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Abstract

Rotation detection is a challenging task due to the difficulties
of locating the multi-angle objects and separating them effec-
tively from the background. Though considerable progress
has been made, for practical settings, there still exist chal-
lenges for rotating objects with large aspect ratio, dense dis-
tribution and category extremely imbalance. In this paper,
we propose an end-to-end refined single-stage rotation de-
tector for fast and accurate object detection by using a pro-
gressive regression approach from coarse to fine granularity.
Considering the shortcoming of feature misalignment in ex-
isting refined single-stage detector, we design a feature re-
finement module to improve detection performance by get-
ting more accurate features. The key idea of feature refine-
ment module is to re-encode the position information of
the current refined bounding box to the corresponding fea-
ture points through pixel-wise feature interpolation to real-
ize feature reconstruction and alignment. For more accurate
rotation estimation, an approximate SkewIoU loss is pro-
posed to solve the problem that the calculation of SkewIoU
is not derivable. Experiments on three popular remote sens-
ing public datasets DOTA, HRSC2016, UCAS-AOD as well
as one scene text dataset ICDAR2015 show the effective-
ness of our approach. The source code is available at https:
//github.com/Thinklab-SJTU/R3Det Tensorflow and is also
integrated in our open source rotation detection benchmark:
https://github.com/yangxue0827/RotationDetection.

Introduction
Object detection is one of the fundamental tasks in com-
puter vision, and many high-performance general-purpose
object detectors have been proposed. Current popular detec-
tion methods can be in general divided into two types: two-
stage object detectors (Girshick et al. 2014; Girshick 2015;
Ren et al. 2015; Dai et al. 2016; Lin et al. 2017a) and single-
stage object detectors (Liu et al. 2016; Redmon et al. 2016;
Lin et al. 2017b). Two-stage methods have achieved promis-
ing results on various benchmarks, while the single-stage ap-
proach maintains faster detection speed.

However, current general horizontal detectors have fun-
damental limitations for many practical applications. For in-
stance, scene text detection, retail scene detection and re-
∗Corresponding author is Junchi Yan.
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mote sensing object detection whereby the objects can ap-
pear in various orientations. Therefore, many rotation de-
tectors based on a general detection framework have been
proposed in the above fields. In particular, three challenges
are pronounced, as analyzed as follows:

1) Large aspect ratio. The Skew Intersection over Union
(SkewIoU) score between large aspect ratio objects is sensi-
tive to change in angle, as sketched in Figure 3b.

2) Densely arranged. As illustrated in Figure 6, many
objects usually appear in densely arranged forms.

3) Arbitrary orientations. Objects in images can appear
in various orientations, which requires the detector to have
accurate direction estimation capabilities.

This paper is devoted to design an accurate and fast ro-
tation detector. To maintain high detection accuracy and
speed for large aspect ratio objects, we have adopted a re-
fined single-stage rotation detector. First, we find that rotat-
ing anchors can perform better in dense scenes, while hor-
izontal anchors can achieve higher recalls in fewer quanti-
ties. Therefore, a progressive regression form from coarse
to fine is adopted in the refined single-stage detector, that
is, the horizontal anchors are used in the first stage for faster
speed and higher recall, and then the refined rotating anchors
are used in the subsequent refinement stages to adapt to in-
tensive scenarios. Second, we also notice that existing re-
fined single-stage detectors (Zhang et al. 2018a; Chi et al.
2019) have feature misalignment problems1, which greatly
limits the reliability of classification and regression during
the refined stages. We design a feature refinement module
FRM that uses the feature interpolation to obtain the posi-
tion information correspond to the refined anchors and re-
construct the whole feature map by pixel-wise manner to
achieve feature alignment. FRM can also reduce the num-
ber of refined bounding box after the first stage, thus speed-
ing up the model. Experimental results have shown that fea-
ture refinement is sensitive to location and its improvement
in detection results is very noticeable. Finally, an approxi-
mate SkewIoU loss is devised to address the indifferentiable
problem of SkewIoU calculation for more accurate rotation
estimation. Combing these three techniques as a whole, our
approach achieves state-of-the-art performance with consid-

1Mainly refers to misalignment between region of interest (RoI)
and the feature, see details in Figure 4c.
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Figure 1: The architecture of the proposed Refined Rotation
Single-Stage Detector (RetinaNet as an embodiment). The
refinement stage can be repeated by multiple times. ‘A’ indi-
cates the number of anchors on each feature point, and ‘C’
indicates the number of categories.

erable speed on four public rotating sensitive datasets in-
cluding DOTA, HRSC2016, UCAS-AOD, and ICDAR2015.
Specifically, this work makes the following contributions:

1) For large aspect ratio object detection, an accurate and
fast rotation singe-stage detector is devised in a refined man-
ner, for high-precision detection. In contrast to the recent
learning based methods (Chen et al. 2018; Jang et al. 2019;
Zhang et al. 2019) for feature alignment, which lacks an ex-
plicit mechanism to compensate the misalignment, we pro-
pose a direct and effective pure computing based approach
which is further extended to handle the rotation case. To our
best knowledge, it is the first work for solving the feature
misalignment problem for rotation detection.

2) For densely arranged objects, we develop an efficient
coarse-to-fine progressive regression approach to better ex-
ploring the two forms of anchors in a more flexible manner,
tailored to each detection stage. Compared with the previous
methods (Ma et al. 2018; Yang et al. 2018b; Fu et al. 2018;
Yang et al. 2018a, 2019a) using one single anchor form, our
method is more flexible and efficient.

3) For arbitrarily-rotated objects, a derivable approximate
SkewIoU loss is devised for more accurate rotation estima-
tion. Compared with the over-approximation of SkewIoU
loss in recent work (Chen et al. 2020), our method retains
the accurate SkewIoU amplitude and only approximates the
gradient direction of SkewIoU loss.

Related Work
Two-Stage Object Detectors. Most existing two-stage
methods are region based. In a region based framework,
category-independent region proposals are generated from
an image in the first stage, followed with feature extraction
from these regions, and then category-specific classifiers and
regressors are used for classification and regression in the
second stage. Finally, the detection results are obtained by

Figure 2: Comparison between SkewIoU and Smooth L1.

using post-processing methods such as non-maximum sup-
pression (NMS). Faster-RCNN (Ren et al. 2015), R-FCN
(Dai et al. 2016), and FPN (Lin et al. 2017a) are classic
structures in a two-stage approach.
Single-Stage Object Detectors. For their efficiency, single-
stage detection methods are receiving more and more atten-
tion. Redmon et al. (Redmon et al. 2016) propose YOLO,
a unified detector casting object detection as a regression
problem from image pixels to spatially separated bounding
boxes and associated class probabilities. To preserve real-
time speed without sacrificing too much detection accuracy,
Liu et al. (Liu et al. 2016) propose SSD. The work (Lin et al.
2017b) solves the class imbalance problem by proposing
RetinaNet with Focal loss and further improves the accuracy
of single-stage detector.
Rotation Object Detectiors. Remote sensing, scene text
and retail scene are the main application scenarios of the
rotation detector. Due to the complexity of the remote sens-
ing image scene and the large number of small, cluttered
and rotated objects, two-stage rotation detectors are still
dominant for their robustness. Among them, ICN (Azimi
et al. 2018), ROI-Transformer (Ding et al. 2019), SCRDet
(Yang et al. 2019b) and Gliding Vertex (Xu et al. 2020) are
state-of-the-art detectors. However, they use a more com-
plicated structure causing speed bottleneck. For scene text
detection, there are many efficient rotation detection meth-
ods, including both two-stage methods (R2CNN (Jiang et al.
2017), RRPN (Ma et al. 2018), FOTS (Liu et al. 2018)),
as well as single-stage methods (EAST (Zhou et al. 2017),
TextBoxes++ (Liao, Shi, and Bai 2018)). For retail scene de-
tection, DRN (Pan et al. 2020) and PIoU (Chen et al. 2020)
Loss are the latest two rotation detectors used in retail scene
detection, and two rotation retail datasets are proposed.
Refined Object Detectors. To achieve better detection ac-
curacy, many cascaded or refined detectors are proposed.
The Cascade RCNN (Cai and Vasconcelos 2018), HTC
(Chen et al. 2019), and FSCascade (Li, Yang, and Zhang
2019) perform multiple classifications and regressions in the
second stage, which greatly improved the detection accu-
racy. The same idea is also used in single-stage detectors,
such as RefineDet (Zhang et al. 2018a). Unlike the two-
stage detectors, which use RoI Pooling (Girshick 2015) or
RoI Align (He et al. 2017) for feature alignment. The cur-
rently refined single-stage detector is not well resolved in
this respect. An important requirement of the refined single-
stage detector is to maintain a full convolutional structure,
which can retain the advantage of speed, but methods such
as RoI Align cannot satisfy it whereby fully-connected lay-
ers have to be introduced. Although some works (Chen et al.
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(a) (b)

Figure 3: The SkewIoU scores vary with the angle deviation.
The red and green rectangles represent the ground truth and
the prediction bounding box, respectively.

2018; Jang et al. 2019; Zhang et al. 2019) use deformable
convolution (Dai et al. 2017) for feature alignment, whose
offset parameters are often obtained by learning the offset
between the pre-defined anchor box and the refined anchor.
These deformable-based feature alignment methods are too
implicit and can not ensure that features are truely aligned.
Feature misalignment still limits the performance of the re-
fined single-stage detector. Compared to these methods, our
method can clearly find the corresponding feature area by
calculation and achieve the purpose of feature alignment by
feature map reconstruction.

The Proposed Method
We give an overview of our method as sketched in Figure 1.
The embodiment is a refined single-stage rotation detector
based on the RetinaNet (Lin et al. 2017b), namely Refined
Rotation RetinaNet (R3Det). The refinement stage (which
can be added and repeated by multiple times) is added to the
network to refine the bounding box, and the feature refine-
ment module FRM is added during the refinement stage to
reconstruct the feature map.

Rotation RetinaNet
Base Setting. For RetinaNet-based rotation detection, we
use five parameters (x, y, w, h, θ) to represent arbitrary-
oriented bounding box. Ranging in [−π/2, 0), θ denotes the
acute or right angle between w of bounding box and x-axis.
Therefore, it calls for predicting an additional angle offset in
the regression subnet. The regression equation is as follows:

tx = (x− xa)/wa, ty = (y − ya)/ha
tw = log(w/wa), th = log(h/ha), tθ = θ − θa

t
′
x = (x

′
− xa)/wa, t

′
y = (y

′
− ya)/ha

t
′
w = log(w

′
/wa), t

′
h = log(h

′
/ha), t

′
θ = θ

′
− θa

(1)

where x, y, w, h, θ denote the box’s center coordinates,
width, height and angle, respectively. Variables x, xa, x

′
are

for the ground-truth box, anchor box, and predicted box, re-
spectively (likewise for y, w, h, θ).
Loss Function. As shown in Figure 2, each box set has the
same center point, height and width. The angle difference

between the two box sets is the same, but the aspect ratio
is different. As a result, the smooth L1 loss value of the
two sets is the same (mainly from the angle difference), but
the SkewIoU is quite different. The red and orange arrows
in Figure 3b show the inconsistency between SkewIoU and
smooth L1 Loss. We can draw conclusion that smooth L1
loss function is still not suitable for rotation detection, espe-
cially for objects with large aspect ratios, which are sensitive
to SkewIoU. What’s more, the evaluation metric of rotation
detection is also dominated by SkewIoU.

The IoU related loss is an effective regression loss func-
tion that can solve above problem and is already widely
used in horizontal detection, such as GIoU (Rezatofighi et al.
2019), DIoU (Zheng et al. 2020), etc. However, the SkewIoU
calculation function between two rotating boxes is underiv-
able, which means that we cannot directly use the SkewIoU
as the regression loss function. Inspired by SCRDet (Yang
et al. 2019b), we propose a derivable approximate SkewIoU
loss, the multi-task loss is defined as follows:

L =
λ1

Npos

Npos∑
n=1

Lreg(v
′
n, vn)

|Lreg(v′
n, vn)|

|f(IoU)|+ λ2

N

N∑
n=1

Lcls(pn, tn)

(2)
Lreg(v

′
, v) = Ll1(v

′

θ, vθ)− IoU(v
′

{x,y,w,h}, v{x,y,w,h})
(3)

where N and Npos indicates the number of all and posi-
tive anchors. v

′
represents the predicted offset vectors, v

denotes the targets vector of ground-truth. While tn indi-
cates the label of object, pn is the probability distribution
of various classes calculated by sigmoid function. SkewIoU
denotes the overlap of the prediction box and ground-truth.
The hyper-parameter λ1, λ2 control the trade-off and are set
to 1 by default. The classification loss Lcls is implemented
by focal loss (Lin et al. 2017b). |.| is used to obtain the mod-
ulus of the vector and is not involved in gradient back propa-
gation. f(.) represents the loss function related to SkewIoU.
IoU(.) represents the horizontal bounding box IoU calcula-
tion function.

Compared to the traditional regression loss, the new re-

gression loss can be divided into two parts, Lreg(v
′
n,vn)

|Lreg(v
′
n,vn)|

de-
termines the direction of gradient propagation (a unit vec-
tor), which is an important part to ensure that the loss func-
tion is derivable. |f(SkewIoU)| is responsible for adjusting
the loss value (magnitude of gradient), and it is unneces-
sary to be derivable (a scalar). Taking into account the in-
consistency between SkewIoU and smooth L1 loss, we use
Equation 3 as the dominant gradient function for regression
loss. Through such a combination, the loss function is deriv-
able, while its size is highly consistent with SkewIoU. Ex-
periments show that the detector based on this approximate
SkewIoU loss can achieve considerable gains.

Refined Rotation RetinaNet
Refined Detection. The SkewIoU score is sensitive to the
change in angle, and a slight angle shift causes a rapid de-
crease in the IoU score, as shown in Figure 3. Therefore, the
refinement of the prediction box helps to improve the recall
rate of the rotation detection. We join multiple refinement
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(a) Feature interpolation (b) Refine box with misaligned feature due
to bounding box location changes.

(c) Refine box with aligned features by re-
constructing the feature map.

Figure 4: Root cause analysis of feature misalignment and the core idea for our proposed feature refinement module.

Figure 5: Feature Refinement Module FRM. It mainly in-
cludes three parts: refined bounding box filtering (BF), large
kernel (LK) and feature reconstruction (FR).

stages with different IoU thresholds. In addition to using the
foreground IoU threshold 0.5 and background IoU threshold
0.4 in the first stage, the thresholds of first refinement stage
are set 0.6 and 0.5, respectively. If there are multiple refine-
ment stages, the remaining thresholds are 0.7 and 0.6. The
overall loss for refined detector is defined as follows:

Ltotal =
N∑
i=1

αiLi (4)

where Li is the loss value of the i-th refinement stage and
trade-off coefficients αi are set to 1 by default.
Feature Refinement Module. Many refined detectors still
use the same feature map to perform multiple classifications
and regressions, without considering the feature misalign-
ment caused by the location changes of the bounding box.
Figure 4b depicts the box refining process without feature
refinement, resulting in inaccurate features, which can be
disadvantageous for those categories that have a large aspect

Algorithm 1 Feature Refinement Module
Input: original feature map F , the bounding box (B) and confi-

dence (S) of the previous stage
Output: reconstructed feature map F ′

1: B′ ← BoxFilter(B,S);
2: h,w ← Shape(F ), F ′ ← ZerosLike(F );
3: F ← Conv1×1(F ) + Conv1×5(Conv5×1(F ))
4: for i← 0 to h− 1 do
5: for j ← 0 to w − 1 do
6: P ← GetF ivePoints(B′(i, j));
7: for p ∈ P do
8: px ←Min(px, w − 1), px ←Max(px, 0);
9: py ←Min(py, h− 1), py ←Max(py, 0);

10: F ′(i, j)← F ′(i, j) +BilinearInte(F, p);
11: end for
12: end for
13: end for
14: F ′ ← F ′ + F ;
15: return F ′

ratio or a small sample size. Here we propose to re-encode
the position information of the current refined bounding box
(orange rectangle) to the corresponding feature points (red
point2), thereby reconstructing the entire feature map by
pixel-wise manner to achieve the alignment of the features.
The whole process is shown in Figure 4c. To accurately ob-
tain the location feature information correspond to the re-
fined bounding box, we adopt the bilinear feature interpo-
lation method, as shown in Figure 4a. Feature interpolation
can be formulated as follows:

F =Flt ∗Arb + Frt ∗Alb + Frb ∗Alt + Flb ∗Art (5)

where A denotes the Area in Figure 4a, F ∈ RC×1×1 rep-
resents the feature vector of the point on the feature map.

Based on the above result, a feature refinement module is
devised, whose structure and pseudo code is shown in Fig-

2The red and green points should be totally overlapping to each
other, while here the red point is intentionally offset in order to
distinguishingly visualize the entire process.
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(a) RetinaNet-H (b) RetinaNet-R (c) R3Det∗

Figure 6: Visualization on DOTA. Here ‘H’ and ‘R’ repre-
sent the horizontal and rotating anchors, respectively.

Method FRM SL SV LV SH mAP
BF&FR LK

RetinaNet-R 64.6 71.0 68.6 62.8
RetinaNet-H 63.5 50.7 65.9 62.8
R3Det∗ X 65.0 67.3 67.3 63.5
R3Det X X 65.8 72.8 70.1 66.3
R3Det† X X 67.5 74.0 70.3 67.7
R3Det† X X X 68.0 72.7 76.0 69.5

Table 1: Ablative study of each component in our method
on the DOTA dataset. R3Det† indicates that R3Det with two
refinement stages. BF, LK, FR and SL denote box filtering,
large kernel, feature reconstruction and SkewIoU loss.

ure 5 and Algorithm 1, respectively. Specifically, the fea-
ture map is added by two-way convolution to obtain a new
feature (large kernel, LK). Only the bounding box with the
highest score of each feature point is preserved in the refine-
ment stage to increase the speed (box filtering, BF), mean-
while ensuring that each feature point corresponds to only
one refined bounding box. The filtering of bounding boxes
is a necessary step for feature reconstruction (FR). For each
feature point of the feature map, we obtain the correspond-
ing feature vector on the feature map according to the five
coordinates of the refined bounding box (one center point
and four corner points). A more accurate feature vector is
obtained by bilinear interpolation. We add the five feature
vectors and replace the current feature vector. After travers-
ing the feature points, we reconstruct the whole feature map.
Finally, the reconstructed feature map is added to the origi-
nal feature map to complete the whole process.

The refinement stage can be added and repeated by multi-
ple times. The feature reconstruction process of each refine-
ment stage is simulated as follows:

Fi+1 = FRM(Bi, Si, {P2, ..., P7}) (6)

where Fi+1 represents the feature map of the i + 1 stage,
Bi, Si represent the bounding box and confidence score of
the ith stage prediction, respectively.
Discussion for comparison with RoIAlign. The core to
solve feature misalignment for FRM is feature reconstruc-
tion. Compared with RoI Align that has been adopted in
many two-stage rotation detectors including R2CNN and
RRPN, FRM has the following differences that contribute
to R3Det’s higher efficiency, as shown in Table 6.

1) RoI Align has more sampling points (the default num-

Method FRM IC15 HR16 UCAS-AOD
BF&FR LK

R3Det∗ X 83.27 94.98 95.03
R3Det X X 84.96 96.01 96.17

Table 2: Comparison between R3Det∗ and R3Det. IC15 and
HR16 represent ICDAR2015 and HRSC2016.

ber is 7 × 7 × 4 = 196), and reducing the sampling point
greatly affects the performance of the detector. FRM only
samples five feature points, about one-fortieth of RoI Align,
which gives FRM a huge speed advantage.

2) RoI Align need to obtain the feature corresponding
to RoI (instance level) before classification and regression.
In contrast, FRM first obtains the features corresponding to
the feature points, and then reconstructs the entire feature
map (image level). As a result, the FRM based method can
maintain a full convolution structure that leads to higher ef-
ficiency and fewer parameters, compared with the RoI Align
based method that involves a fully-connected structure.

Experiments
Datasets and Protocls
DOTA (Xia et al. 2018) contains 15 common categories,
2,806 images and 188,282 instances. The proportions of the
training set, validation set, and testing set are 1/2, 1/6, and
1/3, respectively. We divide the images into 6002 subimages
with an overlap of 150 pixels and scale it to 8002.

UCAS-AOD (Zhu et al. 2015) contains 1,510 aerial im-
ages of approximately 659 × 1, 280 pixels, with two cate-
gories of 14,596 instances in total. In line with (Azimi et al.
2018; Xia et al. 2018), we randomly select 1,110 for train-
ing and 400 for testing. HRSC2016 (Liu et al. 2017) contains
images from two scenarios including ships on sea and ships
close inshore. The training, validation and test set include
436, 181 and 444 images.

ICDAR2015 (Karatzas et al. 2015) contains a total of
1,500 pictures, 1000 of which are used for training and the
remaining are for testing.

For all datasets, the models are trained by 20 epochs in
total, and learning rate is reduced tenfold at 12 epochs and
16 epochs, respectively. The initial learning rates for Reti-
naNet is 5e-4. The number of image iterations per epoch for
DOTA, ICDAR2015, HRSC2016 and UCAS-AOD are 54k,
10k, 5k and 5k, and doubled if data augmentation and multi-
scale training are used. The experiments in this paper are ini-
tialized by ResNet50 (He et al. 2016) by default unless oth-
erwise specified. Weight decay and momentum are 0.0001
and 0.9, respectively. We employ MomentumOptimizer over
4 GPUs with a total of 4 images per minibatch (1 images
per GPU). The anchors have areas of 322 to 5122 on pyra-
mid levels P3 to P7, respectively. At each pyramid level we
use anchors at seven aspect ratios {1, 1/2, 2, 1/3, 3, 5, 1/5}
and three scales {20, 21/3, 22/3}. We also add six an-
gles {−90◦,−75◦,−60◦,−45◦,−30◦,−15◦} for rotating
anchor-based method (RetinaNet-R).

3167



#Stages Test BR SV LV SH HA mAP

1 1 39.3 63.5 50.7 65.9 51.9 62.8
2 2 42.7 65.8 72.8 70.1 56.1 66.3
3 3 45.1 67.1 73.7 70.2 57.0 67.2
4 4 44.2 65.3 73.0 70.2 55.7 67.0
3 2− 3 45.1 67.5 74.0 70.3 57.3 67.7

Table 3: Ablation study for number of stages on DOTA. Note
2− 3 indicates the ensemble result, which is the collection
of all outputs from the refinement stages.

Method Baseline f1 f2 f3

RetinaNet-H 62.8 NAN 65.1 65.3
R3Det† 67.7 NAN 69.0 69.5

Table 4: Experiments with different SkewIoU functions. f1,
f2 and f3 represent − ln(SkewIoU), 1 − SkewIoU and
exp(1− SkewIoU)− 1, respectively.

Robust Baseline Methods
ReitnaNet-H: The advantage of a horizontal anchor is that
it can use less anchor but match more positive samples by
calculating the IoU with the horizontal circumscribing rect-
angle of the ground truth, but it introduces a large number of
non-object or regions of other objects. For an object with a
large aspect ratio, its prediction rotating bounding box tends
to be inaccurate, as shown in Figure 6a.
ReitnaNet-R: In contrast, in Figure 6b, the rotating anchor
avoids the introduction of noise regions by adding angle
parameters and has better detection performance in dense
scenes. However, the number of anchor has multiplied, about
6 times in this paper, thus making the model less efficient.
R3Det∗: This is a refined detector without feature refine-
ment. Considering the number of original anchors deter-
mines the speed of the model, we adopt a progressive re-
gression form from coarse to fine. Specifically, we first use
horizontal anchor to reduce the number of anchors and in-
crease the object recall rate in the first stage, and then use
the rotating refined anchor to overcome the problems caused
by dense scenes in subsequent stages, as shown in Figure 6c.

RetinaNet-H and RetinaNet-R have similar overall mAP
according to Table 1, while with their respective character-
istics. The horizontal anchor-based approach clearly has an
advantage in speed, while the rotating anchor-based method
has better regression capabilities in dense object scenar-
ios and objects with large aspect ratio, such as small vehi-
cle, large vehicle, and ship. R3Det∗ achieves 63.5% perfor-
mance, better than RetinaNet-H and RetinaNet-R. Although
the category of dense and large aspect ratio has been im-
proved a lot, it is still not as good as RetinaNet-R (such as
LV and SH). RetianNet-R’s advantages in this regard will
also be reflected in Table 6.

Ablation Study
Feature Refinement Module. Table 1 shows that R3Det∗
can improve performance by about 0.8% which is not sig-

nificant. We believe that the main reason is that the fea-
ture misalignment problem. FRM reconstructs the feature
map based on the refined anchor, which increases the over-
all performance by 2.8% to 66.3% according to Table 1. In
order to further verify the effectiveness of FRM, we have
also verified it in other datasets, including the text dataset
ICDAR2015, and remote sensing dataset HRSC2016 and
UCAS-AOD. FRM still shows a stronger performance ad-
vantage. As shown in Table 2, the FRM-based method is
improved by 1.69%, 1.03%, and 1.14% respectively under
the same experimental configuration.
Number of Refinement Stages. Refinement strategy can
significantly improve the performance of rotation detection,
especially the introduction of feature refinement. Table 1 ex-
plores the relationship between the number of refinements
and model performance. R3Det† has joined the two refine-
ment stages and bring more gain. To further explore the im-
pact of the number of stages, several experimental results
are summarized in Table 3. Experiments show that three or
more refinements will not bring additional improvements to
overall performance. We also find that ensemble multi-stage
results can further improve detection performance.
Approximate SkewIoU Loss. We use two different detec-
tors and three different SkewIoU functions to verify the ef-
fectiveness of the approximate SkewIoU, as shown in Ta-
ble 4. RetinaNet-based detectors will have a large number
of low-SkewIoU prediction bounding box in the early stage
of training, and will produce very large loss after the log
function, and training is prone to non-convergence. Com-
pared with the linear function, the derivative of the exp-
based function is related to SkewIoU, that is, more atten-
tion is paid to the training of difficult samples, so it has a
higher performance improvement. Compare with PIoU, we
can achieve considerable gains on a higher baseline and far
exceed PIoU in final performance, 73.8% versus 60.5% as
shown in Table 5.

Comparison with the State-of-the-Art
Results on DOTA. The results on DOTA are shown in Ta-
ble 5. The compared methods include i) one-stage meth-
ods, such as PIoU, P-RSDet (Zhou et al. 2020), O2-DNet
(Wei et al. 2019) , DRN ii) two stage methods, such as RoI-
Transformer, SCRDet, CAD-Net (Zhang, Lu, and Zhang
2019), Gliding Vertex, Mask OBB (Wang et al. 2019), FFA
(Fu et al. 2020), APE (Zhu, Du, and Wu 2020). Two-stage
detectors are still dominant in DOTA, and the latest two-
stage detection methods, such as ROI Transformer, SCRDet,
and APE have performed well. However, they all use com-
plex model structures in exchange for performance improve-
ments, which are extremely low in terms of detection ef-
ficiency. The advantage of the two-stage method on the
DOTA dataset lies in the multi-stage regression and the use
of low-level feature maps (P2) that are friendly to small ob-
jects. Compared to all published single-stage methods, our
method achieves the best performance without using multi-
scale training and testing, at 73.8%. By using a stronger
backbone and multi-scale training and testing, as used in the
most advanced two-stage method CenterMask OBB, R3Det
performs competitive performance, about 76.5%.
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Method BB MS PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP
Two-stage
RoI-Trans. R-101 X 88.6 78.5 43.4 75.9 68.8 73.7 83.6 90.7 77.3 81.5 58.4 53.5 62.8 58.9 47.7 69.6
CAD-Net R-101 87.8 82.4 49.4 73.5 71.1 63.5 76.7 90.9 79.2 73.3 48.4 60.9 62.0 67.0 62.2 69.9
SCRDet R-101 X 90.0 80.7 52.1 68.4 68.4 60.3 72.4 90.9 87.9 86.9 65.0 66.7 66.3 68.2 65.2 72.6
Gliding Ver. R-101 89.6 85.0 52.3 77.3 73.0 73.1 86.8 90.7 79.0 86.8 59.6 70.9 72.9 70.86 57.3 75.0
Mask OBB RX-101 X 89.6 86.0 54.2 72.9 76.5 74.2 85.6 89.9 83.8 86.5 54.9 69.6 73.9 69.1 63.3 75.3
FFA R-101 X 90.1 82.7 54.2 75.2 71.0 79.9 83.5 90.7 83.9 84.6 61.2 68.0 70.7 76.0 63.7 75.7
APE RX-101 90.0 83.6 53.4 76.0 74.0 77.2 79.5 90.8 87.2 84.5 67.7 60.3 74.6 71.8 65.6 75.8
One-stage
PIoU DLA-34 80.9 69.7 24.1 60.2 38.3 64.4 64.8 90.9 77.2 70.4 46.5 37.1 57.1 61.9 64.0 60.5
P-RSDet R-101 X 89.0 73.7 47.3 72.0 70.6 73.7 72.8 90.8 80.1 81.3 59.5 57.9 60.8 65.2 52.6 69.8
O2-DNet H-104 X 89.3 82.1 47.3 61.2 71.3 74.0 78.6 90.8 82.2 81.4 60.9 60.2 58.2 67.0 61.0 71.0
DRN H-104 X 89.7 82.3 47.2 64.1 76.2 74.4 85.8 90.6 86.2 84.9 57.7 61.9 69.3 69.6 58.5 73.2
R3Det† R-101 88.8 83.1 50.9 67.3 76.2 80.4 86.7 90.8 84.7 83.2 62.0 61.4 66.9 70.6 53.9 73.8
R3Det R-152 X 89.8 83.8 48.1 66.8 78.8 83.3 87.8 90.8 85.4 85.5 65.7 62.7 67.5 78.6 72.6 76.5

Table 5: Detection accuracy on DOTA. R3Det† indicates that two refinement stages have been added. R-101 denotes ResNet-
101 (likewise for R-50, R-152), RX-101 and H-104 represent ResNeXt101 (Xie et al. 2017) and Hourglass-104 (Newell, Yang,
and Deng 2016). MS indicates that multi-scale training or testing is used. BB means Backbone.

Method BB Size mAP (07) mAP (12) Speed

R2CNN R-101 800 73.07 79.73 5fps
RC1 & RC2 VGG16 – 75.7 – –
RRPN R-101 800 79.08 85.64 1.5fps
R2PN VGG16 – 79.6 – –
RetinaNet-H R-101 800 82.89 89.27 14fps
RRD VGG16 384 84.3 – –
RoI-Trans. R-101 800 86.20 – 6fps
Gliding Ver. R-101 – 88.20 – –
DRN H-104 – – 92.70 –
SBD R-50 – – 93.70 –
R3Det∗ R-101 800 89.14 94.98 4fps
RetinaNet-R R-101 800 89.18 95.21 8fps

R3Det

R-101 300 87.14 93.22 18fps
R-101 600 88.97 94.61 15fps
R-101 800 89.26 96.01 12fps
M-V2 300 77.16 84.31 23fps
M-V2 600 86.67 92.83 20fps
M-V2 800 88.71 94.45 16fps

Table 6: Evaluation on HRSC2016. Number after mAP i.e.
07 (12) means using the 2007 (2012) evaluation metric. M-
V2 denotes MobileNetV2.

Results on HRSC2016 and UCAS-AOD. The HRSC2016
is a challenging dataset that contains lots of large aspect ra-
tio ship instances with arbitrary orientation. We use RRPN
and R2CNN for comparative experiments, which are orig-
inally used for scene text detection. Experimental results
show that these two methods under-perform in the remote
sensing dataset, only 73.07% and 79.08% respectively. Al-
though RoI Transformer achieves 86.20% mAP, its detec-
tion speed is still not ideal, and only about 6fps without
accounting for the post-processing operations. RetinNet-H,
RetinaNet-R and R3Det∗ are the three baseline models used
in this paper. RetinaNet-R achieves the best detection re-
sults, around 89.14%, which is consistent with the perfor-
mance of the ship category in the DOTA dataset. This further
illustrates that the rotation-based approach has advantages in
large aspect ratio object detection. Under ResNet101 back-

Method mAP Plane Car

YOLOv2 87.90 96.60 79.20
R-DFPN 89.20 95.90 82.50
DRBox 89.95 94.90 85.00
S2ARN 94.90 97.60 92.20
RetinaNet-H 95.47 97.34 93.60
FADet 95.71 98.69 92.72
R3Det 96.17 98.20 94.14

Table 7: Detection accuracy on UCAS-AOD.

bone, R3Det can achieve better performance than RC1 &
RC2 (Liu et al. 2017), R2PN (Zhang et al. 2018b), RRD
(Liao et al. 2018), Gliding Vertex, DRN, SDB (Liu et al.
2019) and above methods. Besides, our method can achieve
86.67% accuracy and 20fps speed, given MobileNetv2 (San-
dler et al. 2018) as backbone with input image size 600. Ta-
ble 7 illustrates the comparison of performance on UCAS-
AOD dataset, our results are the best out of all the existing
published methods (YOLOv2 (Redmon and Farhadi 2017),
R-DFPN, DRBox (Liu, Pan, and Lei 2017), S2ARN (Bao
et al. 2019), FADet (Li et al. 2019)), at 96.17%.

Conclusion
We have presented an end-to-end refined single-stage de-
tector designated for rotating objects with large aspect ra-
tio, dense distribution and arbitrary orientations. Seeing
the shortcoming of feature misalignment in existing refined
single-stage detectors, we design a feature refinement mod-
ule, whose key idea is to re-encode the position informa-
tion of the current refined bounding box to the correspond-
ing feature points through pixel-wise feature interpolation to
achieve feature reconstruction and alignment. For more ac-
curate rotation estimation, an approximate SkewIoU loss is
devised to solve the problem that the calculation of SkewIoU
is not derivable. Experiments across different datasets show
competitive performance of our method regarding with both
accuracy and efficiency.
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