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Abstract

Group activity recognition aims to recognize an overall activ-
ity in a multi-person scene. Previous methods strive to rea-
son on individual features. However, they under-explore the
person-specific contextual information, which is significant
and informative in computer vision tasks. In this paper, we
propose a new reasoning paradigm to incorporate global con-
textual information. Specifically, we propose two modules to
bridge the gap between group activity and visual context. The
first is Transformer based Context Encoding (TCE) module,
which enhances individual representation by encoding global
contextual information to individual features and refining the
aggregated information. The second is Spatial-Temporal Bi-
linear Pooling (STBiP) module. It firstly further explores
pairwise relationships for the context encoded individual rep-
resentation, then generates semantic representations via gated
message passing on a constructed spatial-temporal graph. On
their basis, we further design a two-branch model that inte-
grates the designed modules into a pipeline. Systematic ex-
periments demonstrate each module’s effectiveness on either
branch. Visualizations indicate that visual contextual cues
can be aggregated globally by TCE. Moreover, our method
achieves state-of-the-art results on two widely used bench-
marks using only RGB images as input and 2D backbones.

Introduction
Group activity recognition (Ibrahim et al. 2016) or collec-
tive activity recognition (Choi, Shahid, and Savarese 2009)
has attracted more research attention recently due to its sig-
nificance in video understanding. Group activity recognition
is a task aiming to recognize the overall activity of a group
of people, which has a promising future for various appli-
cations, e.g. sports/surveillance video analysis, social activ-
ity understanding, video search and retrieval. Given a video
clip, the difficulties of this problem lie not only in the recog-
nition of individual actions, but also in the exploration of the
scene information and collaborative relation among people.

Recently proposed methods are mostly based on deep
learning techniques. We revisit them in the view of a causal
graph (Pearl, Glymour, and Jewell 2016) illustrated in Fig-
ure 1(a), in which I → C : generate feature maps from a
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Figure 1: (a) Causal graph of existing models. (b) Causal
graph of our proposed model. I : input images. C : global fea-
ture map. X : individual features. Y : context encoded indi-
vidual features. Z : activity prediction.

given image, C → X : extract individual features from fea-
ture maps (usually by RoIAlign (He et al. 2017)), and X
→ Z : reason on individual features to generate a scene-
level representation and then classify it. However, step I
→ C only crops features aligned with the bounding box,
which implies that features are limited to local receptive
fields. Therefore global contextual information that bene-
fits recognition is omitted indeliberately. However, previous
works (Wang et al. 2018; Cao et al. 2019) have demonstrated
the significance of global-range dependency in computer vi-
sion tasks, which lacks careful exploration in our problem.
For example, when you try to recognize an activity in vol-
leyball games, you need to consider players, referees, line
judges and spectators. Like spectators’ cheer for the win-
ning team, body orientation of judges, actions and positions
of line judges also provide informative cues to the result.

In an effort to solve the aforementioned drawback, we
propose a new method aligned with a new causal graph illus-
trated in Figure 1(b). The major difference between the two
methods is that instead of reasoning on X directly, we firstly
generate context encoded features Y by the combination of
individual features X and global feature map C, then reason
on Y to get a semantic representation Z.

In practice, we resort to the well-known concept of trans-
former (Vaswani et al. 2017), which adopts the self-attention
mechanism to aggregate information from the global input
sequence. We design a Transformer based Context Encoding
module (TCE) to incorporate the person-specific contextual
information. Specifically, we align the individual features X
with the global feature map C, aggregate and refine informa-
tive contextual features to get context encoded features Y.
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Our experiments indicate that TCE emphasizes the key in-
dividual features and the informative surrounding features,
which both facilitate the following modules with sufficient
information to reason on.

To fully explore the interactions between context encoded
individual features Y, we propose a Spatial-Temporal Bilin-
ear Pooling module (STBiP) to model the spatial collabo-
rative relationship between different people, and model the
temporal dynamics of the same individual. Specifically, we
construct a spatial-temporal graph, explore pairwise inter-
actions by bilinear pooling and then perform gated mes-
sage passing to get a semantic representation. By performing
STBiP on context encoded individual features, all pairwise
interactions between individuals and contextual information
can be exhaustively taken into consideration.

Intuitively, both fine-grained pose information and global
features are necessary for group activity recognition since
they provide complementary information (Gavrilyuk et al.
2020). Finally, to integrate the above intuitions and designed
modules into a pipeline, we design a two-branch model com-
posed of a pose branch and a global branch. Individual fea-
tures X come from pose features in the pose branch and
come from RoIAlign features in the global branch. Two
branches can infer alone or be fused by different strategies
to benefit from complementarity.

The contributions of our work are summarized as follows:

• We design a new reasoning paradigm to incorporate
global visual context for group activity recognition, which
aligns with a new causal graph.

• Specifically, we design a TCE module to encode person-
specific contextual information suitable for the pose
branch and the global branch.

• We design a STBiP module to mine interactions be-
tween context encoded features on a constructed spatial-
temporal graph, which produces semantic activity repre-
sentations.

• We integrate above modules into a pipeline by designing
a two-branch model. Moreover, our model achieves state-
of-the-art results on two widely used datasets while using
raw RGB images as input and 2D backbones.

Related Work
Visual Context Encoding There are mainly two kinds of
visual context encoding methods. The first kind is implicit
encoding (Hu, Shen, and Sun 2018; Woo et al. 2018; Wang
et al. 2018; Cao et al. 2019; Girdhar et al. 2019; Huang
et al. 2019), which is always instantiated by attention/self-
attention mechanism. The second kind is explicit encoding,
which is always instance-level and widely used in scene
graph generation (Zellers et al. 2018; Tang et al. 2019) and
human-object interaction (Yao and Fei-Fei 2010; Chao et al.
2015). Our work follows the first kind and encodes contex-
tual features guided by individual features.

Bilinear Pooling Bilinear pooling was firstly proposed
to provide a sufficiently expressive representations of two-
factor interactions (Tenenbaum and Freeman 2000). Now it

has developed into an extensively used feature fusion tech-
nique and has been successfully applied in various visual-
related tasks like fine-grained recognition (Lin, RoyChowd-
hury, and Maji 2015; Gao et al. 2016; Kong and Fowlkes
2017; Wei et al. 2018; Yu et al. 2018a; Zhang et al. 2019)
and visual question answering (Fukui et al. 2016; Kim et al.
2016; Yu et al. 2018b). We incorporate bilinear pooling into
our reasoning scheme to obtain semantic representations
given context encoded features.

Group Activity Recognition Initially, many works re-
solving group activity recognition were based on hand-
crafted features and probabilistic graphical models (Choi,
Shahid, and Savarese 2011; Lan et al. 2011; Lan, Sigal, and
Mori 2012; Amer, Lei, and Todorovic 2014). They mainly
designed structured models to aggregate significant informa-
tion in spatial-temporal domain.

Recent works are mostly based on deep learning meth-
ods, following the graph in Figure 1(a). Their differences
mainly lie in reasoning methods (i.e. X → Z ). The core idea
is to emphasize relevant actors and suppress irrelevant ones.
The most frequently adopted reasoning method stems from
RNN and its derivative models (Ibrahim et al. 2016; Shu,
Todorovic, and Zhu 2017; Bagautdinov et al. 2017; Yan et al.
2018; Tang et al. 2018; Ibrahim and Mori 2018; Qi et al.
2018), owing to RNN’s strong capacity of sequence mod-
eling. Graph convolution network (Wu et al. 2019), trans-
former (Gavrilyuk et al. 2020) and deep reinforcement learn-
ing (Hu et al. 2020) also demonstrate their effectiveness of
reasoning. Note that previous methods like (Wang, Ni, and
Yang 2017; Tang et al. 2018) also mention ’context’ but de-
fines it upon X. To the best of our knowledge, we are the first
to explore global visual context in C.

Our Approach
The overall framework of our proposed method is illus-
trated in Figure 2. In general, our method composes of two
branches (one branch also works), namely the pose branch
and the global branch, which share similar pipeline and can
be fused optionally. For each branch, it contains a selected
base network, TCE modules and STBiP modules. The de-
tailed model descriptions are stated in subsections below.

Base Network Architecture
To recognize a group activity, we solve it by recognizing in-
dividual actions first. For individual action recognition, we
need to observe not only how a particular person behaves
with his/her body joints but also the whole contexts he/she
is in. The former is treated as pose features, the latter global
individual features (i.e. RoIAlign features). In order to cap-
ture the above information, distinct backbones are required.
Specifically, we adopt HRNet-w32 as pose feature extractor
following (Gavrilyuk et al. 2020) and Inception-v3/VGG16
as global feature extractor following (Shu, Todorovic, and
Zhu 2017; Bagautdinov et al. 2017).

To extract features from a T -frame video clip, we di-
vide the clip into K temporal segments first. Afterwards,
K frames are uniformly sampled from K segment. For the
pose branch, persons are cropped from the sampled images
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end of a branch stands for global attribute pooling.

and resized to a fixed size. Then, they are fed to HRNet-
w32 to get individual features of de-dimension. For the
global branch, frames pass through Inception-v3/VGG16
and RoIAlign to get individual features of de-dimension. Ev-
ery frame has a total of N person bounding boxes.

Transformer Based Context Encoding

In this subsection, we introduce our TCE module. This mod-
ule takes in a group of individual features X ∈ RN×de and
a global feature map C ∈ Rh×w×dg . The outputs of this
module is context encoded individual features denoted as
Y ∈ RN×dy . For clarity, we will detail the generation of
ith context encoded feature yi ∈ Rdy given ith individual
feature xi ∈ Rde and global feature map C in following
equations and illustrations.

A neat architecture of TCE is illustrated in Figure 3(a),
which splits the module into three stages: input alignment,
attention aggregation and Feed-Forward Network (FFN) re-
fining. Following (Vaswani et al. 2017), the original trans-
former encoder finds a query, a set of keys and values, and
implements self-attention on them to explore the alignment
between the query and the keys, and then get a weighted sum
of the values. Specifically in our architecture, we firstly per-
form input alignment, which composes of two steps: (1) en-
coding position information respectively for the global fea-
ture map and individual features, (2) using a pointwise con-
volution (Howard et al. 2017) on the global feature map to
get C̃ ∈ Rh×w×dc and using a linear projection layer on in-
dividual features to get x̃i ∈ Rdc . The spatial dimension of
the global feature map is then collapsed to C̃ ∈ Rhw×dc for
the encoder requires a sequence as input.

Second, we perform attention aggregation. In our prob-
lem, the query is the reduced individual features. Keys and
values are the reduced global feature map. To get the primary
encoded representations, we adopt the scaled dot-product at-
tention, followed by a softmax function, a weighted summa-

tion and a residual connection. It can be expressed as

αi,j =
e

1√
dc

x̃T
i c̃j∑hw

j=1 e
1√
dc

x̃T
i c̃j

; ai =

hw∑
j=1

αi,j c̃j (1)

x̃
′

i = LN(x̃i +Dropout(ai)) (2)
where LN stands for LayerNorm (Ba, Kiros, and Hinton
2016) layer; c̃j ∈ Rdc is the jth feature of C̃; ai ∈ Rdc

is the aggregated feature by self-attention mechanism; x̃
′

i ∈
Rdc is the primary contextual feature for x̃i.

Finally, we perform an FFN refining to further refine the
encoded representation. This step contains a LN layer on
the feed-forwarded features and a residual connection. The
above refining architecture can be written as

FFN(x̃
′

i) = Linear
(
Dropout

(
ReLU

(
Linear

(
x̃

′

i

))))
(3)

x̃
′′

i = LN
(
x̃

′

i +Dropout
(
FFN

(
x̃

′

i

)))
(4)

where x̃
′′

i ∈ Rdc is the FFN refined contextual feature.
This module can be easily extended to a multi-head man-

ner. To enhance its representation power, we introduce resid-
ual connection and use concatenation as a fusion method. In
summary, the output of TCE module can be formulated as

yi = xi‖{‖nt
n=1tce(xi,C)n} (5)

where ‖ denotes concatenation on the channel axis,
tce(xi,C) denotes one head of TCE module and nt denotes
the number of TCE heads. Each head has independent pa-
rameters.

Unilateral Connection For the base network of the pose
branch, it takes in the cropped and resized person images,
which produces very fine-grained pose embedding as indi-
vidual features but drops the global contextual information.
To plug TCE module into the pose branch as well, we es-
tablish a unilateral connection to create inter-branch feature
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which mines the relationship of all yqj to the given ypi. The softmax function is used across all yqj in (b). For both, ⊕ denotes
element-wise summation,⊗ denotes matrix multiplication, ‖ denotes concatenation on the channel axis and ◦ denotes Hadamard
product.

flow. In practice, the global branch feeds the pose branch
with the feature map C generated from its base network, as
shown in Figure 2. Combined with the pose branch’s indi-
vidual features can the input requirements of the TCE mod-
ule be met.

Positional Encoding The positional information is impor-
tant because it exposes positional priors to the encoder and
the followed reasoning method. Thus we add positional en-
coding (Vaswani et al. 2017) to both branches in TCE mod-
ules. In practice, for a given individual feature, we apply sin
and cos function to encode the center coordinates (lw, lh) of
its original bounding box. Half of the dimension is encoded
with lw and the second half with lh. It can be formulated as

PE(l,2k) = sin(
l

100002k/de
)

PE(l,2k+1) = cos(
l

100002k/de
)

(6)

where l denotes coordinate lw or lh. If l = lw, then di-
mension k ∈ {0, 1, ..., de

4 − 1}. If l = lh, then dimension
k ∈ {de

4 ,
de

4 + 1, ..., de

2 − 1}.
For the global feature map C, we encode the coordinates

on the feature map multiplied by the output stride using the
same method. The multiplication of output stride is to match
the order of magnitude with the positional encoding of indi-
vidual features.

Spatial-Temporal Bilinear Pooling
In this subsection, we introduce the construction of our
spatial-temporal graph, the STBiP module and the final
global attribute pooling. A neat illustration of STBiP mod-
ule is shown in Figure 3(b). STBiP contains three parts: spa-
tial gate function, pairwise bilinear pooling, gated message
passing and refining.

To model the relationship, a spatial-temporal graph G =
(YK ,R) is firstly constructed from context encoded fea-
tures at every vertex YK = {yti|t = 1, ...,K; i =
1, ..., N} and their pairwise relationship R = {rpi,qj |p, q =
1, ...,K; i, j = 1, ..., N}. YK is the temporal extended Y ,

which makes the graph include all the people from the sam-
pled K frames.

In order to mine the relationship between individuals, we
ought to consider the spatial relationship and visual embed-
ding relationship. In this work, we model them separately
and fusion their results by multiplication. If we denote the
center coordinates of the bounding box for ypi and yqj to be
lpi and lqj , their pairwise relationship can be neatly denoted
as

rpi,qj = F (lpi, lqj ,ypi,yqj) = g(lpi, lqj)f(ypi,yqj) (7)

Spatial Gate Function For the modeling of function
g(lpi, lqj), we consider pairwise positions as a gate for mes-
sage passing. It facilitates message passing operation to ag-
gregate spatially adjacent features. In practice, we formulate
our gate function as

g(lpi, lqj) =

{
1, if dist(lpi, lqj) < θ

−∞, otherwise
(8)

where dist(lpi, lqj) stands for the Euclidean distance be-
tween lpi and lqj ; θ is the preset threshold.

Pairwise Bilinear Pooling To exhaustively explore the vi-
sual embedding relationship via function f(ypi,yqj), we
resort to bilinear pooling (Kim et al. 2016) which con-
sider every feature’s pairwise interaction by quadratic ex-
pansion. ypi and yqj that output from the TCE mod-
ule contain contextual information and original individual
appearance information. Thus, interpersonal appearance-
appearance, context-context and appearance-context rela-
tion can be thoroughly explored via bilinear pooling.

In practice, we consider pairwise interaction by following
function

f(ypi,yqj) = ypi
TWyqj = ypi

TUV Tyqj

= 1T(UTypi ◦ V Tyqj)
(9)

where ypi,yqj ∈ Rdy ; W ∈ Rdy×dy is the learned weight
matrix; 1 is column vector of ones; U ,V ∈ Rdy×dw are
learned linear projections and ◦ stands for Hadamard prod-
uct. Different from (Kim et al. 2016), we don’t expect the
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model to be low-rank because the number of pairwise rela-
tionship (K2 × N2 in one graph) is a small quantity in our
problem setting. Instead, we use high rank pooling to dis-
cover abundant relation. We then extend sum aggregation to
weighted aggregation and follow (Kim et al. 2016) to add
bias term to linear projections.

f(ypi,yqj) = wT((UTypi + bU ) ◦ (V Tyqj + bV )) (10)

where bU , bV ∈ Rdw are the learned bias and w ∈ Rdw is
the learned weight vector.

Gated Message Passing and Refining As graph convo-
lution network demonstrates its effectiveness in reasoning
problem, we perform similar message passing operations on
our constructed graph. In detail, for a given ypi, we aggre-
gate information from all vertices in the graph according to
their pairwise relationship rpi,qj . After message passing, we
employ a refining operation containing a ReLU activation,
an LN layer and a fully-connected layer. It refines the aggre-
gated information in case it contains redundant information
(Wang et al. 2018; Lin et al. 2020). Based on this, the up-
dated feature of ypi can be written as

mpi,qj =
eg(lpi,lqj)f(ypi,yqj)∑K

q=1

∑N
j=1 e

g(lpi,lqj)f(ypi,yqj)

y
′

pi = Wm1ReLU

LN

 K∑
q=1

N∑
j=1

mpi,qjWm2yqj


(11)

where y
′

pi ∈ Rdy is the refined feature; Wm1,Wm2 ∈
Rdy×dy are learned parameters.

We can extend the gated message passing result to a multi-
head manner. In addition, residual connection is introduced
to enhance its representational ability. Then the multi-head
results and residual feature will be fused by summation. The
final individual representation of the given ypi can be de-
noted as

y
′′

pi = ypi +

ns∑
n=1

sp(ypi,YK)n (12)

where y
′′

pi ∈ Rdy is the output of STBiP module;
sp(ypi,YK) denotes one head of STBiP modules; ns de-
notes the number of STBiP heads. Each head has indepen-
dent parameters.

Finally, we perform a global attribute pooling to obtain the
final activity representation. Specifically, features belong to
the same individual are average pooled on the temporal axis
and then max pooled among different individuals to obtain
the activity representation z ∈ Rdy .

Branch Fusion and Training Loss
The above statement solves the problem of inferring the
group activity on one branch. As mentioned, two branches
hold complementary information and previous work has
proved it effective (Simonyan and Zisserman 2014; Azar
et al. 2019; Gavrilyuk et al. 2020) to fuse the indepen-
dently inferred feature for the same objective. In our prob-
lem, We mainly study three kinds of fusion strategy: (1)

The first is fusion before the TCE module. Concatenation
is used because element-wise summation does not perform
well on fusing features from different backbones (Gavri-
lyuk et al. 2020). (2) The second is fusion before the STBiP
module and concatenation is employed. (3) The third is to
train two branches separately and fuse the softmax scores
of two branches by weighted summation when testing. The
fusion position is marked in Figure 2. Later fusion allows
two branches to reason on their own features more indepen-
dently. Their comparisons will be shown in the experiment.

To train the model in an end-to-end manner, we apply two
standard cross-entropy loss

L = Lg(zG, ẑG) + λLa(zI , ẑI) (13)

where Lg and La are cross-entropy losses for group activity
recognition and individuals action recognition respectively;
zG and zI are ground truth labels for group activity and in-
dividual action; ẑG and ẑI are model predictions. λ serves
as a hyper-parameter to balance two losses.

Experiments
Datasets and Implementation Details
Datasets There are two frequently adopted datasets named
the Volleyball dataset (VD) and the Collective Activity
dataset (CAD). The Volleyball dataset (Ibrahim et al. 2016)
gathers from 55 video recordings of volleyball games, which
are clipped and split into 3493 training clips and 1337 testing
clips. The center frame of each clip is annotated with bound-
ing box coordinates for all individual players and their action
labels (i.e. blocking, digging, falling, jumping, moving, set-
ting, spiking, standing and waiting). Each clip is annotated
with one group activity label out of eight labels (i.e. right set,
right spike, right pass, right winpoint, left set, left spike, left
pass and left winpoint). For the unannotated frames, we use
the tracklets generated by (Bagautdinov et al. 2017). Two
metrics are employed to evaluate on this dataset, which are
Multi-class Classification Accuracy (MCA, %) and Mean
Per Class Accuracy (MPCA, %) following (Shu, Todorovic,
and Zhu 2017).

The Collective Activity dataset (Choi, Shahid, and
Savarese 2009) composes of 44 clips containing frames
ranging from 194 to 1814. The train set and test set split fol-
lows (Qi et al. 2018). The center frame of every ten frames is
annotated with bounding box coordinates of all individuals
and their action labels (i.e. NA, crossing, waiting, queueing,
walking and talking). Every ten frames are given one group
activity label out of five (i.e. crossing, waiting, queueing,
walking and talking). We merge the classes “walking” and
“crossing” as “moving” and report the MPCA (%) to evalu-
ate the performance following (Wang, Ni, and Yang 2017).

Implementation Details As other methods have done, we
resize images from the VD to H ×W = 720 × 1280 and
images from the CAD to H × W = 480 × 720. For the
pose branch, we crop the person bounding boxes from the
sampled images and resize them to a fixed size of 256×192.
For fair comparison, we use T = 10 frames for every clip,
with 5 frames before the center frame and 4 frames after.
We divide the clips into K = 3 temporal segments for two
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TCE for PB
MCA

TCE for GB
MCA# heads PE # heads PE

- - 89.7 - - 89.8
1 X 91.4 2 X 89.9
2 X 91.8 3 X 91.6
3 X 92.0 4 X 91.9
3 90.7 4 91.6
4 X 91.7 5 X 90.8

Table 1: Ablation study on the TCE module. The first row
without any TCE is the base model. ’PE’ is short for Posi-
tional Encoding, ’PB’ for Pose Branch and ’GB’ for Global
Branch.

STBiP for PB
MCA

STBiP for GB
MCA# heads w/ TCE # heads w/ TCE

- X 92.0 - X 91.9
2 X 92.5 2 X 92.8
4 X 92.9 4 X 92.9
4 90.9 8 X 93.3
8 X 92.5 8 91.3

16 X 92.0 16 X 92.8

Table 2: Ablation study on the STBiP module. Note that the
first row of results are TCE modules with best reported MCA
in Table 1, without any STBiP. The following STBiP mod-
ules are appended to the chosen TCE module if w/ TCE is
marked with X. Otherwise, they are appended to the base
network.

branches. We set dimension of individual feature to de =
1024 for both HRNet-w32 and Inception-v3/VGG16 base
networks. For TCE module, we set the encoding dimension
to dc = 128 and dropout ratio to 0.1. For STBiP module,
we set the threshold for the gate function to θ = 0.3H and
set dw = dy . For the training loss, we use λ = 1 for all
experiments. For the training of VD, we adopt the Adam
optimizer (Kingma and Ba 2014) with its hyper-parameter
fixed to β1 = 0.9, β2 = 0.999 and ε = 10−8. We use a mini-
batch size of 6 and train the network in 160 epochs with an
initial learning rate 10−4, which decreases by a factor of 2
every 40 epochs. For the training of CAD, we use Adam with
same hyper-parameters and a fixed learning rate of 10−4.

Ablation Study
In this subsection, we perform a series of ablation studies on
the VD for two branches respectively, aiming to examine the
effectiveness and respective contributions of proposed mod-
ules. We specifically adopt HRNet-w32 for the pose branch
and Inception-v3 for the global branch.

TCE Module We start our experiments by appending our
TCE module to the base network. We mainly experiment
with the number of layers and effectiveness of positional en-
coding. The results are shown in Tabel 1.

First, we append the TCE module (default with positional
encoding) with an increasing number of heads directly to the

Right spikeLeft spike

Figure 4: Visualization of contextual attention map. Better
view in digital version.

base model. We can conclude that (1) the TCE module with
too few heads fails to encode sufficient global contextual in-
formation to individual features, while too many heads cause
redundancy. Then we remove the positional encoding of the
best performing model and report their results. Two conclu-
sions can be drawn that (2) positional encoding helps encode
person-specific context and achieves improvement for both
branches; (3) positional encoding helps encode more infor-
mative position priors for the pose branch than the global
branch. We speculate it’s due to the underlying implication
for positional information contained in RoIAlign features.

To observe what contextual information we aggregate us-
ing TCE, we visualize the summation of N people’s atten-
tion weight aggregated from one sampled image by a 4-head
TCE on the global branch. The obtained contextual atten-
tion map is shown in Figure 4. The attention map reveals its
focus on two elements which contribute to a better recogni-
tion: (1) The person who performs the significant action, like
the person who perform the ’spiking’ action in both images.
(Only key players have high attention weights because we
use residual connection in TCE, which makes players who
need to be reemphasized have high weights.) (2) The spec-
tator’s reaction and line judges which are contextual infor-
mation that paid little attention in previous methods. Their
connections to any player on the field are expected to be
caught by TCE. These two elements combined result in a
good performance.

STBiP Module To study the effectiveness of STBiP mod-
ules, we firstly append STBiP modules with an increasing
number of heads to the best TCE model (3-head TCE for the
pose branch and 4-head TCE for the global branch). The re-
sult is shown in Table 2. We can conclude that (1) with the
addition of STBiP modules to TCE modules, both branches
can achieve higher MCA scores, which demonstrate the abil-
ity of STBiP to mine the underlying relationship for context
encoded features; (2) with too few heads added, the reason-
ing capacity is insufficient to mine pairwise relationship and
too many cause redundancy. Then we remove TCE modules
of the best performing model (i.e. append STBiP to the base
network) and report their results. We can conclude that (3)
STBiP modules facilitate to explore relationships between
original individual features as well.

Fusion We study the performance of three strategies. The
results are reported in Table 4. For fusion 1, two branches
share 4-head TCE and 8-head STBiP. For fusion 2, two
branches possess independent 4-head TCE and shared 8-
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Method Backbone MCA-V MPCA-V MPCA-C
CRM (Azar et al. 2019) I3D 92.1 (93.0‡) - - (94.2‡)

Actor Transformer (Gavrilyuk et al. 2020)
I3D 91.4 (93.0‡) - -

HRNet 92.3 - -
I3D + HRNet 93.5 (94.4‡) - (94.2‡) -

SBGAR (Li and Choo Chuah 2017) Inception-v3 38.7 (66.9‡) - (67.6‡) - (89.9‡)
SSU (Bagautdinov et al. 2017) Inception-v3 89.9 - -

ARG (Wu et al. 2019) Inception-v3 92.5 - -
VGG16 91.9 - -

CERN-2 (Shu, Todorovic, and Zhu 2017) VGG16 83.3 83.6 88.3
SPA+KD (Tang et al. 2018) VGG16 89.3 (90.7‡) 89.0 (90.0‡) 92.5 (95.7‡)

stagNet (Qi et al. 2018) VGG16 89.3 - 89.1
PRL(Hu et al. 2020) VGG16 91.4 91.8 93.8

Ours-TCE+STBiP

Inception-v3 93.3 93.4 95.1
HRNet* 92.9 92.9 95.0

Inception-v3 + HRNet* 94.1 94.3 95.4
VGG16 94.1 94.4 95.4
HRNet† 92.9 93.2 94.9

VGG16 + HRNet† 94.7 95.0 96.4

Table 3: Comparisons with the state-of-the-art methods. Suffix ’-V’ denotes results for the VD and suffix ’-C’ for the CAD.
Superscript * denotes unilateral connection from Inception-v3. Superscript † denotes unilateral connection from VGG16. Su-
perscript ‡ denotes results with additional optical flow inputs.

Fusion Position Fusion 1 Fusion 2 Fusion 3

MCA 91.8 92.3 93.8

Table 4: Branch fusion results. The exact fusion position can
be found in Figure 2.

head STBiP. For fusion 3, two branches possess independent
4-head TCE and independent 8-head STBiP (Note that the
pose branch with 4-head TCE and 8-head STBiP achieves
92.5%, while the global branch with the same structure
achieves 93.3%). For fusion 3, we set the weight for the pose
branch to be 1

3 and the global branch 2
3 following (Simonyan

and Zisserman 2014). It can be inferred that early fusion re-
sults in over-fitting. Also, too early fusion causes the model
to be worse than any one-branch model. To reason more in-
dependently produces better results.

Comparison with the State-of-the-Art
We compare our methods with other state-of-the-art meth-
ods on the VD and the CAD in Table 3. We list results of
global branch models (Inception-v3/VGG16), pose branch
models (HRNet-w32) and two-branch models using the third
fusion strategy. On the CAD, both branches are equipped
with 1-head TCE and 8-head STBiP. On the VD, the pose
branch is equipped with 3-head TCE and 4-head STBiP,
while the global branch is equipped with 4-head TCE and
8-head STBiP.

For VD, our method on the global branch outperforms
other methods with the same backbone by at least 0.8%
MCA for Inception-v3 and 2.2% MCA for VGG16. By
adding global features, our method on pose branch out-
performs (Gavrilyuk et al. 2020) with the same HRNet by
0.6%. Our two-branch model even surpasses methods us-

ing additional optical flow inputs, which demonstrates the
global-dependent context is informative. The confusion ma-
trix of VGG16+HRNet model illustrated in the Appendices
indicates our model distinguish well between activities per-
formed by the right team and the left team due to the mod-
eling of the spatial information. TCE can also help to distin-
guish ’winpoint’ well because they have relatively distinct
spatial layouts from other activities. Most failed cases mis-
take an activity performed by one team for another activity
performed by the same team. For example, some ’right set’
(’left set’) activities are mistaken for ’right pass’ (’left pass’).
It’s because they share similar spatial-temporal information
and contextual information.

For CAD, our method outperforms other methods using
the same VGG16 by at least 1.6%. Our two-branch method
even surpass other methods using additional optical flow in-
puts by 0.7%. Comparing methods adopting 3D convolution
like I3D, our model shows its superiority and outperforms
it by 2.2%. The confusion matrix of VGG16+HRNet model
illustrated in the Appendices indicates that the most failed
cases mistake ’waiting’ to ’moving’. It may due to the fact
that both classes have similar visual context which is hard to
distinguish, and the temporal dynamics of video clips isn’t
enough to catch two classes’ differences.

Conclusion
In this work, we manage to bridge the gap between group ac-
tivity recognition and visual context. In practice, we present
Transformer based Context Encoding (TCE) to explore
person-specific visual context and Spatial-Temporal Bilin-
ear Pooling (STBiP) to mine abundant pairwise relation-
ship. Experiments have demonstrated the effectiveness and
outstanding performance of incorporating visual context to
group activity recognition.
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Appendices

Figure 5: Confusion matrices for VGG16+HRNet model on
Volleyball dataset.

Figure 6: Confusion matrices for VGG16+HRNet model on
Collective Activity dataset.
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