Fomin, F. V.; and Kratsch, D. 2010. Exact exponential algo-
rithms. Springer-Verlag Berlin Heidelberg.

Goemans, M. X.; and Williamson, D. P. 1994. New 3/4-
approximation algorithms for the maximum satisfiability
problem. SIAM Journal on Discrete Mathematics 7(4): 656–
666.

Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2019.
RC2: An efficient MaxSAT solver. Journal on Satisfiabil-
ity, Boolean Modeling and Computation 11(1): 53–64.

Impagliazzo, R.; and Paturi, R. 2001. On the complexity
of k-SAT. Journal of Computer and System Sciences 62(2):
367–375.

Kojevnikov, A.; and Kulikov, A. S. 2006. A new approach to
proving upper bounds for MAX-2-SAT. In SODA, volume 6,
11–17.

Liu, S.; and De Melo, G. 2017. Should algorithms for ran-
dom SAT and Max-SAT be different? In 31st AAAI Confer-
ence on Artificial Intelligence, AAAI 2017.
Mahajan, M.; and Raman, V. 1999. Parameterizing above
guaranteed values: MaxSat and MaxCut. J. Algorithms
31(2): 335–354.
Marek, V. W. 2009. Introduction to mathematics of satisfia-
bility. CRC Press.
Morgado, A.; Heras, F.; Liffiton, M.; Planes, J.; and
Marques-Silva, J. 2013. Iterative and core-guided MaxSAT
solving: A survey and assessment. Constraints 18(4): 478–
534.
Niedermeier, R.; and Rossmanith, P. 1999. New upper
bounds for MaxSat. In International Colloquium on Au-
tomata, Languages, and Programming, 575–584. Springer.
Poloczek, M.; Schnitger, G.; Williamson, D. P.; and
Van Zuylen, A. 2017. Greedy algorithms for the maximum
satisfiability problem: Simple algorithms and inapproxima-
bility bounds. SIAM Journal on Computing 46(3): 1029–
1061.
Williams, R. 2005. A new algorithm for optimal 2-constraint
satisfaction and its implications. Theoretical Computer Sci-
ence 348(2-3): 357–365.
Xu, C.; Li, W.; Yang, Y.; Chen, J.; and Wang, J. 2019. Res-
olution and domination: an improved exact MaxSAT algo-
rithm. In Proceedings of the 28th International Joint Con-
ference on Artificial Intelligence, 1191–1197. AAAI Press.

3641

