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Abstract

Unsupervised person re-identification (re-ID) is becoming in-
creasingly popular due to its power in real-world systems
such as public security and intelligent transportation systems.
However, the person re-ID task is challenged by the prob-
lems of data distribution discrepancy across cameras and lack
of label information. In this paper, we propose a coarse-to-
fine heterogeneous graph alignment (HGA) method to find
cross-camera person matches by characterizing the unlabeled
data as a heterogeneous graph for each camera. In the coarse-
alignment stage, we assign a projection for each camera and
utilize an adversarial learning based method to align coarse-
grained node groups from different cameras into a shared
space, which consequently alleviates the distribution discrep-
ancy between cameras. In the fine-alignment stage, we ex-
ploit potential fine-grained node groups in the shared space
and introduce conservative alignment loss functions to con-
strain the graph aligning process, resulting in reliable pseudo
labels as learning guidance. The proposed domain adaptation
framework not only improves model generalization on target
domain, but also facilitates mining and integrating the poten-
tial discriminative information across different cameras. Ex-
tensive experiments on benchmark datasets demonstrate that
the proposed approach outperforms the state-of-the-arts.

Introduction
Person re-identification(Re-ID) aims to identify the same
people across non-overlapping camera views. Most of these
studies focus on supervised learning (Zheng, Gong, and Xi-
ang 2012; Liao et al. 2015; Li et al. 2014; Ahmed, Jones,
and Marks 2015; Sun et al. 2017). In real-world applications,
the performance of the supervised learning method quite de-
pends on the quality of labeled data. Therefore, some works
attempt to take advantage of abundant unlabelled data and
apply unsupervised learning (Peng et al. 2016; Kodirov et al.
2016; Wang et al. 2018; Lin et al. 2019; Fan et al. 2018;
Deng et al. 2018; Zhong et al. 2018a). However, the existing
unsupervised methods tend to be less effective and unstable
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Figure 1: Illustration of the heterogeneous graph for a single
camera. Person images are distributed with latent structures.
We construct heterogeneous graphs in each camera-specific
sub-domain to exploit the potential distribution structure.
There are two types of node (coarse-grained appearance
node A and fine-grained person node P ) and one type of
edge (distance E) in one graph for each camera. As shown
in this figure, images in a coarse-grained appearance nodeA
mostly look similar in color, while images of a fine-grained
person node P come from the same person ID.

due to the lack of supervised information. The main issues
are: 1) the data distribution of different camera views varies
significantly due to the variation of viewpoint, illumination,
image resolution, and background noise; and 2) existing loss
functions of person Re-ID are mostly designed for super-
vised learning, which cannot be applied directly due to the
lack of labeled data.

The studies in (Wei et al. 2018; Deng et al. 2018; Liu
et al. 2019; Huang et al. 2020) make effort on addressing
the first issue by treating person Re-ID as an unsupervised
domain adaptation (UDA) problem However, these methods
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only consider the feature distribution difference across do-
mains while ignoring the difference in distribution structures
across cameras, which leads to the performance drop of a
source model in the target domain(Yang and Yuen 2019).
The authors in (Qi et al. 2019) proposed a camera-aware do-
main adaptation to map the images of different cameras into
a shared subspace. However, merely aligning the camera-
level domain can not effectively improve the Re-ID perfor-
mance. Without proper constraints, the distribution structure
in each camera is easily corrupted, which makes the opti-
mization harder to converge and ultimately affects the Re-ID
performance.

In addition, to make up for the lack of labeled data and ap-
ply loss functions in a supervised learning manner, some do-
main transfer methods (Lv et al. 2018; Fan et al. 2018; Song
et al. 2018; Lin et al. 2019; Fu et al. 2019; Zhao et al. 2020)
utilize pseudo labels as supervised information. These meth-
ods normally apply unsupervised clustering method, such as
DBSCAN (Ester et al. 1996), to group the unlabeled target
dataset into independent clusters. However, compared with
manually annotated labels, pseudo labels are less accurate
and unstable. The performance highly depends on the clus-
tering quality, reflecting what extent are the pseudo labels
consistent with ground truth labels. Moreover, the difference
in distribution structure across cameras further increases the
difficulty of a perfect clustering result.

In this paper, we propose a novel coarse-to-fine heteroge-
neous graph alignment (HGA) method to tackle the above
problems. As shown in Fig. 1, given the feature set from a
backbone network, we first construct a heterogeneous graph
for each camera, which consists of two types of nodes and
one type of edges. In coarse-grained alignment, an adver-
sarial training scheme is adopted to coarsely align the ap-
pearance nodes of each camera, which consequently allevi-
ates the distribution bias between cameras. In fine-grained
alignment, we introduce conservative alignment loss func-
tions to exploit potential discriminative information in the
shared space and align the person nodes of each camera with
careful consideration, which generate reliable pseudo labels
as learning guidance.

To summarize, our main contributions are as follows:

• We present a heterogeneous graph alignment (HGA)
method to solve the unsupervised domain adaptation per-
son Re-ID problem. By constructing and aligning the het-
erogeneous graph of each camera in a coarse-to-fine man-
ner, our method significantly improves the model gener-
alization on unlabeled target datasets.

• We propose multiple loss functions to learn a graph-
aligned feature space, in which features of the same per-
son ID are aligned and structural information of each cam-
era’s heterogeneous graph is preserved. This preservation
could further help HGA mine potential discriminative in-
formation by avoiding overfitting on node alignment and
inaccurate pseudo labels.

• We conduct extensive experiments and ablation studies on
three standard benchmarks, which demonstrates the effec-
tiveness and superiority of our proposed HGA method.

Related Work
Many unsupervised domain adaptive person ReID methods
are proposed to exploit the full potential of abundant unla-
beled person images. Most of them focus on two key issues:
1) the data distribution discrepancy between domains, and
2) the lack of label information in the target domain. Ac-
cordingly, recent studies in cross-domain person re-ID can
be classified into distribution aligning methods (Wei et al.
2018; Deng et al. 2018; Wang et al. 2018; Liu et al. 2019)
and clustering-based adaptation methods (Fan et al. 2018;
Song et al. 2018).

Distribution aligning methods try to reduce the distribu-
tion gap between source domain and target domain in a
shared feature space. Researchers (Zhong et al. 2018b,a;
Deng et al. 2018; Bak, Carr, and Lalonde 2018; Zhong et al.
2019; Zhai et al. 2020; Zou et al. 2020) adopt GAN-based
methods to transfer the source images into target-domain
style and use generated images to train a model. However,
generated images still have a large gap compared with real
images. Some camera-aware domain adaptation methods
(Yang et al. 2020) are developed by reducing the camera-
level sub-domains divergence. CAMEL (Yu, Wu, and Zheng
2017) proposes to learn view-specific projections to deal
with view-specific interference. Some researchers (Qi et al.
2019) develop a camera-aware domain adaptation to reduce
the feature discrepancy across cameras. However, merely
aligning the distribution across domains is insufficient since
it ignores the difference in distribution bias across cameras.
Instead, this paper proposes an unsupervised graph align-
ment method to explore both cross-domain distribution and
structure information.

Clustering-based adaptation is another straight-forward
approach to learn a re-ID model. To make up for the lack of
labeled data, some works (Fan et al. 2018; Wu et al. 2019a;
Li et al. 2019; Yu et al. 2019; Song et al. 2018; Fu et al. 2019;
Zhang et al. 2019; Wang and Zhang 2020; Zhao et al. 2020)
exploit unlabeled target data and adopt clustering methods to
generate pseudo-labels. The basic idea is exploiting the sim-
ilarity of unlabeled samples by feature clustering and gener-
ating pseudo labels for supervised information. To improve
quality of pseudo labels, some works try to utilize potential
relation information of data to promote the matching relia-
bility (Yu et al. 2019; Wu et al. 2019b). However, the clus-
tering result suffers from the data distribution discrepancy.
Meanwhile, without properly constrain, the valuable struc-
ture information can be easily destroyed when the learning
proceeds.

With the help of heterogeneous graph, we attempt to pro-
mote the domain adaptation and the quality of pseudo-labels
at the same time. Considering the variance-bias dilemma
(Geman, Bienenstock, and Doursat 1992) in the neural net-
work based methods, we construct heterogeneous graphs
with two types of nodes to represent the feature space of
each camera. Using low-bias coarse-grained nodes, the pro-
posed HGA learns camera-specific projection matrices to
eliminate camera-level distribution deviation. With the low-
variance fine-grained nodes, HGA learns to match the same
person, meanwhile exploiting the camera-specific structural
information to ensure the accuracy of the pseudo-labels. To
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Figure 2: Illustration of our proposed framework HGA. We first extract features of images from a backbone network. Due
to camera-specific variations, the initial feature space has severe camera margins: stars (ID2) from different cameras (colors)
are far away from each other. We perform the coarse-to-fine HGA to learn a robust aligned feature space. In the coarse-
grained alignment, an adversarial learning scheme is adopted to coarsely align the appearance nodes of each camera, which
consequently alleviates the distribution bias between cameras. During fine-grained alignment, we adopt the node alignment
loss to pull nodes of the same pseudo person ID closer. Also, an edge alignment loss and a projection invariant loss are used to
keep the graph distribution structure of each camera unified and retained. A constraint loss is used to alleviate the inconsistency
caused by projection matrices. In the aligned feature space, the camera-specific bias is alleviated, while distribution structures
in the original feature space are preserved.

our best knowledge, this is the first work that addresses the
person Re-ID with heterogeneous graph alignment, which
helps retain and integrate the discriminative information
across cameras and results in superior Re-ID performance.

Proposed Method
Problem Formulation
Suppose we have a surveillance camera network that con-
sists of V cameras. The target domain has N unlabeled im-
ages X = {xi}Ni=1 in total and Nv images for v-th cam-
era. We use a CNN backbone network φ to extract initial
features. HGA learns camera-specific projection matrices
{Wv}Vv=1 for cameras rather than a universal one to better
alleviate the effect of cross-camera divergence while retain-
ing the discriminative information. Hereafter, we use ∼ to
denote the representation in the shared space which is pro-
jected by corresponding Wv(i = 1, 2, · · · , V ). Such as we
denote φ̃ = Wvφ as an end-to-end function which contains
both the backbone φ along with the camera-specific projec-
tion matrix Wv to map v-th camera original feature into a
shared space. The goal of our method is to make full use of
the hidden inherent relationship in different granularity and
generate reliable labels to train and update φ̃.

Heterogeneous Graph Definition. We first construct a
heterogeneous graph for each camera. For example, the het-
erogeneous graph Gv = (Av, Pv, Ev) for v-th camera con-

sists of coarse-grained appearance group nodes Av , fine-
grained person nodes Pv and edges Ev between nodes. To
avoid cross-camera bias, we use less but larger appearance
clusters to coarsely align the graph. And here we adopt k-
means (Hartigan 1975) on the image set of each camera
to obtain Av which consists K appearance group nodes.
To reduce cross-camera variance, we utilize HDBSCAN
(McInnes, Healy, and Astels 2017) to obtain smaller and
more clusters as person nodes Pv to refine the alignment. We
use E(·) as the Euclidean distance function to calculate the
edge between two nodes. The overview of proposed HGA
approach is shown in Fig. 2.

Coarse-grained Alignment
The task of coarse-grained alignment (CA) is to align the ap-
pearance nodes of each heterogeneous graph and reduce the
distribution discrepancy at camera-level sub-domains. Simi-
lar appearance nodes from V different cameras are grouped
together by solving the maximum V -dimensional matching
problem(Hazan, Safra, and Schwartz 2003). Thus, similar
appearance nodes will have an identical group ID. With this
information, we adopt an adversarial learning method to up-
date the projection matrices. The generator in our work is the
projection matrices {Wv}Vv=1. The discriminator is designed
as a classifier D to simultaneously discriminate camera IDs
and appearance group IDs. During the training process of
discriminator D, we fix all generators W1,W2, · · · ,WV .
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The discriminator is optimized by a cross-entropy loss de-
fined on theK ∗V classes (K coarse-grained nodes for each
one of V cameras) in target domain as:

LD(D|{Wv}Vv=1) =
1

N

N∑
i=1

− log(D(Wvi
φ(xi), vi, ai)),

(1)
where vi and ai denote the camera ID and the appear-
ance group ID that the i-th image xi belongs to, respec-
tively. D(Wvi

φ(xi), vi, ai) denotes the prediction score for
mapped feature Wvi

φ(xi) respect to the ai-th appearance
group of the vi-th camera class.

When training the generator Wv , we fix the weights of
discriminators D. The projection of the v-th camera Wv is
optimized to fool the discriminator in predicting the wrong
camera ID, such as u. But, to avoid arbitrary feature distri-
bution, D needs to keep the ability in judging the correct
appearance group ID. Thus, we achieve this by minimizing
the following objective function:

LWv
(Wv|D) =

1

Nv

Nv∑
i=1

(− log(1−D(Wvφ(xv,i), v, ai))

− 1

V − 1

∑
u6=v

log(D(Wvφ(xv,i), u, ai))).

(2)

The xv,i denotes an image in the v-th camera, ai is the ap-
pearance group which xv,i belongs to. To train this coarse-
grained alignment, we follow the standard generative ad-
versarial networks (GANs) training procedure, which al-
ternately optimizes the discriminator D and all projections
{Wv}Vv=1 by minimizing LD and LWv

, respectively.

Fine-grained Alignment
The coarse-grained alignment step learns a series of map-
pings {Wv}Vv=1 that coarsely align the appearance nodes of
each heterogeneous graph. However, the objective of person
Re-ID is to cluster the same person together and push differ-
ent person far away from each other. Here we present con-
servative alignment loss functions which include node align-
ment loss, edge alignment loss, projection invariant loss and
projection constraint loss. The conservative alignment loss
functions are proposed with the consideration of not only
aligning the same person together but also preserving the
distribution structure of each heterogeneous graph, which
could help the proposed approach exploit more potential
cross-camera information.

Node Alignment Loss. With the coarse-aligned projec-
tions, HGA maps the data into a shared feature space where
the camera bias is eliminated. Thus, we can perform person-
level data alignment in a simpler way.

We utilize unsupervised clustering algorithm (McInnes,
Healy, and Astels 2017) in the coarsely aligned space to ob-
tain a undefined number of clusters as pseudo persons, so
that each image can be assigned with a pseudo label accord-
ing to the cluster it belongs to. Suppose there are M clusters
in total, we define the projected person node p̃i by calculat-
ing the average feature of images Xi which belong to i-th

cluster, p̃i = avg(φ̃(Xi)), i = (1, 2, · · · ,M). The task of
Node Alignment Loss (NAL) is to align the same person
features of different camera views. Specifically, we focus on
gathering the same person samples together by optimizing
the distance relationship inside the ‘person’ node:

Lnode =
M∑
i=1

V∑
v=1

ωv,i ‖p̃v,i − p̃i‖22 . (3)

Here p̃v,i = avg(φ̃(Xv,i)) is the average feature of im-
ages Xv,i which belong to the i-th person and v-th camera.

To avoid overfitting on unreliable pseudo labels, we con-
sider that the model should not have full confidence on the
pseudo labels. Thus, we impose a soft constraint on the NAL
to exploit the potential association information between per-
son nodes. Specifically, ωv,i = 1 − E(p̃v,i , p̃i)∑V

u=1 E(p̃u,i , p̃i)
is a

descending function of the distance between p̃v,i and p̃i.
Edge Alignment Loss. As previously discussed, the

distribution structure of different cameras should also be
aligned to match persons across cameras in the shared space.
And the distribution structural information in the camera-
specific sub-domains is recorded in the edges of graphs.
Therefore, the alignment of distribution structures can be
modeled as the alignment between edges. The edge be-
tween the i-th and the j-th person nodes of the v-th cam-
era is defined as ẽi,jv = E(p̃v,i, p̃v,j) = ‖p̃v,i − p̃v,j‖2,
i, j = (1, 2, · · · ,M).

To align graph from different views, we unify the edges
based on the following criteria: edges in a same person
group are minimized, while edges between different person
groups are approached to a distance `. Specifically, we set
` = max( 1

V

∑V
v=1 ẽ

i,j
v , ε) as the mean of the edges between

the i-th and the j-th person node in all camera views, and ε
is set to 0.001.

Ledge =
∑
i=j

∥∥ẽi,jv ∥∥22 +∑
i6=j

∥∥ẽi,jv − `∥∥22. (4)

Projection Invariant Loss. Without proper constraints,
nodes and edges can be aligned arbitrarily and the camera-
specific projection matrix will be updated independently.
Therefore, the structural information in each heterogeneous
graph is likely to be corrupted during the learning process.
To avoid arbitrary alignment and retain discriminative infor-
mation in the original feature space, we propose a Projec-
tion Invariant Loss (PIL) to retain the structural information,
which is defined as:

Linvariant =
∑
i6=j

V∑
v=1

∥∥σ(ẽi,j , µ̃)− σ(ei,jv , µv)
∥∥2
2
, (5)

where ẽi,j is an edge between person node i and j in the
shared space, and ei,jv denotes the corresponding edge in
the v-th camera original space without the projection ma-
trix Wv . And σ(e, µ) = 1/(1 + exp(µ − e)) is a logistic-
like function. µ̃ and µv are the mean values of edges in
shared space and v-th camera original space, respectively.
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Algorithm 1: The proposed HGA framework.
Input: Unlabeled target data: X; Training epochs Tc and

Tf for coarse-grained and fine-grained alignment,
respectively; Number of appearance groups K;
Minimal samples Smin for HDBSCAN.

Output: Parameters of the trained network φ and all
projection matrices {Wv}Vv=1.

1 Pre-train the network φ on source dataset.
2 Extract feature set F = φ(X) on data X .
3 Obtain groups for each camera by using K-means on F.
4 Establish groups matching across V cameras by solving the

maximum V -dimensional matching.
5 for Epoch = 1, ..., Tc do
6 Update discriminator D by minimizing Eq.(1)
7 Update projections {Wv}Vv=1 by minimizing Eq.(2).

8 for Epoch = 1, ..., Tf do
9 Extract feature set F = φ(X) on data X .

10 Map feature set F thorough camera-specific projection
matrix W to obtain projection feature set F̃ =WF.

11 Obtain pseudo labels using HDBSCAN(F̃, Smin).
12 Update the network φ and projection matrices

{Wv}Vv=1 by minimizing Ltotal Eq.(7).

Constrained by PIL, the structural information of each cam-
era in the original space is preserved when features of each
camera are projected into a shared space.

Projection Constraint Loss. Since the transformations
are with respect to person images from different cameras,
they are inherently correlated and homogeneous. Therefore,
we adopt a cross-camera consistency term to balance be-
tween the ability to capture discriminative information and
the capability to alleviate view-specific bias. We also pro-
pose a soft-orthogonal constraint to maintain the transfor-
mation matrix close to an orthogonal matrix as training pro-
ceeds, which helps to preserve the individual characteristic
and stabilize the learning process. Together, the Projection
Constraint Loss (PCL) is defined as:

Lconstraint =
∑
u,v

‖Wu −Wv‖2F +
V∑

v=1

∥∥WT
v Wv − I

∥∥2
F
,

(6)
where Wv is the specific transformation for the v-th camera
view. WT

v Wv is a convariance matrix, and I represents the
identity matrix.

Finally, the graph-aligned feature representations are ob-
tained by minimizing equation Eq.(3), Eq.(4), Eq.(5) and
Eq.(6) jointly. The total loss function is defined as:

Ltotal = Lnode + Ledge + Linvariant + ηLconstraint, (7)

where η is a trade-off parameter, which is set to 0.1 accord-
ing to the best evaluation results. Alg. 1 concludes the pro-
posed learning method.

Experiments
In this section, we conduct sufficient ablation studies to
prove the effectiveness of each component in HGA. Then,

Methods Duke→Market Market→ Duke
mAP R1 mAP R1

Same 19.5 39.7 13.4 28.2
Random 21.4 42.8 17.7 34.9
CAMEL 25.2 49.1 20.8 43.8
CA 31.5 54.1 29.2 49.6
Same+FA 23.5 52.5 22.9 41.5
Random+FA 32.8 55.7 28.9 38.8
CAMEL+FA 42.3 61.7 39.3 58.8
HGA(CA+FA) 70.3 89.5 67.1 79.4

Table 1: The comparison of different initialization schemes
for W . Same denotes setting all W into a same matrix. Ran-
dom means each Wi is randomly initialized into different
matrices. CAMEL denotes the initialization method from
(Yu, Wu, and Zheng 2017), we re-implement their work
and conduct experiments in the same settings. Hereafter,
Duke→Market represents that we use Duke as source do-
main and Market as target domain and vice versa.

we compare the performance of proposed HGA with other
state-of-the-art unsupervised domain adaptation person re-
ID methods to show superiority.

Datasets and Evaluation Metrics
We evaluate our method on three person re-ID benchmark
datasets, i.e. Market1501 (Zheng et al. 2015), DukeMTMC-
ReID (Ristani et al. 2016; Zheng, Zheng, and Yang 2017)
and MSMT17 (Wei et al. 2018), which are considered as
large scale in the community. Performance is evaluated by
the Cumulative Matching Characteristic (CMC) and mean
Average Precision (mAP).

Implementation Details
We adopt ResNet-50 (He et al. 2016) without the last clas-
sification layer as backbone network to conduct all exper-
iments. The backbone is pretrained on ImageNet (Deng
et al. 2009) and then further trained on the source dataset.
All codes are implemented on Pytorch. During training, all
images are resized to 256×128. Random flipping, random
cropping and random erasing are used for data augmenta-
tion. We adopt stochastic gradient descent with a momentum
of 0.9 to optimize the model. As shown in Alg. 1, the training
process lasts for 100 epochs, including 20 epochs for coarse-
grained alignment and another 80 epochs for fine-grained
alignment. The learning rate is initialized to 0.01 and di-
vided by 10 for every 40 epochs. We set the batch size equal
to 128 for both training and testing. To guarantee that each
batch contains images from all views, we first compute the
distribution of the numbers of samples in each camera, and
then compose a batch of images from all cameras with cor-
responding proportions. The shape of each projection matrix
is 512 × 2048. For testing, we use 512-d projected features
as final representations of testing images to compute their
similarity.

Ablation Study
The Impact of Coarse-grained Alignment. To eval-
uate the effectiveness and stability of proposed coarse-
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Methods Duke→Market Market→ Duke
mAP R1 mAP R1

CA 31.5 54.1 29.2 49.6
CA+NAL 55.4 73.6 49.8 62.4
CA+EAL 59.1 78.1 54.7 66.8
CA+NAL+EAL 63.5 81.5 61.4 74.6
CA+NAL+EAL+PIL 69.5 87.1 66.2 79.1
CA+FA 70.3 89.5 67.1 79.4

Table 2: Ablation studies of different loss functions in Fine-
grained Alignment.

grained alignment (CA), we compare our adversarial learn-
ing scheme with various initialization strategies of projec-
tion matrices. Specifically, we implement three initialization
schemes for W including Same, Random and CAMEL.

As shown in Table 1, CA clearly outperforms other
three strategies when tested on Duke→Market and
Market→Duke. This demonstrates the effectiveness of the
proposed adversarial learning scheme for coarse-grained
alignment. Moreover, when the fine-grained alignment (FA)
is added to these methods, the proposed HGA further out-
performs other methods by a larger margin. Specifically,
with fine-grained alignment, CAMEL only improves mAP
by +17.1%(+18.5%) on Duke→Market(Market→ Duke),
meanwhile the HGA shows a significant performance gain
on mAP by +38.8% (+37.9%) on Market(DukeMTMC).
This indicates that CA has its own superiority in aligning ap-
pearance node of different cameras and promoting the sub-
sequent fine-grained alignment, and also proves that the ad-
versarial learning of eachWv has successfully made the pro-
jected features indistinguishable for discriminator D to de-
cide which camera it comes from.

The Impact of Losses in Fine-grained Alignment. The
effect of loss functions in FA is listed in Table 2. Firstly,
only with the proposed NAL, we improve the performance
by 19.5% and 12.8% at Rank-1 accuracy compared with
the results from CA when tested on Duke→Market and
Market→Duke, respectively. Secondly, we observe that con-
taining only the proposed EAL, the mAP and Rank-1 ac-
curacy increase by 27.6% and 24.0% for Duke→Market,
while 25.5% and 17.2% for Market→Duke. This improve-
ment demonstrates that both NAL and EAL are beneficial to
model generalization. Thirdly, we combine NAL and EAL
together to jointly optimize model. It is clear that we achieve
better results on both Duke→Market and Market→Duke
than using each loss function alone. This shows that NAL
and EAL are complementary and to each other in fine-
grained graph alignment. Then, we continue employing PIL
and further improving mAP and Rank-1 by 6.0% and 5.6%
for Market→Duke, and 4.8% and 4.5% for Market→Duke.
Note that containing only PIL could not help much in im-
proving performance. This indicates that PIL is effective
to keep the person graph structures untouched in each ap-
pearance node and useful when the nodes and edges of per-
son graphs are aligned by NAL and PIL. Finally, with the
constraints of PCL, the proposed model (CA+FA) further
gains a performance boost by 2.4% and 0.3% on Rank-1 for
Duke→Market and Market→Duke, respectively.

Comparison with State-of-the-art Methods
Results on Market1501. Table 3 reports comparisons on
the task of Duke→Market. BOW(Zheng et al. 2015) and
LOMO(Liao et al. 2015) directly apply hand-crafted fea-
tures to evaluate re-ID performance, and both methods have
poor performance due to the lack of training. Compared to
GAN-based re-ID methods, the proposed HGA treats adver-
sarial learning in a simpler way and only demands a coarse
graph alignment. HGA achieves mAP = 70.3% and Rank-
1 = 89.5%, which significantly exceeds the GAN-based re-
ID methods by a large margin. This indicates the proposed
method can make use of the unlabeled data more effec-
tively. Note that CAMEL and UCDA-CCE (Qi et al. 2019)
also treat camera-level sub-domains as a unique characteris-
tic, thus share certain similarity to our work. However, our
method significantly outperforms them, which demonstrates
that the proposed HGA has its own superiority in exploiting
the intrinsic distinctions among identities and indeed allevi-
ates camera-specific bias through aligning nodes and edges
of the same person in the heterogeneous graph.

Results on DukeMTMC-reID. The similar improvement
can also be observed when we test our method on the task
of Market→Duke. As shown in Table 3, our proposed HGA
achieves mAP = 67.1% and rank-1 accuracy = 80.4%, which
is superior to all previous UDA methods. Specifically, com-
pared to the best UDA method DG-Net++(Zou et al. 2020),
the proposed method is 3.3% and 1.5% higher on mAP
and Rank-1 accuracy. Note that NRMT(Zhao et al. 2020)
performs better on Duke→Market task. But we outperform
them on Market→Duke task by a large margin and also have
a lead in Rank-1 accuracy on Duke→Market task, which
proves our method has a better performance consistency on
both two tasks. Therefore, the advantage of the proposed
HGA domian adaptation approach for person re-ID can be
confirmed.

Results on MSMT17. In addition, we further evaluate
the proposed HGA approach on MSMT17 dataset, which is
larger and more challenging. As shown in Table 4, the pro-
posed method clearly outperforms five existing UDA meth-
ods including PTGAN(Wei et al. 2018), ECN(Zhong et al.
2019), SSG (Fu et al. 2019), MMCL (Wang and Zhang
2020), DAAM (Huang et al. 2020), NRMT (Zhao et al.
2020), DG-Net++ (Zou et al. 2020). Our proposed HGA
achieves 25.5% and 55.1% in terms of mAP and Rank-1 ac-
curacy when the model is trained on Market-1501, which
outperforms previously best method DG-Net++ by 6.7% in
Rank-1 accuracy. This further verifies the effectiveness and
generalization of our proposed method.

Parameter Analysis
The Number of Appearance Groups. We evaluate the
learned model when K is set to 3,4,...,10 in 12 respectively,
and the results are shown in Fig. 3. With K increasing in a
range from 3 to 5, the improvement is increasingly signifi-
cant. And we also observe that the proposed method is very
stable and does not fluctuate greatly when K is greater than
5. The best result is obtained when K is set to 6. This shows
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Methods Reference DukeMTMC-reID→Market-1501 Market-1501→ DukeMTMC-reID
mAP R1 R5 R10 mAP R1 R5 R10

LOMO CVPR 15 8.0 27.2 41.6 49.1 4.8 12.3 21.3 26.6
Bow ICCV 15 14.8 35.8 52.4 60.3 8.3 17.1 28.8 34.9
SPGAN CVPR 18 22.8 51.5 70.1 76.8 22.3 41.1 56.6 63.0
PTGAN CVPR 18 - 38.6 - 66.1 - 27.4 - 50.7
UCDA-CCE ICCV 19 34.5 64.3 - - 36.7 55.4 - -
ECN CVPR 19 43.0 75.1 87.6 91.6 40.4 63.3 75.8 80.4
CR-GAN ICCV 19 54.0 77.7 89.7 92.7 48.6 68.9 80.2 84.7
PUL TOMM 18 20.5 45.5 60.7 66.7 16.4 30.0 43.4 48.5
CAMEL ICCV 17 26.3 54.5 - - - - - -
TJ-AIDL CVPR 18 26.5 58.2 74.8 81.1 23.0 44.3 59.6 65.0
CASCL ICCV 19 35.6 64.7 80.2 85.6 30.5 51.5 66.7 71.7
MAR CVPR 19 40.0 67.7 81.9 - 48.0 67.1 79.8 -
PDA-Net ICCV 19 47.6 75.2 86.3 90.2 45.1 63.2 77.0 82.5
PAST ICCV 19 54.6 78.4 - - 54.3 72.4 - -
SSG ICCV 19 58.3 80.0 90.0 92.4 53.4 73.0 80.6 83.2
MMCL CVPR 20 60.4 84.4 92.8 95.0 51.4 72.4 82.9 85.0
AD-Cluster CVPR 20 68.3 86.7 94.4 96.5 54.1 72.6 82.5 85.5
DAAM AAAI 20 67.8 86.4 - - 63.9 77.6 - -
DG-Net++ ECCV 20 61.7 82.1 90.2 92.7 63.8 78.9 87.8 90.3
NRMT ECCV 20 71.7 87.8 94.6 96.5 62.2 77.8 86.9 89.5
HGA This Paper 70.3 89.5 93.6 95.5 67.1 80.4 88.7 90.3

Table 3: Comparison of proposed HGA approach with state-of-arts unsupervised domain adaptation person Re-ID methods on
Market-1501 and DukeMTMC-re-ID dataset.

Methods Market-1501→MSMT17
mAP R1 R5 R10

PTGAN 2.9 10.2 - 24.4
ECN 8.5 25.3 36.3 42.1
SSG 13.2 31.6 - 49.6
MMCL 15.1 40.8 51.8 56.7
DAAM 20.8 44.5 - -
NRMT 19.8 43.7 56.5 62.2
DG-Net++ 22.1 48.4 60.9 66.1
HGA 25.5 55.1 61.2 65.5

Methods DukeMTMC-reID→MSMT17
mAP R1 R5 R10

PTGAN 3.3 11.8 - 27.4
ECN 10.2 30.2 41.5 46.8
SSG 13.3 32.2 - 51.2
MMCL 16.2 43.6 54.3 58.9
DAAM 21.6 46.7 - -
NRMT 20.6 45.2 57.8 63.3
DG-Net++ 22.1 48.8 60.9 65.9
HGA 26.8 58.6 64.7 69.2

Table 4: Comparison of proposed HGA approach with state-
of-arts unsupervised domain adaptive person Re-ID methods
on MSMT17 dataset.

that appearance groups do exist in the feature space and our
intuition on constructing a heterogeneous graph for person
re-ID is valid.

The Parameters of HDBSCAN. In addition, we analyse
how the number of minimum samples (Smin) for each clus-
ter in HDBSCAN clustering affects the Re-ID results. We
test the impact of 5, 10, 15, 20, 25 minimum samples on
the performance of our HGA framework for Duke→Market
task. As shown in Fig. 3, we can see that setting Smin to

Figure 3: Analysis of hyper parameters on Duke→Market
task. Left: The impact of K in K-means clustering. Right:
The impact of the minimum samples Smin at each cluster in
HDBSCAN clustering.

15 yields superior accuracy. Meanwhile, different Smin has
large impact on the Re-ID accuracy. We believe that the best
setting of Smin is dependent on the true data distribution of
the target dataset. For example, the average number of im-
ages for each person in Market-1501 is near 16, which is
almost consistent with our experimental results.

Conclusion
In this work, we propose Heterogeneous Graph Align-
ment (HGA), which can exploit discriminative information
by constructing and aligning the heterogeneous graph of
each camera, to tackle the challenging unsupervised do-
main adaptation person Re-ID. With the proposed coarse-
to-fine learning scheme, HGA achieves the graph alignment
in different granularity, resulting in aligning features of the
same person and preserving the distribution structure of each
graph. This preservation can further help HGA to find more
potential discriminative information. Extensive experiments
demonstrate that the performance of our approach outper-
forms the state-of-the-arts.
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