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Abstract

In this paper, we devise a novel semantic completion net-
work, called point cloud semantic scene completion network
(PCSSC-Net), for indoor scenes solely based on point clouds.
Existing point cloud completion networks still suffer from
their inability of fully recovering complex structures and con-
tents from global geometric descriptions neglecting semantic
hints. To extract and infer comprehensive information from
partial input, we design a patch-based contextual encoder to
hierarchically learn point-level, patch-level, and scene-level
geometric and contextual semantic information with a divide-
and-conquer strategy. Consider that the scene semantics af-
ford a high-level clue of constituting geometry for an indoor
scene environment, we articulate a semantics-guided com-
pletion decoder where semantics could help cluster isolated
points in the latent space and infer complicated scene geom-
etry. Given the fact that real-world scans tend to be incom-
plete as ground truth, we choose to synthesize scene dataset
with RGB-D images and annotate complete point clouds as
ground truth for the supervised training purpose. Extensive
experiments validate that our new method achieves the state-
of-the-art performance, in contrast with the current methods
applied to our dataset.

Introduction and Motivation
In our everyday life, we acquaint a new 3D indoor environ-
ment where the objects frequently occlude each other via
our visual perception system routinely. Human beings could
easily speculate the full geometry of invisible parts based
on the semantic knowledge accumulated from our prior ex-
periences. Motivated by this insight, semantic scene com-
pletion (SSC) has become a very active research area in 3D
scene understanding in recent years. Thanks to the critical
demand for high-quality 3D scene representation equipped
with real-world scenario analysis, the SSC task promises its
significance in robot navigation, auto-driving, and virtual &
augmented reality (VR/AR) applications. However, due to
the tremendous computational expenses brought by humon-
gous 3D volumetric representation and the lack of favorable
annotation datasets, the SSC research still suffers from its
intrinsic challenges.
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Figure 1: The input of our model (PCSSC-Net) is a partial
scene point cloud generated by single view of RGB-D im-
ages. PCSSC-Net predicts a complete scene point cloud with
semantic labels as output.

Previous SSC works adopt a volumetric representa-
tion (Song et al. 2017; Dai et al. 2018; Wang, Liu, and
Tong 2020) and attempt to predict the occupancy and se-
mantic category of each voxel grid. However, the volumet-
ric map suffers from the low-resolution problem due to the
high computational cost of the 3D convolution operation.
In addition, the discretization causes the loss of geometric
and semantic information. To ameliorate, the point cloud is
a more favorable representation for complex structure and
content (e.g., indoor scene environment involving many fur-
nitures) thanks to its simplicity. Compared with the well-
developed point cloud semantic segmentation techniques,
existing point cloud deep generative models (Achlioptas
et al. 2018; Lin, Kong, and Lucey 2018; Yang et al. 2018)
are still less capable of recovering a complex and delicate
structure from partial input in the indoor scene environment.
Most of the available methods encode the incomplete point
cloud into a global feature vector and generate the full ge-
ometry from a holistic decoder as a less meaningful point
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set. Nevertheless, single high-dimensional global vector has
its limitation in containing sufficient geometric and con-
textual information, and the entire geometry decoding task
is not powerful enough to retrieve complex geometry ne-
glecting crucial information like semantics. Although some
works (Zhao et al. 2019b; Groueix et al. 2018; Liu et al.
2020) enhance the completion quality with a part-to-whole
strategy in the latent space, it still has a large room to im-
prove when faced with a complicated scene in the indoor
environment.

To tackle the challenges mentioned above, this paper de-
signs a novel network for semantic completion solely based
on the point cloud in the indoor environment, and we name
our new network design as point cloud semantic scene com-
pletion network (PCSSC-Net). In contrast with previous
point cloud completion networks, our method first uses a
divide-and-conquer strategy to hierarchically encode each
sub-region of scene geometry and extract the contextual re-
lationship among all involved sub-parts. We believe that the
concatenation of multi-level (i.e., point-wise, patch-wise,
and scene-wise) geometric and contextual features can con-
tain sufficient amount of information and support a latent
space where the decoder could infer the full geometry and
their semantics. Second, given the fact that the semantics
constitute an essential clue of geometry and natural par-
tition of complicated indoor scene geometry, we devise a
semantics-guided completion decoder that explicitly resorts
to the semantic prediction that is of critical value to the net-
work structure-inference ability at the semantic level in each
category explained above.

Moreover, to better prepare for more feasible datasets and
their possible training, we are faced with intrinsic difficul-
ties associated with real-world scanned ground truth such
as being incomplete, and frequently sparse, even for the in-
door scene environment. Therefore, we construct a synthe-
sized dataset which contains RGB-D images and complete
annotated ground truth in the point cloud format. Based
on this new dataset, our extensive experiments demonstrate
that PCSSC-Net can generate a complete scene point cloud
with the semantic prediction capability from partial input.
Our method achieves better performance than other existing
state-of-the-art methods. The primary contributions of this
paper could be summarized as follows:

• We design a novel semantic scene completion network on
point clouds, and the new network takes the point cloud
generated by single RGB-D image as input.

• We propose a patch-based contextual (PBC) encoder to
hierarchically extract both local geometric and contextual
relationships among the sub-regions, with a goal of ob-
taining sufficient information to infer the full geometry.
In addition, we articulate a semantics-guided completion
(SGC) decoder to reconstruct the scene based on the se-
mantic clusters.

• Extensive experiments confirm that our new method
achieves the state-of-the-art performance, in comparison
with existing methods on a geometrically complete and
well-annotated synthetic indoor scene dataset being cre-
ated in this paper.

Related Work
Semantic Scene Completion. The volumetric approach of
semantic reconstruction from RGB-D images is known as
semantic scene Completion (SSC). SSCNet (Song et al.
2017) first tackles the SSC problem with the develop-
ment of 3D convolutional neural networks (3DCNN) and
the dilated convolution. The subsequent SSC models (Gar-
bade et al. 2019; Zhang et al. 2019; Li et al. 2019b) em-
brace the similar encoding strategy with the SSCNet. Cur-
rently, to avoid the costly Truncated Signed Distance Func-
tion (TSDF) encoding process, some methods (Li et al.
2019a, 2020b,a) attempt to extract features from 2D im-
ages and employ the 2D-3D projection. In addition, a newly-
proposed method (Zhong and Zeng 2020) treats voxels as
the regularly-arranged points to extract features via point
convolution rather than 3D convolution. However, the in-
trinsic limitations of computational consumption and low-
resolution representation still exist. Consider the simplicity
of point clouds, our PCSSC-Net aims to improve the SSC
task on point clouds.

Point Cloud Semantic Segmentation. The point cloud
semantic segmentation techniques have been well devel-
oped starting from the seminal works, PointNet (Qi et al.
2017a) and PointNet++ (Qi et al. 2017b). As a basic applica-
tion, various point cloud analysis models (Li et al. 2018; Li,
Chen, and Lee 2018; Liu et al. 2019; Wu, Qi, and Li 2019;
Zhao et al. 2019a; Wu et al. 2019) evaluate the segmenta-
tion performance as a crucial index of their methods. More-
over, there are specialized models for semantic segmenta-
tion. Similarity Group Proposal Network (SGPN) (Wang
et al. 2018) predicts point-wised similarity matrix and con-
fidence map for an accurate group proposal for semantic
and instance clustering. Associatively Segmenting Instances
and Semantics (ASIS) (Wang et al. 2019) method asso-
ciates the semantic and instance segmentation as a highly in-
tertwined multi-task learning problem. Besides, Superpoint
Graph (SPG) (Landrieu and Simonovsky 2018) method di-
vides point clouds into patches and executes a message pass-
ing for the contextual information. SPG introduces the pos-
sibility to deal with the semantic segmentation using a patch-
based solution.

Point Cloud Completion. Guibas et al. introduces the
first generative auto-encoder (Achlioptas et al. 2018) on
point clouds. It retrieves the geometry from a global feature
vector optimized by a generative adversarial network (GAN)
in the latent space. Following the encoder-decoder architec-
ture, FoldingNet (Yang et al. 2018) concatenates an abstract
2D grid to the global feature and integrally deforms the sur-
face to fit the complete geometry. To recover more delicate
details, one class of approaches adopts a multi-resolution
technique. Point Completion Network (PCN) (Yuan et al.
2018) reshapes a coarse point set using the global feature
and locally ”folds” tiny 2D grid to each point to gener-
ate a dense point cloud continuously. Point Fractal Network
(PF-Net) (Huang et al. 2020) generates three-level resolu-
tion point sets to fit the complete ground truth by preserving
all actual details. Another class of approaches employs an
implicit part-to-whole strategy. 3D point capsule networks
(3D-Capsule) (Zhao et al. 2019b) encode a point set with a
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Figure 2: The pipeline of the PCSSC-Net. We first over-segment the input point could into patches. Given K patches (only 3 for
illustration) with N points in each, our PBC encoder next learns point-wise, patch-wise, and scene-wise features for encoding
both geometry and contextual information. The SGC decoder then retrieves the labeled complete geometry in two-stream where
the semantic predictions are explicitly considered as a feature for geometric refinement. We finally merge the predicted results
with the input to preserve the actual structures, and output the new point locations Cf with semantic assignments Lf .

series of encoders to obtain several codes to map different
locations of the shape. Similarly, AtlasNet (Groueix et al.
2018) and Morphing and Sampling Network (MSN) (Liu
et al. 2020) decode a global vector using a group of para-
metric surfaces in the latent space to recover disparate pieces
of the point cloud. Unlike previous works, our PCSSC-Net
explicitly extracts the geometric and contextual information
in patches and produce points based on their semantic cate-
gories instead of less meaningful regions.

New Method
Overview. Given a partial scene point cloud, our approach is
expected to predict a point cloud representing the complete
scene geometry with the semantic assignment to each point.
We illustrate the architecture of our PCSSC-Net in Figure 2.
Our method semantically completes a scene from an RGB-
D view in three steps. In the first step, we over-segment
the incomplete point cloud into a collection of geometri-
cally simple patches using an existing algorithm (Landrieu
and Simonovsky 2018). Large patches may result in com-
plex geometry due to multiple objects. The over-partitioned
patches no longer carry valuable local information, and also
lead to the increase of the model complexity (i.e., inO(n2)).
We utilize roughly 200 patches per scene on average. We
also construct the adjacency graph of the sub-regions. In our
experiment, a sub-cloud is connected to the five nearest lo-
cal regions in the Euclidian space. The patches are sampled
to contain an equal number of points for the batch train-
ing technique. Second, an autoencoder processes the sub-
regions with the proposed PBC encoder and the SGC de-
coder. The PBC encoder hierarchically extracts point-wise,
patch-wise, and scene-wise geometric and contextual fea-
tures. With the concatenated multi-level features, the SGC

decoder can take advantage of the encoded information to
predict the semantic labels and the new point locations. Fi-
nally, we merge the partial input with the generated labeled
points to preserve the original delicate geometric structures.
The training algorithm is detailed in Algorithm 1.

Patch-based Contextual Encoder. Our PBC encoder is
designed to hierarchically learn both geometric and contex-
tual semantic information of the partial scene point cloud.
Unlike previous point cloud completion networks, our PBC
encoder takes two steps to encode the point cloud with an
explicit divide-and-conquer strategy.

The first step is aimed to encode the low-level geomet-
ric features in each sub-region of the scene. Each sub-cloud
includes N (N=25 in our experiments) points. The initial an-
notation of the point is a 12-dimension feature, including
the coordinates, the RGB values, the normal vector, and the
differential coordinates. The differential coordinate contains
the curvature information of each location. Considering the
simplicity and the availability of PointNet (Qi et al. 2017a),
we use a shared-weights PointNet to extract point-wise fea-
tures Fpts and a patch-wise feature Fgeo individually for
each sub-cloud. The point-wise 64-dimension features Fpts

differ each point from the others for a satisfactory distin-
guishability in category assignment. Since PointNet deals
with only one limited region at a time, the patch-wise 128-
dimension feature Fgeo can describe the patch location and
the local geometric patterns.

For the second step, we adopt the propagation model of
GGNN (Li et al. 2015) to extract the contextual relation-
ship of patches from their adjacency graph. The initial node
annotations are the combination of the patch-level geomet-
ric features: Fgeo, the average coordinates, and the average
normal vectors of patches. Using the node-level output and
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Figure 3: Gated graph neural network (GGNN) (Li et al.
2015). The initial node annotation is the concatenation of
Fgeo, the coordinates of center and the average normal vec-
tor (Fp, 6-dimension). The GGNN outputs the patch-wise
contexutal features Fcon and the global description Fg .

the graph-level output models of GGNN, we can achieve a
patch-wise contextual feature Fcon, and a scene-wise global
description Fg in this step. The Fcon aggregates the contex-
tual semantic information from the nearest five units, which
can be treated as expanding the preception field. The Fg en-
codes the scene context with the largest preception field.

Thus, our PBC encoder can provide both low-level geo-
metric features and high-level semantic contextual features.
It is our belief that the concatenation of those multi-level fea-
ture vectors can support a latent space in which our decoder
can retrieve the complete scene structure from the partial in-
put and predict the semantic class of each point.

Semantics-Guided Completion Decoder. Our SGC de-
coder uses a two-stream structure for semantic segmenta-
tion and completion tasks. The multi-level feature concate-
nation of Fpts, Fgeo, Fcon, and Fg is the input of our de-
coder. Since the concatenated feature size KN is probably
not equal to 4096, we use the farthest point sampling (FPS)
or duplication to obtain the expected size. For the segmen-
tation stream, we use a three-layer multi-layer perceptron
(MLP) block (512, 128, 16) and a softmax layer to shrink
the feature channels to predict the category label L for each
point. The semantic label matrix has a size of 4096×16. For
the completion stream, the concatenated feature is also the
input for the first MLP. The first MLP (512, 128, 3) is de-
signed to reshape the entire point cloud globally and output
the intermediate point coordinates C with a size of 4096×3.
We observe that the global code Fg is not much helpful in re-
trieving the detailed structures. Since the second MLP (512,
128, 3) is designed to refine the predicted point cloud geom-
etry, we replace the Fg with the semantic assignments and
the intermediate point coordinates as extra information to
the second MLP. Since the semantics can be a natural parti-
tioning of the scene, the point-wise semantic prediction fea-
ture offers an explicit hint to cluster points in a latent space.
Furthermore, with the cooperation of the proposed loss func-
tion, the semantic labels can also guide the second MLP to
fit a complete geometry based on the semantic class in the
training process. In the end, our SGC decoder outputs the
semantic class label L and the refined point coordinates Cr

in the size of 4096×16 and 4096×3 respectively.
Loss. We choose the chamfer distance for the reconstruc-

tion loss. The chamfer cistance (CD) and the earth mover’s
distance (EMD) are often considered in evaluating the simi-
larity of two different point sets due to their irrelevant point

Algorithm 1: Main Steps of PCSSC-Net Training.

Input: The incomplete point cloud Cinit ∈ R4096×3

and hyperprameters α, β, γ, and {ωc} ∈ RC

Output: Point localtions Cf ∈ R4096×3 and
semantic assignments Lf ∈ R4096×16.

1 Over-segment Cinit into K patches P;
2 while not converged do
3 foreach patch in P do
4 Extract point-wise Fpts and patch-wise Fgeo

geometric feature using PointNet;
5 Extract patch-wise contexutal feature Fcon and

global feature Fg using GGNN;
6 Concatenate Fg , Fcon, Fgeo, and Fpts as F ;
7 Predict point-wise semantic labels L with F ;
8 Predict intermediate point locations C with F ;
9 Concatenate Fcon, Fgeo, Fpts, L, and C as G;

10 Refine point locations Cr with G;
11 Optimize total loss Lssc;
12 Assign L to input points and merge Cinit with Cr;
13 Down-sample merged points to the target number by

FPS;

order. The CD is used in our training phase because of its
better efficiency and less computational consumption than
the EMD. The CD value of the output point sets S and the
ground truth point set Sgt is:

Lcom =
1

|S|
∑
x∈S

min
y∈Sgt

‖x−y‖2+
1

|Sgt|
∑

y∈Sgt

min
x∈S
‖y−x‖2.

(1)
We choose the cross-entropy loss for the semantic seg-

mentation task. The cross-entropy loss between predicted
labels L and the ground truth Lgt is defined as:

Lseg =
∑

l̂∈L,l∈Lgt

−l log(l̂). (2)

Considering the completion task probably changes the lo-
cation of points, we assume that the points maintain their
original semantic classes after reshaping. Thus, we can con-
struct the semantic label ground truth to calculate the order-
dependent cross-entropy loss.

The CD is only the global constraint for the entire geom-
etry and is badly influenced by the majority of the points. To
encourage the SGC decoder to retrieve the object-level struc-
ture, we employ our semantic predictions as guidance for
calculating the CD of each category. We add the weighted
sum of these semantics-based CDs to the loss function in
order to constrain the network to complete each class del-
icately rather than only the global geometry. In summary,
our multi-task loss function is defined as the linear combi-
nation of the reconstruction loss, the cross-entropy loss, and
the semantics-based CDs. The formulation is:

Lssc = αLcom + βLseg + γ

C∑
c=1

ωcLc
com, (3)
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models CD bathtub bed shelf cabinet chair desk door floor sink sofa table toilet wall
DDRNet 1.87 64.80 16.02 45.71 133.64 28.45 12.04 33.56 1.01 172.23 29.76 20.28 148.25 3.08

Ours 1.58 35.93 5.28 13.75 58.51 26.91 8.72 2.96 2.18 7.38 27.59 18.56 92.31 4.35

Table 1: Semantic scene completion results. One metric is the chamfer distance (CD) between the output and the ground truth.
The other metric is the semantic chamfer distance (SCD) of each class (all values ×1000).

models CD bathtub bed shelf cabinet chair desk door floor sink sofa table toilet wall
Input 4.31 5.13 5.62 2.28 6.57 2.19 2.41 1.35 1.31 3.01 4.40 2.17 7.13 5.59
FCAE 4.68 9.24 6.00 8.39 6.73 9.51 5.55 7.11 1.61 62.66 5.72 10.44 12.91 8.39

FoldingNet 4.81 8.17 5.72 8.98 7.48 9.08 5.33 4.85 1.48 55.21 5.52 11.13 12.06 8.42
PCN 4.72 9.19 5.15 6.89 6.26 9.17 4.83 6.64 1.58 44.26 4.88 9.52 11.03 8.59

3D-Capsule 3.91 8.59 5.00 7.00 6.06 7.84 4.47 4.84 1.37 47.66 4.91 7.69 10.35 5.51
MSN 2.26 4.77 2.53 2.98 3.25 3.83 2.58 2.01 1.58 2.97 2.69 3.51 4.87 2.65
Ours 1.58 2.64 1.88 1.65 2.50 1.81 1.24 1.29 1.10 2.57 1.94 1.64 3.55 1.80

Table 2: Completion results. One metric is the CD between the predicted scene and the ground truth. We assign the semantic
label to each output point as the same class of the nearest point in the ground truth to calculate the SCDs (all values ×1000).

where α, β and γ are the weights for balancing the influ-
ence of each tasks, Lc

com is the CD of semantic class c be-
tween the output and the ground truth, and ωc is the weight
of Lc

com, which is used to control the degree of isolation of
class c against other semantic classes.

Merging and Sampling. Since the limited ability of the
auto-encoder, not all geometric details can be learned in the
model. As in MSN and PF-Net (Liu et al. 2020; Huang
et al. 2020), the output is the combination of the predicted
points and the geometry signal directly from the input. In
the MSN, it uses the minimum density sampling (MDS) to
sample the output and the input simultaneously and equally,
and merge them with a residual block. For the PF-Net, it
only predicts the missing parts and reserves all points of
the input. Similarly, we merge the input points with the pre-
dicted scene point cloud preserving the original structures.
As the features obey the original point order, our semantic
prediction is also the segmentation result of the input par-
tial point cloud. Therefore, we can uniformly and simulta-
neously sample 4096 points (Cf ) and 4096 semantic labels
(Lf ) using the FPS algorithm.

Experiments and Evaluations
Dataset Preparation and Training Details. Existing real-
world 3D scene datasets tend to be incomplete with oc-
clusions and noises while being reconstructed from partial
scans, so they are far from ideal if serving as the ground
truth. At the same time, the existing volumetric synthesized
datasets only provide partial observations and are not suit-
able either for our data format choice. Instead, to focus our
key research effort on incompleteness due to objects’ self-
occlusion and inter-occlusion, we synthesized a new dataset
with 12 layouts of the SceneNet RGB-D dataset (McCor-
mac et al. 2017) and 263 typical indoor object models of the
ShapeNet dataset (Chang et al. 2015) with realistic textures.
Our dataset contains 1912 different viewports of 500 scene
meshes generated through the Unity3D1 engine, including
bathroom, bedroom, living room, and office. We manually

1Unity3D engine. URL: https://unity.com/

Figure 4: Semantic scene completion results. From left to
right: input RGB-D image, DDRNet, our PCSSC-Net, and
voxelized ground truth. The colors of the points represent
the semantic classes. All voxels are illustrated as points.

arranged camera viewports to guarantee the object meshes
utterly present in the frustum so that the ground truth con-
tains intact structures. The dataset has a similar scale of
the NYUv2 dataset (Silberman et al. 2012), which includes
1449 scene data. Our synthesized dataset obeys typical room
configurations (i.e., the chair is around the table, the TV is
face to the sofa). Each viewport generates a group data of
RGB image, depth image, and semantically annotated com-
plete scene point cloud covering 16 semantic classes. We
divide our dataset into 1520 and 392 scenes for the train-
ing and testing purpose. As a data-driven approach, our
current model has potential to reconstruct real scenes with
real-world training datasets in the future. We anticipate only
slight modifications on the number of patches and perhaps
denser adjacency graphs.

Our model is implemented in PyTorch. We trained our
model on Nvidia RTX 2080Ti GPU for roughly 70 hours
with a batch size of 8. We choose ADAM for the optimizer.
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Figure 5: Visualization of the completion results. From left to right: input, FCAE, FoldingNet, PCN, 3D-Capsule, MSN, our
PCSSC-Net and groud truth. The color of the input is the original value from the RGB image. Besides, the color of the output
points does NOT indicate the point-level semantic prediction. It is assigned to the same class of the nearest point in the ground
truth for better visualization. Each output contains 4096 points.

The initial learning rate is set to 0.001, and the decay rate
is 0.7 for every ten epochs. We employed RELU as the ac-
tivation function except for the GGNN with respect to the
original implementation of the GGNN. For the parameters
in the loss, we set α = 0.005, β = 1.5 and γ = 0 for the
first 10 training hours. Then, we set α = 0.015, β = 1.5,
and γ = 1.5 for geometry refinement based on their seman-
tic classes. The CD weight for the chair class is set to 0.01
and 1 for other classes.

Evaluation Metrics. To compare with the volumetric rep-
resentations, we treat each voxel as an abstract point so that
the voxelized map can be seen as a scene point cloud. We
adopt the CD as the metric to evaluate the global completion
performance. The outputs of all evaluated methods contain
or are sampled up to 4096 points with the same scale in a
box of [-1, 1], which guarantees the validation of CD val-
ues’ comparison. By taking the object-level structures and
semantic segmentation results into account, we propose a se-
mantic chamfer distance (SCD) metric, which is calculated
between the same semantic class of the output point cloud
and the ground truth. The SCDs depend on both semantic
segmentation and completion performance.

To compare with the point cloud completion methods, we
calculate SCDs for all models (including ours) differently.
Since the completion methods do not involve the semantic
prediction, we assign a label to each point according to the
semantic class of the nearest point in the ground truth be-
cause it is most likely to complete that semantic class based
on its location. We use the CD and the SCD to measure the
performance of recovering the global geometry and object-
level structure for each method.

Semantic Scene Completion. We compare our PCSSC-
Net with a current semantic scene completion net-
work DDRNet (Li et al. 2019a). DDRNet is a promising
SSC method using the multi-level feature fusion encoding

with residual 3DCNN modules. We train DDRNet on our
synthesized dataset from scratch. With a different format of
3D representations, each voxel is regarded as a point in the
center. The illustration of the results is shown in Figure 4.
As we can see in Table 1, our PCSSC-Net performs bet-
ter than DDRNet in the global recovery and the completion
of the majority of semantic classes. In the experiment, the
DDRNet can retrieve the floor and wall geometry more pre-
cisely than PCSSC-Net due to the structural arrangement of
the voxel. The PCSSC-Net is competitive in reconstructing
complicated geometry than the volumetric DDRNet.

Point Cloud Completion. We compare our PCSSC-Net
with the state-of-the-art point cloud completion models. The
Input is the original partial input point cloud. FCAE is pro-
posed in (Achlioptas et al. 2018). We borrow the encoder of
PointNet++ (Qi et al. 2017b) and three fully-connected lay-
ers as decoder. FoldingNet (Yang et al. 2018) folds an ab-
stract 2D grid to fit the shape with a global code. PCN (Yuan
et al. 2018) reshapes the geometry using the global descrip-
tion and refines the details with the local folding opera-
tion. FCAE, FoldingNet, and PCN all recover the complete
point cloud based on a global feature vector. Besides, 3D-
Capsule (Zhao et al. 2019b) uses the multi-MLP blocks
to implicitly encode the different sub-regions in the latent
space. MSN (Liu et al. 2020) employs the multi-MLP mod-
ules to implicitly retrieve the parts of the complete structure
and uses the expansion penalty to isolate them. We retrain
those networks from scratch on our scene dataset. As we
can see in Table 2, the FACE, FoldingNet, and PCN are not
capable of retrieving the scene structure comparing with the
results of the input. However, our PCSSC-Net performs the
best with the smallest CD and SCD values. Our CD value
is only 87.2% and 50.4% to that of the MSN and the 3D-
Capsule. Different from MSN and 3D-Capsule manipulating
patches implicitly in the latent space, we could notice from
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models Acc mIoU bathtub bed shelf cabinet chair desk door floor sink sofa table toilet wall
PN 94.5 73.3 83.5 81.8 59.2 55.0 52.1 77.3 87.9 99.1 61.2 67.1 63.2 63.0 96.6

PN++ 96.9 87.4 92.2 95.5 82.2 77.8 82.1 86.8 83.3 96.7 89.4 87.1 86.0 82.9 97.1
Ours 97.3 88.2 90.5 96.9 84.9 79.0 83.7 87.4 89.1 99.1 89.2 87.7 86.0 86.5 97.5

Table 3: Semantic segmentation results. The metric contains overall accuracy, mean IoU, and IoU of each semantic class (%).
The result of our model is the segmentation prediction of the completed point cloud.

models CD bathtub bed shelf cabinet chair desk door floor sink sofa table toilet wall
A 1.68 2.66 2.27 1.67 3.03 1.79 1.38 1.21 1.22 2.98 2.09 1.72 3.66 1.84
B 1.62 2.64 2.07 1.73 2.67 1.86 1.30 1.20 1.17 3.02 2.02 1.71 3.53 1.85

Ours 1.58 2.64 1.88 1.65 2.50 1.81 1.24 1.29 1.10 2.57 1.94 1.64 3.55 1.80

Table 4: Completion results on ablated versions. Version A removes the semantic segmentation stream in the SGC decoder.
Version B eliminates the semantics-based CD in the loss function during the training process (all values ×1000).

our experiments that our explicit processing of the partition-
ing of the scene is the key to such significant improvement.
The values of SCD vary in different categories. The classes
with simple structures (i.e., floor, door, and wall) have rel-
atively small SCD values, and other semantic classes are
more challenging to be completed with larger SCD values.
With the smallest SCD values, our PCSSC-Net can achieve
a higher degree of semantic class isolation and completeness
than the other point cloud completion models.

In addition, as an auxiliary task, our semantic segmenta-
tion results are also satisfactory comparing with the base-
line methods, which are PN (Qi et al. 2017a) and PN++ (Qi
et al. 2017b). As shown in Table 3, our PCSSC-Net can pre-
dict semantic labels with an improvement of 0.8% to PN++
and 14.9% to PN in mIoU. The accuracy of 97.3% proves
that the segmentation stream can provide relatively correct
semantic information for the completion task.

Ablation Study. We also compare our model with its ab-
lated versions. Version A eliminates the semantic stream in
the SGC decoder. The input of the second MLP in the com-
pletion stream has no semantic hint for the refinement. Ver-
sion B only uses the combination of the global CD and the
cross-entropy loss as the final loss function. The semantics-
based CD terms are excluded. The quantitative results are
documented in Table 4. The results of Version A demon-
strate that the semantic guidance can help the SGC decoder
to refine the global geometry and the object-level structures
with smaller SCDs. It is also noteworthy that our model al-
ready achieves a precise completion result without seman-
tics comparing with the other point completion networks,
which once again validates the efficacy of our PBC encoder
design. Version B results are also presenting a shred of evi-
dence to highlight the importance of semantics in the scene
completion task. Besides, the semantics-based CD loss can
constrain the network to re-arrange points inside the seman-
tic cluster, which also validate our assumption in construct-
ing the ground truth with semantic labels. For instance, in
Figure 6, the leaky floor could be filled with wall points,
which causes the misjudgment in segmentation results. The
semantics-based CD loss can effectively isolate each class
and enforce the network to complete the partial points in-
side their semantic clusters.

Figure 6: Ablation studies on the semantics-based CD loss:
(a) The output without the semantics-based CD could have
a mixture of semantic classes while completing the point
clouds; (b) The semantics-based CD loss can isolate each
semantic class with a satisfatory segmentation performance.

Discussion and Conclusion

We proposed a novel semantics scene completion network
on the point cloud, PCSSC-Net, in this paper. It is shown
that our PBC encoder can learn comprehensive multi-level
features from partial inputs, and our SGC decoder can pro-
duce the semantically reconstructed scene geometry, bene-
fiting from the semantic information. Comprehensive exper-
iments validate that our method can produce more precise
and better semantically completed results than existing al-
ternative approaches.

Our method still has several limitations yet to be over-
come. First, the PCSSC-Net fails to reconstruct large miss-
ing parts where our encoder could not capture enough in-
formation. Second, our model is highly dependent on the
semantic segmentation’s accuracy, where the wrong assign-
ments decay the performance due to the SGC decoder ar-
chitecture. Our near-term efforts are geared towards possible
improvements. Other aspects of 3D scene understanding and
applications could be investigated in the long term. For ex-
ample, we could expand our general framework towards the
understanding of dynamic scenes where the multi-views and
motions provide extra contextual information along time.
Moreover, it would be interesting to create virtual objects
and enhance their interaction with the real environment with
full semantic understanding. These pursuits would broaden
the scope of 3D vision applications in 3D scene understand-
ing and its integration with real world.
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