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Abstract

Unsupervised anomaly detection aims to identify data sam-
ples that have low probability density from a set of in-
put samples, and only the normal samples are provided
for model training. The inference of abnormal regions on
the input image requires an understanding of the surround-
ing semantic context.This work presents a Semantic Con-
text based Anomaly Detection Network, SCADN, for unsu-
pervised anomaly detection by learning the semantic context
from the normal samples. To achieve this, we first generate
multi-scale striped masks to remove a part of regions from the
normal samples, and then train a generative adversarial net-
work to reconstruct the unseen regions. Note that the masks
are designed in multiple scales and stripe directions, and vari-
ous training examples are generated to obtain the rich seman-
tic context. In testing, we obtain an error map by computing
the difference between the reconstructed image and the in-
put image for all samples, and infer the abnormal samples
based on the error maps. Finally, we perform various experi-
ments on three public benchmark datasets and a new dataset
LaceAD collected by us, and show that our method clearly
outperforms the current state-of-the-art methods.

Introduction
Anomaly samples are the data, which are residing in low
probability density from a set of input samples. Know-
ing the anomaly samples helps lots of applications, e.g.,
defect detection (Bergmann et al. 2019, 2020), security
check (Akcay, Atapour-Abarghouei, and Breckon 2018), in-
truder detection (Oza and Patel 2019), medical image in-
spection (Schlegl et al. 2017), and outlier removal (Xia et al.
2015). Thus, anomaly detection has long been a fundamen-
tal research problem.

However, there are various types of anomalies in the
real world, and it is difficult to obtain the training sam-
ples of the anomaly, which rarely appeared. To address
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Figure 1: The visual comparison results among DAE (Zhou
and Paffenroth 2017), MemAE (Gong et al. 2019), and our
method. The error map of DAE fails to highlight the abnor-
mal region in (a) while the error map of MemAE tends to
include noises and artifacts in (b). In contrast, our method in
(c) is able to recover the anomaly region with normal pat-
terns by exploring the semantic context in surroundings.

these problems, the research works explore the unsuper-
vised learning strategy, which only learns the characteristics
of the normal samples and infer the anomaly samples di-
rectly. Among them, early works adopt one-class classifica-
tion (Wang and Cherian 2019; Ruff et al. 2018) or probabil-
ity estimation (Zong et al. 2018; Golan and El-Yaniv 2018;
Pidhorskyi, Almohsen, and Doretto 2018; Abati et al. 2019)
to build a model that represents the normal distribution, and
detects the abnormal samples that have different distribu-
tions with the model.

Recently, methods based on the deep autoencoder
(DAE) (Sabokrou et al. 2018; Zhou and Paffenroth
2017) show remarkable performance on the benchmark
datasets (Krizhevsky and Hinton 2009). The key factor for
the successes is that the encoder first learns to map the data
samples into a latent space and then transfer them back to
the original images by the decoder. Hence, after training the
autoencoder on normal samples, they are able to well recon-
struct the normal images but fail to obtain the reconstructed

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

3110



abnormal images. By computing the error map between the
input images and the reconstructed images, we are able to
perform anomaly detection; see Fig. 1 (a), (b) for an ex-
ample. However, these approaches by reconstructing images
for anomaly detection have some limitations. As described
in the existing literature (Perera, Nallapati, and Xiang 2019;
Gong et al. 2019), if anomalies share common local patterns
with the normal regions, vanilla DAE tends to directly use
the original image as the output; see the results in Fig. 1 (a).
To avoid this issue, MemAE (Gong et al. 2019) constraints
the coding space in the autoencoder. However, it is easy to
ignore the image details and leads to a blurry output image;
see the results in Fig. 1 (b). Hence, the computed error maps
may fail to capture the abnormal regions or include lots of
noises and artifacts.

As shown in Fig. 1 (c), our method successfully detects
the abnormal region (the hole in red box) from the input
image by generating the similar patterns with the surround-
ings in such a region. This is because our method is able
to capture the semantic context, which provides guidance
on how to recover the anomaly regions that have large dif-
ferences with the normal surroundings. To this end, we de-
sign a novel deep network architecture via learning semantic
context from normal samples, i.e., Semantic Context based
Anomaly Detection Network (SCADN), which learns the se-
mantic context from the normal samples by reconstructing
a part of the unseen region, and infers anomaly samples in
an unsupervised manner. Given an input, we first remove a
part of the image and then feed it into a deep neural network
to learn to recover the missing regions. Since all the pixel
values in missing regions are lost, our network is forced to
learn surrounding semantic features to complete this region.
We further design the multi-scale striped masks to determine
where to remove and recover, which encourages our model
to learn the semantic context from different locations, scales,
and directions. We summarize our contributions as followed:

1. We present a new network architecture to learn the seman-
tic context features for anomaly detection in an unsuper-
vised manner.

2. We construct a multi-scale semantic context learning
framework to detect anomalies across the whole image
with different scales.

3. We build a large-scale real-world unsupervised image
anomaly detection dataset (LaceAD) that contains 9, 176
high-resolution lace fabric images belonging to 17 pat-
terns, which helps to enrich the datasets of unsupervised
anomaly detection.

Related Work
Model based methods for anomaly detection aim to build
a model to represent the normal distribution. In this way, the
anomaly is detected when the testing data have different dis-
tributions with the model. Some methods (Schölkopf et al.
2001; Chen, Zhou, and Huang 2001; Tax and Duin 2004;
Wang and Cherian 2019; Ruff et al. 2018; Perera and Patel
2019; Chalapathy, Menon, and Chawla 2018) adopted the
one-class classification to build the model, which learns a
feature space that has a low intra-class variance and aims

to obtain a discriminative hyperplane surrounding the nor-
mal samples. Others (Parzen 1962; Kim and Scott 2012;
Zong et al. 2018; Zhai et al. 2016; Golan and El-Yaniv
2018; Ahmed and Courville 2020) set up a parametric or
non-parametric probability estimator about normal features.
However, these methods may fail to model the complex data
samples and the decision boundary between the normal and
abnormal samples is unclear when only the normal data are
available.

Self-representation based methods for anomaly detec-
tion assume anomalies yield higher representation error by
a model learned from the normal data. Sparse representa-
tion (Zhao, Fei-Fei, and Xing 2011; Lu, Shi, and Jia 2013;
Cong, Yuan, and Liu 2011) and PCA (Kim and Grauman
2009; Candès et al. 2011) were developed for anomaly de-
tection. In recent works, deep autoencoder was widely used
in self-representation (Vincent et al. 2008; Akcay, Atapour-
Abarghouei, and Breckon 2018; Xia et al. 2015; Zhou and
Paffenroth 2017; Tian et al. 2019). (Sabokrou et al. 2018)
used a discriminator to train AE in an adversarial manner
and then identified anomalies by discriminator output; (Liu
et al. 2020) proposed the gradient-based attention for VAEs
to localize anomalies in images.

OCGAN (Perera, Nallapati, and Xiang 2019) constrained
the latent space to be close to a uniform distribution with the
small range; MemAE (Gong et al. 2019) adopted the learn-
able memory to approximate and replace the output of the
encoder, expecting the reconstructed result that closes to a
normal sample. However, these methods intentionally con-
strain the representation ability of the network, un-avoiding
to increase the reconstruction errors on the normal data; see
the error map of normal regions in Fig. 1 (b) for an exam-
ple. In contrast, our method encourages the network to re-
cover the missing regions of the input images by exploring
the semantic context. Since the information of these regions
is completely lost, our method can avoid the network to learn
a linear mapping between input and output images.

Image completion aims to recover the missing regions of
the input image by exploring the surrounding semantic con-
text. For example, (Yu et al. 2018) proposed the contextual
attention layer to learn the relation between missing regions
and surrounding context; To iteratively recover the missing
regions, (Liu et al. 2018) and (Yu et al. 2019) used par-
tial convolution and gated convolution to involve a learnable
mask into the network, so that the features can be extracted
from both reliable region and low-confident region. In addi-
tion, (Zheng, Cham, and Cai 2019) proposed a probabilistic
framework to output pluralistic results. Inspired by image
completion, we present to learn the semantic context by re-
covering missing regions for anomaly detection. Different
from the image completion, we aim to increase the gap of re-
construction errors between normal and abnormal samples.

Methodology
Overview. Fig. 2 illustrates the architecture of the pro-
posed network. During the training process (green line), we
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Figure 2: Overall architecture of the proposed Semantic Context based Anomaly Detection Network (SCADN). This network is
designed to learn from normal samples by removing a part of regions in the input image and making the network to recover the
missing information. We adopt the multi-scale striped masks to indicate the removed regions of the input images. In testing, we
compute the errors between input and output images to obtain the anomaly score.

take an image and a binary mask as the inputs, use the mask
to remove a part of regions in the image, adopt a generator
to generate an image that is similar to the input image, min-
imize the difference between the generated image and the
input image by a supervised loss, and take a discriminator to
determine whether the generated image is real or not. Note
that, only the normal images are used in this training pro-
cess. In testing, we take a sample image with multiple masks
to produce multiple incomplete images, use the trained gen-
erator to generate multiple complete images, and compute
the error maps as the difference between the input image
and the output images of the generator. Finally, the anomaly
score is computed based on these error maps and we take the
score to perform anomaly detection.

Multi-scale Context Learning
Multi-scale striped masks. As described earlier in the In-
troduction, we present to first remove a part of regions in the
input images and then make the network learn to generate
the original input images. One problem during the imple-
mentation is which part of the regions should be removed.
To solve this issue, we present three design principles: (i)
the image regions should have the equal probability to be
removed, since the anomalies may appear in any position
of the image; (ii) the removed regions should have multiple
scales, since the anomalies in the real world may have differ-
ent sizes; (iii) the shape of the removed regions should have
multiple directions, and we can obtain the semantic context
from surrounding in different directions.

To meet these requirements, we design several multi-scale
striped masks to indicate the regions that should be removed,
and we set the pixel values at these regions as zero. As
shown in Fig. 3, we adopt the black color to indicate the
regions to be removed, and set the ratio between the white
and black regions as 1 : 1. By swapping the black and white
regions, we can obtain a pair of complementary masks to
make each image region have an equal probability to be re-
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Figure 3: Visualization of our multi-scale striped masks.

moved. By changing the width of the white strips, we can
obtain the masks in different scales. By setting the stripes
in vertical and horizontal directions, we can aggregate the
semantic context from different directions.

Network architecture. We followed (Nazeri et al. 2019;
Yu et al. 2018) to design the generator and discriminator in
our network. The generator down-samples the input images
as one-eighth of the input size through convolutions with the
stride size of two, uses eight residual blocks to extract the
feature maps, and upsamples the feature maps to the size of
the input image. In the residual block, dilated convolutions
with larger receptive fields are used to obtain more semantic
context features. Finally, a global discriminator is adopted to
determine whether the generated image is real or not.

Loss function. Let I be an input image. M is a binary
mask (0 for for region to remove and 1 otherwise). The gen-
erator is denoted byG, which produces the result Î that aims
to recover the input image:

Î = G (I�M) , (1)
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Figure 4: Illustration of our inference strategy.

where � denotes the element-wise multiplication. The gen-
erator is trained over a joint loss that consists of a reconstruc-
tion loss and an adversarial loss (Goodfellow et al. 2014).
For the reconstruction loss, we use the mean square error
(MSE) of the whole image and add an additional weight on
the removed regions (1−M) to emphasize these regions:

Lrec = [1+ λrm (1−M)]�
∥∥∥Î− I

∥∥∥2
2
, (2)

where λrm is a weight that balances these two items in the
loss function. The adversarial learning loss is formulated as:

Ladv = EI [logD(I)] + EI

[
log(1−D(̂I))

]
, (3)

where D denotes discriminator.
Finally, our overall loss function is defined as:

Ltotal = λrecLrec + λadvLadv , (4)

where λrec and λadv are the hyper-parameters to balance
the weights of reconstruction loss and adversarial loss. Dur-
ing training, the generator is optimized by minimizingLtotal

and the discriminator is optimized by maximizing Ladv .

Multi-scale Aggregated Inference
In testing, we adopt multiple masks with different locations
and scales to remove different parts of regions from the input
images, and merge the multiple outputs from our SCADN to
compute the final error map. First, the output result Îi,j is
computed by:

Îi,j = G(I�Mi,j) , (5)
where G is the generator network of our SCADN, � de-
notes the element-wise multiplication, and Mi,j represents
the mask with j-th type (horizontal or vertical stripes & dif-
ferent mask regions) and i-th scale. The sampled masks are
shown in Fig. 3 for reference. Then, the error map Ei,j is
defined as the square value of the difference between the in-
put image and the output result of the network, and only the
pixel values at the mask region (1−Mi,j) is considered:

Ei,j = (̂Ii,j − I)� (̂Ii,j − I)� (1−Mi,j) . (6)

As shown in Fig. 4, we have four types of masks with
different scales; see Fig. 3 for these masks. Then, we adopt

Figure 5: Examples for 17 different patterns in the LaceAD
dataset. Abnormal regions are marked by red boxes.

the maximum value at each position of the error maps as the
final result Ei for the i-th scale:

Ei = max(Ei,0,Ei,1,Ei,2,Ei,3) . (7)

To merge the error maps at different scales, we present to
choose one error map from them, which has the value that
is far from the normal samples in the training set. To do so,
we first compute the average value of the error maps with
different scales on the training set as a reference value for
each scale, which is denoted as µi. Then, we adopt the error
map with the largest distance from µi as the final error map:

Efinal = Ef , (8)
f = argmax

i
(average( Ei )− µi) . (9)

The final score is defined as the mean value of Efinal:

S = average( Efinal ) . (10)

The inference strategy is illustrated in Fig. 4. The large
scale mask helps to discover the big abnormal region while
the small scale mask helps to find the tiny abnormal region.
By merging the results produced from multiple scales and
multiple locations, we can fully explore the semantic con-
text from the input image, thus improving the overall perfor-
mance for anomaly detection.

LaceAD Dataset
Due to the lack of real-world datasets for anomaly detection,
the previous works use the classification datasets to evalu-
ate the performance of anomaly detection. They adopt one
or several categories in the classification dataset as normal,
and treat the remaining categories as abnormal. However,
the categories in the classification datasets are largely differ-
ent, and the data samples are not common for the real-world
anomaly detection, where the difference between the normal
and abnormal samples is small; see Fig. 1 as an example.
To solve the above issues, a real-world dataset MVTecAD
is prepared by (Bergmann et al. 2019), which contains over
8, 000 images with common objects, such as bottles, tooth-
brushes, and cables.

To further enrich the real-world dataset for anomaly de-
tection, in this work, we build a new dataset on lace fab-
rics, which is denoted as LaceAD. To build this dataset,
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(i) we collected 9,176 images from the top 10 lace fab-
ric manufacturing companies worldwide, where the images
are captured in the real production environment by a high-
resolution DSLR camera; (ii) we split them into 17 subsets
based on their patterns; (iii) we cropped the raw images into
multiple 512 × 512 patches; (iv) we hired the professional
workers to classify these patches into normal and abnormal
sets. Samples in our dataset are shown in Fig. 5 and we fol-
low the MvtecAD dataset to organize the structure of our
dataset. Note that the training set contains only normal sam-
ples, and the testing set has normal and abnormal samples.

Experimental Results
Implementation Details
We describe the implementation in details in this subsec-
tion. We trained and tested the network on a single NVIDIA
RTX2080Ti with 64GB RAM on the Ubuntu16.04 system.
Our code were implemented based on PyTorch 1.10 frame-
work with Python 3.6; The generator contains an encoder
that down-samples the input image three times, followed by
eight residual blocks (He et al. 2016) and a decoder that up-
samples features back to the original size. We replace plain
convolutions in the first residual block with dilated convolu-
tions. Instance normalization (Ulyanov, Vedaldi, and Lem-
pitsky 2017) is adopted in all layers of the generator. For
the discriminator, we use PatchGAN (Isola et al. 2017) with
spectral normalization (Miyato et al. 2018).

For the training settings, the network was optimized by an
Adam optimizer (Kingma and Ba 2015) with β1 = 0, β2 =
0.9, and learning rate as 0.0001. The network stopped the
training after 200 epochs. The weights in the loss function
were set as λrm = 3, λrec = 1 and λadv = 0.001.

Datasets and Metrics
We evaluate the proposed framework on four datasets: our
newly collected LaceAD dataset, MVTec AD (Bergmann
et al. 2019), CIFAR-10 (Krizhevsky and Hinton 2009), and
MINST (LeCun 1998). Note that CIFAR-10 and MINST
are built for image classification and we follow the previous
works to use it for anomaly detection. It is worth to be men-
tioned that each subset with different patterns in LaceAD
and MVTec AD is evaluated separately, and we compute the
average value of these subsets to evaluate the performance
of the anomaly detection algorithms. For MVTecAD and
LaceAD datasets, we resize both training and testing images
to the size of 512× 512, and each batch of training contains
four images; For CIFAR and MINST datasets, we resize the
image to the size of 32× 32, and set the batch size to 512.

Following the previous works (Perera, Nallapati, and Xi-
ang 2019; Gong et al. 2019), we adopt the Area Under the
Curve (AUC) of Receiver Operating Characteristics (ROC)
curve to quantitatively evaluate the performance of different
methods for anomaly detection.

Experiments on Real-World Datasets
Compared Methods We compare the proposed method
with several recent methods: Deep autoencoder (DAE),

Pattern ALOCC ALOCC DAE OCGAN MemAE OursD DR
1 0.929 0.986 0.604 0.648 0.646 0.975
2 0.847 0.825 0.638 0.725 0.833 0.843
3 0.870 0.635 0.878 0.380 0.969 0.984
4 0.924 0.829 0.810 0.648 0.921 0.956
5 0.470 0.367 0.583 0.689 0.810 0.927
6 0.821 0.702 0.930 0.898 0.811 0.949
7 0.460 0.677 0.647 0.578 0.604 0.731
8 0.730 0.730 0.478 0.415 0.500 0.660
9 0.807 0.717 0.746 0.671 0.806 0.935
10 0.886 0.938 1.000 0.937 0.821 1.000
11 0.106 0.950 0.992 0.935 0.956 0.987
12 0.576 0.499 0.568 0.443 0.648 0.762
13 0.799 0.708 0.898 0.840 0.834 0.998
14 0.618 0.637 0.686 0.488 0.591 0.800
15 0.511 0.791 0.734 0.733 0.729 0.889
16 0.930 0.965 0.825 0.816 0.921 0.998
17 0.503 0.478 0.761 0.329 0.460 0.866
Mean 0.693 0.731 0.752 0.657 0.756 0.898

Table 1: Anomaly detection on the LaceAD dataset.

ALOCC (Sabokrou et al. 2018), OCGAN (Perera, Nallap-
ati, and Xiang 2019), and MemAE (Gong et al. 2019). All
of them are deep-learning-based methods. For a fair com-
parison, we try our best to implement these methods and
carefully finetune the training parameters to obtain the best
results. For DAE, we removed the discriminator and residual
blocks in our generator, only reserved the encoder-decoder
structure. For MemAE, we further added the memory mod-
ule between encoder and decoder. The image size used in
DAE, MemAE, and our method was set as 512 × 512. We
trained OCGAN following its official code released on the
website. Due to the limitation of the network setting in their
code, we set the image size used in OCGAN as 509 × 509,
which is close to 512× 512.

Quantitative comparison. Table 1 shows the AUC results
of anomaly detection on different subsets with different pat-
terns in our LaceAD. Compared with other methods, our
method has achieved obvious advantages in most patterns.
This is because lace has complex patterns, and its anomaly
detection requires contextual information in many cases,
which can be extracted by our method. For example, holes
are very common in lace images, some of them are contained
in the pattern itself, while others are abnormal holes. By ex-
ploring the semantic context, we are easy to find this region
is different from the surroundings.

Table 2 shows the AUC results of anomaly detection on
different category subsets in MVTec AD. Our method has a
significantly better result on the mean value and outperforms
the compared methods in most categories, especially on the
Grid and Transistor, which has complex structures.

Since the MVTec AD dataset contains ground truth im-
ages of abnormal regions, it is also valuable to measure
performance of the segmentation capability of abnormal re-
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Category ALOCCALOCC DAE OCGANMemAE OursD DR
Bottle 0.421 0.460 0.860 0.592 0.930 0.957
Cable 0.611 0.531 0.648 0.496 0.785 0.856
Capsule 0.711 0.487 0.534 0.714 0.735 0.765
Carpet 0.614 0.423 0.588 0.348 0.386 0.504
Grid 0.396 0.781 0.858 0.855 0.805 0.983
Hazelnut 0.449 0.993 0.513 0.753 0.769 0.833
Leather 0.488 0.768 0.497 0.624 0.423 0.659
Metal nut 0.749 0.705 0.793 0.295 0.654 0.624
Pill 0.781 0.726 0.693 0.702 0.717 0.814
Screw 1.000 0.995 0.719 0.505 0.257 0.831
Tile 0.389 0.526 0.894 0.806 0.718 0.792
Toothbrush 0.567 0.642 0.942 0.594 0.967 0.981
Transistor 0.195 0.751 0.376 0.477 0.791 0.863
Wood 0.319 0.279 0.882 0.959 0.954 0.968
Zipper 0.456 0.547 0.819 0.364 0.710 0.846
Mean 0.543 0.641 0.707 0.606 0.707 0.818

Table 2: Anomaly detection on the MVTec AD dataset.

OursMemAEDAEInput

Figure 6: Visualization of the output images and error maps.

gions. The anomaly ground truth is a binary mask that equal
to one at abnormal region and zero otherwise. We use er-
ror maps of different methods to calculate the AUC of all
the pixels over each image, and then compute the mean
value of each category for comparison. As shown in Table 3,
our method outperforms the compared methods on most of
the categories with a significant superiority. Although our
method is not designed for abnormal region segmentation,
this experimental result proves that the error map obtained
by our method is meaningful, indicating that our method can
successfully find the abnormal regions from the inputs.

Visual comparisons. To compare the reconstruction re-
sults, we visualize the output images and error maps pro-
duced from DAE, MemAE, and our method in Fig. 6 and
Fig. 7. For fair comparisons, we normalized each error map
by dividing its maximum value for the visualization. From
the results, we can see that our method generally produces
more reasonable error maps that indicate the anomaly re-
gions and our output images are more similar to the normal
samples. This proves that our method can explore the se-
mantic context from normal patterns and focus on the dis-
criminative regions. As shown in the first lace sample in
Fig. 6, the long black hole is appeared in the abnormal sam-
ple. As the black hole shares the local content with the nor-

Category DAE OCGAN MemAE Ours
Bottle 0.544 0.567 0.724 0.696
Cable 0.535 0.564 0.814 0.814
Capsule 0.542 0.637 0.673 0.687
Carpet 0.528 0.546 0.574 0.649
Grid 0.550 0.652 0.468 0.796
Hazelnut 0.664 0.841 0.846 0.884
Leather 0.783 0.749 0.686 0.763
Metal nut 0.539 0.534 0.769 0.754
Pill 0.555 0.596 0.737 0.747
Screw 0.570 0.708 0.732 0.876
Tile 0.630 0.592 0.647 0.677
Toothbrush 0.616 0.763 0.886 0.901
Transistor 0.532 0.582 0.714 0.689
Wood 0.612 0.655 0.652 0.672
Zipper 0.536 0.624 0.643 0.670
Mean 0.582 0.641 0.704 0.752

Table 3: Anomaly region detection in terms of mean AUC
on the MVTec AD dataset.

OursMemAE

DAEInput Anomaly GT

Figure 7: Visualization of the output images and error maps.

mal holes, DAE keeps the black color and cannot conduct
high error value for this abnormal region. A similar phe-
nomenon also appears in the second lace sample. Although
MemAE conducts a large error over the anomaly regions,
their reconstructed results are blurry, thus failing to localize
the anomaly region. In contrast, our method can explore the
semantic context to complete the black regions of the input
image. As a result, our method has lower error on the nor-
mal regions, which avoids mis-classifying the normal sam-
ples. Similarly, our method can successfully generate a rea-
sonable error map for the screw sample in Fig. 7, but other
methods may fail.

Ablation study. To analyze the effectiveness of each com-
ponent in the proposed network, we perform an ablation
experiment on the MVTec AD dataset and report the re-
sults in Table 4. In this table, we use X to indicate which
component in our network design is reserved. Therefore,
the last row with all items marked with X indicates our
full pineline. In the first column “Ladv”, X indicates we
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Figure 8: Visualization of the output images and error maps.

Ladv S1 S2 S3
Merge sub µi

Mean
type AUC

X X X max X 0.8154
X X - 0.8101
X X - 0.8019
X X - 0.7901
X X X X mean 0.8083
X X X X max 0.8136
X X X X max X 0.8183

Table 4: Ablation study on the MVTec AD dataset.

adopt the discriminative loss as well as the reconstruction
loss in Equation 4. In the second to fourth columns, we use
S1, S2, and S3 to indicate the mask with the large, middle,
and small scales, respectively; see Fig. 3 for these masks
with different scales. In the fifth column, “max” indicates
we merge the error maps by adopting the maximum value
as shown in Equation 7, and “mean” indicates we adopt the
mean value instead. In the sixth column, sub µi means we
adopt average( Ei ) − µi in Equation 9, otherwise, we use
average( Ei ) to replace this equation.

The results in Table 4 show that our network with all the
components produce the best results. In addition, by com-
paring the results of the first row and last row, we can see
that the discriminator loss helps to improve the results; By
comparing the results in the second and sixth rows, we can
see that aggregating multi-scale results can improve the per-
formance by a large margin. Moreover, the comparison be-
tween the results reported in the last two rows show that,
utilizing the reference value from training set to compute
the error map also benefits to the results. We also visualize
the scale-selection results of two abnormal samples; please
refer to Fig. 8 for reference.

Experiments on Classification Datasets
CIFAR-10 and MINST are collected for the image classi-
fication task, and we followed the previous work (Perera,
Nallapati, and Xiang 2019) to iteratively set one class in
this dataset as the normal samples and treat others as abnor-
mal samples. Following (Perera, Nallapati, and Xiang 2019),
we used the original training-testing splits of CIFAR-10 and

MINST CIFAR-10
OCSVM 0.9513 0.5856
KDE 0.8143 0.6097
DAE 0.8766 0.5358
VAE 0.9696 0.5833
Pix CNN 0.6183 0.5506
GAN 0.8662 0.5916
AND 0.9671 0.6172
AnoGAN 0.9127 0.6179
DSVDD 0.9480 0.6481
OCGAN 0.9750 0.6566
Ours 0.9771±0.0005 0.6690±0.0019

Table 5: Experiments on the MINST & CIFAR-10.

MINST to conduct training, where only the normal samples
were used. For a fair comparison, we reported the results
of other methods from the paper of OCGAN (Perera, Nal-
lapati, and Xiang 2019), and reported the average results of
our method that was tested three times with different seeds.
The results are shown in Table 5, where our method clearly
outperforms the others, which shows the generalization ca-
pability of the proposed algorithm.

Conclusion
We present a novel approach to learn the semantic context
from normal samples for unsupervised anomaly detection.
Our key observation is that the abnormal regions usually
have different semantic patterns from the surrounding re-
gions. To this end, we present a deep neural network ar-
chitecture to learn the semantic context by designing multi-
scale striped masks to remove a part of regions from the nor-
mal samples and reconstructing the missing regions to match
to the input images. In testing, we infer the abnormal sam-
ples based on the error maps, which are computed as the
difference between the reconstructed images and the input
images for both normal and abnormal samples. Furthermore,
we construct a new dataset, i.e., LaceAD, for real-world un-
supervised image anomaly detection, which includes 9, 176
high-resolution lace fabric images that belong to 17 pat-
terns. Finally, we test our method on three public benchmark
datasets and LaceAD dataset, compare our network with var-
ious methods and show its superiority over the state-of-the-
art methods. Our method largely outperforms the compared
methods on LaceAD dataset and achieves 89.8% on AUC
evaluation, indicating the effectiveness of our work in in-
dustry environment.
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