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Abstract

Deep neural networks have been widely used in image de-
noising during the past few years. Even though they achieve
great success on this problem, they are computationally in-
efficient which makes them inappropriate to be implemented
in mobile devices. In this paper, we propose an efficient deep
neural network for image denoising based on pixel-wise clas-
sification. Despite using a computationally efficient network
cannot effectively remove the noises from any content, it is
still capable to denoise from a specific type of pattern or tex-
ture. The proposed method follows such a divide and con-
quer scheme. We first use an efficient U-net to pixel-wisely
classify pixels in the noisy image based on the local gradient
statistics. Then we replace part of the convolution layers in
existing denoising networks by the proposed Class Specific
Convolution layers (CSConv) which use different weights
for different classes of pixels. Quantitative and qualitative
evaluations on public datasets demonstrate that the proposed
method can reduce the computational costs without sacrific-
ing the performance compared to state-of-the-art algorithms.

Introduction
Image denoising aims to recover a clean image X given a
noisy observation Y which is one of the most fundamental
problems in low-level vision. Plenty of algorithms (Buades,
Coll, and Morel 2005; Elad and Aharon 2006; Dabov et al.
2007; Zoran and Weiss 2011; Dong et al. 2012; Gu et al.
2014) have been proposed to solve this problem in the last
decade. Even though they are effective to remove noises,
their computational costs are high because of the complex
optimization process as well as block matching procedure
which make them inappropriate to be deployed in mobile
devices.

Recently, deep neural networks have been widely used in
image denoising (Mao, Shen, and Yang 2016; Zhang et al.
2017; Tai et al. 2017; Jia et al. 2019; Gu et al. 2019; Liu et al.
2018; Zhang et al. 2019; Brooks et al. 2019; Zamir et al.
2020). To achieve state-of-the-art performance, very deep
network structures with residual net (Zhang et al. 2017),
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dense net (Tai et al. 2017; Jia et al. 2019) and U-net (Mao,
Shen, and Yang 2016) are applied. As a result, they are still
computationally expensive. In order to make the network
more efficient, (Gu et al. 2019) use a multi-scale structure
and the low-resolution intermediate features can save the
time cost as well as the memory. In super-resolution, (Ahn,
Kang, and Sohn 2018) replace the convolution by group con-
volution followed with pointwise one to accelerate the infer-
ence time similar to MobileNet (Howard et al. 2017).

Nowadays, knowledge distilling (Hinton, Vinyals, and
Dean 2014), parameter pruning (Han et al. 2015) and net-
work quantization (Jacob et al. 2018) are widely used to
compress the network. However, these techniques are com-
monly used in high-level vision tasks and only a few works,
e.g. (Hui, Wang, and Gao 2018), have discussed applying
them to low-level vision.

Even though using a small network to denoise in any sce-
narios is difficult, it is still possible to remove noises from
only a specific type of pattern or texture. Such a divide and
conquer scheme has already been applied in low-level vision
tasks. RAISR (Romano, Isidoro, and Milanfar 2016) and
BLADE (Getreuer et al. 2018) classify the image patches
into different buckets according to the local gradient statis-
tics. Then only one specific convolution layer is learned for
every bucket to efficiently solve low-level vision tasks. Ker-
nel prediction network (KPN) is proposed to remove noises
from brust images (Mildenhall et al. 2018) or single-frame
image (Bako et al. 2017; Vogels et al. 2018). Unlike RAISR
and BLADE that classify patches, they use deep neural net-
works to predict spatially variant kernels which not only
align the frames but also remove noises according to the
specific information around every noisy pixel. (Wang et al.
2018) propose spatial feature transform (SFT) for super-
resolution. They use the semantic information to decide the
spatial feature transforms to generate realistic textures.

However, shortcomings still exist in RAISR, BLADE and
KPN. RAISR and BLADE are equivalent to a single layer
network which is too shallow to remove severe noises. In
addition, the local gradient characteristics estimated from
eigenanalysis are not very accurate under noises. Although
KPN estimates spatially variant kernels by a network that
is trained from the training set, it confronts the same issue
that the spatially variant convolution is directly applied to
images which is too shallow to remove severe noises from
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Figure 1: Comparison of PSNR and FLOPs per pixel: the proposed networks CS-EDSR and CS-CARN with existing image
denoising methods such as EDSR, CARN, RED, FOCNet, DnCNN, MemNet, SGN under σ = 15, 25 and 50 noises. EDSR64
and CARN64 are the original EDSR and CARN structure with 64 channels. EDSR16, CARN16, CS-EDSR and CS-CARN only
contain 16 channels. It shows that the proposed CS-EDSR and CS-CARN perform comparable relative to other methods while
requiring much fewer FLOPs per pixel. In addition, the PSNR improves by a large margin between EDSR16 and CS-EDSR as
well as CARN16 and CS-CARN which demonstrates the effectiveness of the proposed CSConv.

a single image. Also, KPN is a large U-net (Ronneberger,
Fischer, and Brox 2015) to estimate the pixel-wise spatially
variant kernels. It is even difficult to extend KPN in feature
domain of a deep neural network as the number of features1

estimated from KPN are too large.
In this paper, we propose a class specific convolution

(CSConv) to replace part of the convolutions in existing
image restoration networks, e.g. EDSR (Lim et al. 2017)
and CARN (Ahn, Kang, and Sohn 2018), to efficiently re-
move noises from images in the proposed CSConv-based
denoising convolutional network (CSDN). As can be seen
in Figure. 1, we compare the PSNR and FLOPs per pixel
by the proposed network with state-of-the-art ones. It shows
that the network with the proposed CSConv can reduce
the FLOPs while maintaining the denoising performance.
We follow the divide and conquer scheme like RAISR and
BLADE to classify the noisy pixels into different classes.
Even though their classification is effective, it fails espe-
cially when the input image is too noisy as in Figure. 5(g).
To more accurately classify the pixels, we propose a pixel-
wise classification network (PCN) which uses an efficient
U-net other than eigenanalysis in RAISR and BLADE. Al-
though the inputs are the noisy pixels, the labels of PCN are
estimated from the clean images based on the eigenanaly-
sis in RAISR and BLADE which are shown in Figure. 5(f).
As PCN does not need to estimate the pixel-wise kernels as
in KPN, it can apply a more computationally efficient U-net
in the proposed PCN. Specifically, we adopt group convo-
lutions to reduce the computational costs and the time cost
for classification can almost be ignored relative to the fol-
lowing CSDN. As can be seen in Figure. 5(h), the proposed

1The number of features is Cin ×Cout ×K2 where Cin, Cout

and K are the number of input features, the number of output fea-
tures and the kernel size of the spatially variant convolution.

PCN can predict more accurate gradient statistics which will
lead to a better pixel-wise classification. Then, we can use
a more efficient network to remove the noises from every
class in CSDN. Specifically, we directly reduce the num-
ber of features in EDSR and CARN by four times which
means only about 1/16 FLOPs are needed relative to the
original baseline networks. Both the quantitative and qual-
itative experiments demonstrate that the computational ef-
ficient networks with the proposed CSConv can perform fa-
vorably against the original baseline networks. The proposed
CSConv is flexible and can be adopted into almost any exist-
ing state-of-the-art denoising networks to reduce their com-
putational costs while maintaining the performance.

The contributions of the proposed methods can be sum-
marized as follows:
• The proposed CSDN considers image denoising in a di-

vide and conquer scheme by the proposed CSConv where
different weights will be applied to different classes of
pixels and an efficient network is used to remove noises.

• Unlike estimating spatially variant kernels by a computa-
tional inefficient network, the pixel classification is easy
to learn with an efficient network.

• The experimental results demonstrate that the proposed
network can perform favorably against state-of-the-art
methods with much less computational costs.

Method
In this section, we will describe the details of the proposed
pipeline which consists of two subnetworks in sequence: a
lightweighted pixel-wise classification network (PCN) and a
CSConv-based denoising network (CSDN).

The key idea of this pipeline is utilizing gradient statis-
tics to apply the divide-and-conquer strategy in which only
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Figure 2: Comparison between the proposed CSConv with convolution layer and KPN. In convolution layer, all the spatial
positions share the same weights W . KPN and CSConv apply different W in different locations. However, W is predicted from
a large network in KPN. In the proposed CSConv, it uses PCN to classify pixels into different classes and applies different W
according to the classification which is more efficient. Similar to convolution layer, W1,W2, ...,WM are learned in the training
process in CSConv.

a small network is used to remove noises from a specific
class of pattern or texture. Given a noisy image Y , PCN pro-
duces a pixel-wise map of noise-free image gradient statis-
tics (φ̂, λ̂, µ̂) = FC(Y ; θC), where θC denotes the network
parameters of PCN, φ̂, λ̂ and µ̂ are the estimated gradient
orientation, strength and coherence. The gradient statistics
map is further quantized into a class map Ĥ = H(φ̂, λ̂, µ̂)

using the hash table in RAISR. Elements of Ĥ are pixel-wise
class indices in range {1, 2, ...,M},M = Mφ ×Mλ ×Mµ

which denotes the total number of classes used in CSConv
and Mφ,Mλ,Mµ are the numbers of classes for φ, λ and µ
in the hash table. Then, CSDN restores the denoised image
X̂ = FD(Y,H ; θD), where θD denotes the network param-
eters of CSDN. The details are described in the following
subsections.

Pixel-wise Classification Network (PCN)
We follow the idea from RAISR (Romano, Isidoro, and Mi-
lanfar 2016) which utilizes the local gradient statistics for
pixel-wise classification. RAISR estimates the gradient ori-
entation φ, strength λ and coherence µ for every pixel from
the input noisy image and then classifies the pixels into dif-
ferent buckets according to a hash table 2. Even though it
is effective, this classification is still not accurate enough es-
pecially when the input is too noisy (see Figure. 5(g)). As
we can get the ground truth clean image during training, we
can estimate a more accurate φ, λ and µ. Then we propose a
Pixel-wise Classification Network (PCN) to predict φ, λ and
µ constrained by the estimated one from the ground truth
clean image (see Figure. 5(f)).

PCN uses an architecture similar to U-Net, containing
skip connections, average downsampling and bilinear up-
sampling to utilize multi-scale features and enlarge receptive

2Please refer to RAISR for more details to estimate φ, λ, µ and
hashing.

field. The 3-channels output of PCN is set to the regression
objective towards φ, λ and µ. Instead of using the convolu-
tion layer with 3 × 3 filters and filter channels cf in each
block, we adopt a Group Convolution Block (GCB) to save
the computational cost. In GCB, each 3x3 convolution layer
is replaced by a 2-layers pair as in MobileNet (Howard et al.
2017): a 3 × 3 group convolution layer with group number
2 and output channels cf

2 , followed by an 1× 1 convolution
layer with output channels cf . The ReLU nonlinearity is ap-
plied after each 2-layers pair. At the smallest scale, Group
Residual Blocks, which are GCBs with residual connections,
are applied after the GCB to extend the network capacity.

Class Specific Convolution (CSConv)
Different from KPN which uses a large network to estimate
the pixel-wise kernels, we use the above efficient PCN to
classify pixels into different classes and then learn differ-
ent weights for different classes in the proposed class spe-
cific convolution (CSConv). Specifically, the i-th learnable
weights Wi of CSConv will be fetched from the filter bank
W and used to filter the input feature Q(m,n, c) if the pixel
at position (m,n) is classified as the i-th class from the noisy
image:

Q̂(m,n, c) =
r∑

s=−r

r∑
t=−r

Cin−1∑
c′=0

[Q(m− s, n− t, c′)

×Wi(s, t, c, c
′)] (1)

in which Q̂ is the output feature and K = 2r + 1 is the
kernel size. s and t are the index of the kernel in two coordi-
nates and also the offset relative to the center pixel (m,n)
in the feature map to be filtered by the kernel. By using
CSConv, we actually use different weights to deal with dif-
ferent classes of pixels. During training, the training loss will
be passed to each chosen filterWi through back propagation
and then be updated by the optimizer. Even though the input
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(a) clean (b) noisy (c) DnCNN (d) MemNet (e) SGN
PSNR/SSIM 15.22/0.354 23.74/0.743 23.78/0.742 23.89/0.743

(f) FOCNet (g) CARN64 (h) EDSR64 (i) CS-CARN (j) CS-EDSR
24.04/0.749 23.87/0.739 24.00/0.747 24.37/0.771 24.46/0.778

Figure 3: Visual comparison by different networks on image “ppt3” from Set12 dataset with σ = 50 noises. The proposed
networks CS-CARN and CS-EDSR can better remove noises while preserving the correct shape of the letters and the details of
the ring relative to other networks.

Dataset σ DnCNN CARN16 EDSR16 CARN64 EDSR64 RED MemNet FOCNet SGN CS-CARN CS-EDSR
BSD68 15 31.97/0.878 31.88/0.882 31.99/0.887 32.10/0.888 32.16/0.887 32.07/0.889 32.14/0.891 32.20/0.893 32.02/0.889 32.01/0.885 32.08/0.887

25 29.58/0.811 29.36/0.812 29.61/0.822 29.63/0.818 29.70/0.822 29.66/0.824 29.67/0.825 29.72/0.819 29.65/0.824 29.65/0.820 29.76/0.826
50 26.54/0.700 26.55/0.700 26.77/0.714 26.70/0.707 26.84/0.718 26.73/0.712 26.74/0.709 27.04/0.720 26.77/0.710 27.21/0.731 27.31/0.738

Urban100 15 32.85/0.920 32.21/0.917 32.75/0.921 32.95/0.920 33.10/0.931 32.59/0.923 32.50/0.919 33.15/0.927 32.57/0.911 32.76/0.921 32.93/0.925
25 30.04/0.869 29.27/0.862 29.96/0.878 30.02/0.879 30.36/0.883 29.93/0.880 29.91/0.878 30.64/0.887 30.05/0.880 29.83/0.874 30.17/0.882
50 26.30/0.772 25.77/0.755 26.44/0.781 26.33/0.774 26.85/0.794 26.29/0.779 26.34/0.778 27.10/0.803 26.35/0.781 26.76/0.799 27.07/0.810

DIV2K 15 33.93/0.901 33.75/0.901 33.93/0.905 34.04/0.906 34.14/0.908 34.04/0.907 33.99/0.905 - 34.02/0.902 33.95/0.904 34.03/0.906
25 31.39/0.845 31.16/0.846 31.52/0.856 31.53/0.856 31.66/0.855 31.56/0.859 31.58/0.858 - 31.68/0.860 31.58/0.856 31.74/0.861
50 28.25/0.753 28.18/0.751 28.51/0.765 28.40/0.759 28.65/0.766 28.53/0.769 28.43/0.753 - 28.53/0.771 29.02/0.782 29.17/0.789

Set12 15 33.16/0.887 32.90/0.893 33.11/0.897 33.16/0.896 33.34/0.899 33.11/0.891 33.15/0.897 33.37/0.896 33.07/0.881 33.14/0.896 33.18/0.898
25 30.73/0.840 30.40/0.837 30.78/0.849 30.76/0.845 30.95/0.850 30.96/0.851 30.78/0.850 30.73/0.846 30.81/0.850 30.78/0.847 30.97/0.853
50 27.44/0.747 27.28/0.737 27.64/0.755 27.58/0.748 27.86/0.762 27.50/0.766 27.48/0.749 27.99/0.765 27.62/0.758 28.16/0.773 28.33/0.781

kFLOPs/pixel 1108.2 72.6 145.1 702.7 2361.6 1106.4 5480.0 2225.7 429.1 75.5 148.0

Table 1: Denoising performance (PSNR/SSIM) for σ = 15, 25, 50 noises on BSD68, Urban100, DIV2K, Set12, and computa-
tional cost (kFLOPs/pixel) by different methods. For CS-CARN and CS-EDSR, the numbers are slightly higher than CARN16
and EDSR16 because the additional computational cost of the PCN model (2.8 kFLOPs/pixel) is included. The symbol “-”
denotes that the corresponding results are not provided.

and output channels are reduced to save the computational
costs, the proposed network still contains enough capacity
to remove noises from different contents.

CSConv-based Denoising Convolutional Network
(CSDN)
In this work, we integrate the proposed CSConv into the
EDSR and CARN architecture as the proposed CSDN in
our experiments3. The baseline model EDSR consists of a 1-
layer source encoder, a feature extractor containing 16 resid-
ual blocks in series, and a 1-layer output decoder. A residual
connection is applied after the last residual block. In CARN,
the feature extractor contains three cascading blocks. Each
cascading block has three efficient residual blocks that uti-
lize group convolution and pointwise convolution, and adds
cascading connections to merge features from the residual
blocks. Global cascading connections similar to the ones in-
side cascading blocks are added to merge cascading block
outputs. Unlike RAISR and KPN that directly apply dedi-
cated kernels to the input images, CSConv can replace the
convolution layers in EDSR and CARN. Specifically, the

3CSConv can also be easily integrated into other existing de-
noising networks by replacing any convolution layer.

second convolution layers in each residual block of both
EDSR and CARN are replaced by CSConv in our exper-
iments. All filters are in size 3 × 3, and PReLU nonlin-
earity (He et al. 2015) is applied between two convolution
layers in each residual block. To make the proposed CSDN
more efficient, we reduce the filter channels by a factor of
four relative to the original EDSR and CARN.

Loss Functions
The loss functions of PCN and CSDN depend on the pixel-
wise class as well as the clean image. For PCN, we treat φ,
λ and µ, which are the gradient statistics from RAISR esti-
mated from the clean image, as the ground truth of φ̂, λ̂ and
µ̂ and optimize the parameters θC . Then, the loss function
of PCN can be written as follows:

LPCN (Y ; θC) = ||φ̂(Y ; θC)− φ||1 + ||λ̂(Y ; θC)− λ||1
+ ||µ̂(Y ; θC)− µ||1, (2)

in which || · ||1 is the L1 norm. After using the hash table
in RAISR, φ̂, λ̂ and µ̂ can further be quantized into differ-
ent classes by H = H(φ̂, λ̂, µ̂) as we mentioned above. As
to CSDN, we also use the L1 loss to minimize the differ-
ence between the estimated image X̂ and ground truth clean
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(a) clean (b) noisy (c) CS-EDSR (d) KPN+ (e) KPN (f) RAISR
PSNR/SSIM 21.16/0.596 26.86/0.869 26.19/0.843 26.47/0.855 25.42/0.800

Figure 4: Visual comparison among CS-EDSR, KPN+, KPN and RAISR on image “img079” from Urban100 dataset with
σ = 25 noises. In the zoomed area, CS-EDSR better recovers the textures and details compared to other methods. KPN and
KPN+ show stronger over-smoothing effects and fail to recover edges. RAISR has artifacts and remaining noises.

Dataset CS-EDSR KPN+ KPN RAISR
BSD68 29.76/0.826 29.18/0.807 29.55/0.822 28.15/0.754
Urban100 30.17/0.882 28.62/0.851 29.72/0.875 27.56/0.793
DIV2K 31.74/0.861 31.02/0.842 31.51/0.857 29.80/0.788
Set12 30.97/0.853 29.99/0.835 30.67/0.848 28.76/0.782

Table 2: Denoising performance (PSNR/SSIM) by CS-
EDSR, KPN+, KPN and RAISR for σ = 25 noises.

image X by optimizing the parameters of CSDN θD as:

LCSDN (Y,H ; θD) = ||X̂(Y,H ; θD)−X||1. (3)

Experiments and Results
Datasets
Our training set consists of 400 images from BSD500 (Mar-
tin et al. 2001), 800 images from DIV2K (Agustsson and
Timofte 2017), 4744 images from Waterloo (Ma et al. 2016),
and 5000 images from 5K (Bychkovsky et al. 2011). The
same set of training images are used to train both PCN
and CSDN. BSD68(Martin et al. 2001), Set12(Zhang et al.
2017), Urban100(Huang, Singh, and Ahuja 2015), and 10
images from DIV2K(Agustsson and Timofte 2017) are used
for evaluation. For both training and test sets, we generate
noisy images with additive white Gaussian noises (AWGN)
with standard variation σ = 15, 25, 50.

Experimental Setting
The proposed model and experiments are implemented4

with the PyTorch library. For the proposed PCN and CSDN,
we set the numbers of classes for φ, λ and µ as 8, 3 and 3,
respectively. As the hashing procedure is non-differentiable,
we train PCN and CSDN separately. We first train the PCN
to ensure the estimation quality of pixel-wise classification.
Then, we fix the parameters of PCN and train CSDN. When
training, we choose batch size as 4 and patch size as 96. Data
augmentation including random flip and 0◦, 90◦, 180◦, 270◦
rotation are adopted when generating the training patches.
ADAM optimizer (Kingma and Ba 2014) is used in training
with β1 = 0.9, β2 = 0.999, ε = 1× 10−8. The initial learn-
ing rate is set to 10−4, and decays by factor 0.5 after every
20 epochs. Both PCN and CSDN are trained for 100 epochs.

4https://github.com/XenonLamb/CSConvNet

Experimental Results
The experimental results of proposed methods are compared
with the following state-of-the-art deep image denoising net-
works including DnCNN (Zhang et al. 2017), RED (Mao,
Shen, and Yang 2016), MemNet (Tai et al. 2017), SGN (Gu
et al. 2019) and FOCNet (Jia et al. 2019). As to our base-
line structures CARN and EDSR, the original implementa-
tions have 64 features in every residual or cascading block.
We denote them as CARN64 and EDSR64 in the follow-
ing experiments. The proposed network CS-CARN and CS-
EDSR only contain 16 features in every block to reduce the
computational cost. For comparison, we also train CARN
and EDSR with only 16 features denoted as CARN16 and
EDSR16, respectively. Except for SGN and FOCNet which
use the publicly available implementation, we re-implement
the networks by PyTorch and all the networks are trained
with the same training set described above.

Table. 1 shows the average PSNR and SSIM of different
methods under three noise levels on four evaluation datasets
as well as their FLOPs per pixel. Specifically, the proposed
networks CS-CARN and CS-EDSR perform favorably over
state-of-the-art methods on BSD68, DIV2K and Set12 under
noise variance σ = 25, 50. It is worth noting that the perfor-
mance gain of CSConv increases as the noise level becomes
larger. Even though CS-CARN and CS-EDSR cannot com-
pete with some other larger networks when σ = 15 or on Ur-
ban100, they are not worse than the efficient denoise FLOPs
per pixel. In addition, CARN16 and EDSR16 perform much
worse than CS-CARN and CS-EDSR with almost the same
computational cost which demonstrates the effectiveness of
the proposed CSConv.

We also show some visual comparisons on Set12 dataset
with σ = 50 noises in Figure. 3, where the proposed method
recovers finer details and avoids over-smoothing in the de-
noised image.

Ablation Study
In this section, several experiments are conducted with σ =
25 noises to validate the effectiveness of different compo-
nents in the proposed network.

Comparison with RAISR and KPN
As we discussed above, the most relevant works of the pro-
posed network are RAISR and KPN. Whereas, both of them
have limitations. Their spatially variant convolutions are di-
rectly applied to images and they are difficult to simultane-
ously remove severe noises and preserve textures which can
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(a) clean (b) noisy (c) RAISR+C (d) RAISR+N (e) PCN+N
PSNR/SSIM 20.56/0.362 30.33/0.836 29.42/0.780 29.80/0.798

(f) RAISR+C (g) RAISR+N (h) PCN+N
MSE 0.063 0.029

Figure 5: Top row: visual comparison by different classification methods on image “0041” from BSD68 with noise σ = 25. (a)-
(e) are the cropped input, ground truth as well as outputs of different methods. As can be seen in the zoomed area, PCN+N and
RAISR+C recover the sharpness and the direction of the stripe pattern. Bottom row: visualized gradient statistics comparison of
the whole images produced by different classification methods. For each method, three figures from left to right denote the pixel-
wise gradient statistics φ, λ and µ. Directly using the RAISR gradient statistics under noises inaccurate pixel classifications.
PCN produces a close estimate of the RAISR+C while RAISR+N is disrupted by the existence of noises.

PCN RAISR+N
Dataset σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50
BSD68 0.030 0.031 0.035 0.052 0.062 0.075
Urban100 0.025 0.026 0.025 0.051 0.068 0.092
DIV2K 0.028 0.030 0.032 0.059 0.069 0.081
Set12 0.030 0.031 0.032 0.052 0.064 0.080

Table 3: Comparison of mean square error (MSE) of the es-
timated gradient statistics by PCN and RAISR (denote as
“RAISR+N”) from noisy images on different datasets and
noise levels. The ground truth gradient statistics are esti-
mated from clean images by RAISR. It shows that the pro-
posed PCN can estimate more accurately from noisy images
than RAISR.

be seen in Figure. 4 (e)(f). To make KPN deeper and have
a fair comparison to CS-EDSR, we use the proposed PCN
to predict the spatially variant kernels directly like KPN and
replace CSConv by them in CS-EDSR which is denoted as
KPN+. However, it performs worse than the proposed CS-
EDSR in both Figure. 4 (d) and Table. 2. The major reason
is that many parameters need to be estimated from KPN,
which makes it too difficult for an efficient network. For the
proposed method, PCN only needs to classify the pixels into
different classes which is much easier and it is more rea-
sonable to utilize the divide-and-conquer strategy for image
denoising by the proposed CSConv. According to Table. 2,
the proposed CS-EDSR results in better average PSNR and
SSIM.

Effectiveness of PCN
The proposed PCN can estimate the image gradient statis-
tics, which are used for pixel-wise classification, from the
noisy image by utilizing the model capacity of the network.
To validate the effectiveness of PCN, we also use exactly

EDSR CARN
Dataset PCN+N RAISR+C RAISR+N PCN+N RAISR+C RAISR+N
BSD68 29.76/0.826 30.22/0.847 29.42/0.814 29.65/0.820 29.90/0.838 29.36/0.812
Urban100 30.17/0.882 30.47/0.896 29.36/0.866 29.83/0.874 29.97/0.885 29.36/0.863
DIV2K 31.74/0.861 32.22/0.878 31.28/0.849 31.58/0.856 31.87/0.868 31.22/0.845
Set12 30.97/0.853 31.39/0.868 30.40/0.840 30.78/0.847 31.00/0.859 30.31/0.838

Table 4: Denoising performance (PSNR/SSIM) with σ = 25
noises by different pixel-wise classification. PCN+N de-
notes using PCN to classify pixels from noisy images. And
RAISR+C and RAISR+N are using the eigenanalysis as to
RAISR for pixel-wise classification from clean and noisy
image, respectively. With clean image for classification,
RAISR+C obviously performs the best. But PCN+N is bet-
ter than RAISR+N.

the same eigenanalysis as to RAISR to pixel-wisely regress
φ, λ and µ from both the noisy and clean images which are
denoted as RAISR+N and RAISR+C, respectively. And we
treat the estimation from clean image as the ground truth.

We compare their estimation in terms of mean square er-
ror (MSE) in Table. 3. PCN predictions are relatively robust
to noises, whereas directly applying RAISR classification to
the noisy image degrades significantly as the noise level in-
creases. According to Figure. 5, PCN can estimate gradient
statistics more accurately than RAISR+N.

We also conduct another experiment which uses the above
three different methods to classify pixels and then uses the
same CS-EDSR for denoising. According to Figure. 5 and
Table. 4, RAISR+C can obviously achieve the best per-
formance with given the clean image for pixel classifica-
tion. But the proposed PCN can still recover more details
and reach higher PSNR and SSIM than RAISR+N which
demonstrates the effectiveness of PCN.
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(a) clean (b) noisy (c) B8F16 (d) CS-B8F16 (e) B16F8 (f) CS-B16F8

PSNR/SSIM 20.42/0.395 29.28/0.839 29.82/0.867 28.83/0.839 29.58/0.861

(g) B16F16 (h) CS-B16F16 (i) B16F32 (j) CS-B16F32 (k) B32F16 (l) CS-B32F16

30.01/0.871 30.21/0.877 30.23/0.878 30.29/0.879 30.16/0.873 30.28/0.879

Figure 6: Visual comparison by CS-EDSR and EDSR with different numbers of blocks and features on image “barbara” from
Set12 with σ = 25 noises. Model names with and without CS- denote as CS-EDSR and EDSR, respectively. BiFj denotes the
number of blocks and features as i and j, respectively. As can be seen in the zoomed areas, when using fewer blocks or features,
CS-EDSR still produces relatively clear details, whereas the results of EDSR are smoother.

EDSR CARN
Dataset φ4λ2µ2 φ8λ3µ3 φ16λ6µ6 φ4λ2µ2 φ8λ3µ3 φ16λ6µ6

BSD68 29.67/0.823 29.76/0.826 28.74/0.801 29.56/0.817 29.65/0.820 29.48/0.818
Urban100 29.86/0.879 30.17/0.882 29.26/0.860 29.49/0.870 29.83/0.874 29.27/0.869
DIV2K 31.59/0.858 31.74/0.861 30.76/0.845 31.43/0.852 31.58/0.856 31.38/0.853
Set12 30.66/0.850 30.97/0.853 29.67/0.837 30.58/0.844 30.78/0.847 30.33/0.843

Table 5: Denoising performance (PSNR/SSIM) with σ = 25
noises with different number of classes. φiλjµk denotes φ,
λ and µ are divided into i, j and k classes, respectively. The
default setting in our network is φ8λ3µ3.

Different Number of Classes
In this subsection, some experiments are conducted by com-
paring the denoising performance of both CS-CARN and
CS-EDSR with different number of pixel classes. φ, λ and µ
are divided into Mφ = 8, Mλ = 3 and Mµ = 3 classes in
all the aforementioned experiments.

In Table. 5, we also considerMφ = 16,Mλ = 6,Mµ = 6
as well as Mφ = 4, Mλ = 2, Mµ = 2. Too many or too few
classes result in inferior performance for both CS-CARN
and CS-EDSR, possibly because too few classes limit the
expressive power of the CSConv, and too many classes in-
crease the difficulty for PCN to accurately classify pixels.
Consequently, we select to use Mφ = 8, Mλ = 3 and
Mµ = 3 in the proposed network.

Different Number of Blocks and Features
To further validate the helpfulness of the proposed CSConv
for network efficiency, we compare EDSR and CS-EDSR
with different numbers of blocks and features. As can be
seen in Figure. 7, the performance of EDSR drops faster
than that of CS-EDSR with fewer residual blocks or fea-
tures. And EDSR cannot effectively remove noises when the
network is small according to Figure. 6. CS-EDSR with re-
duced channels or depths yields uncompromised visual re-
sults compared with EDSR64 while reducing those of EDSR
causes significant performance drop in Figure. 6. And this
demonstrates that CSConv has more advantages when the
model size is smaller which is more appropriate for mobile
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Figure 7: Denoising performance (PSNR) of EDSR and CS-
EDSR with different numbers of blocks and features on
Set12 with σ = 25 noises. Blue and green lines denote
CS-EDSR and EDSR models respectively. With a smaller
model, the performance of EDSR drops faster than the pro-
posed CS-EDSR.

devices. The advantage of CSConv is marginal with more
features, possibly because the network already has enough
capacity.

Conclusion

In this paper, we utilize the gradient statistics to take a
divide-and-conquer scheme on image denoising. A deep
neural network pipeline is proposed to first classify pixels
into classes, then perform image denoising with a small
network using the proposed Class Specific Convolution
(CSConv). CSConv, which applies dedicated weights for
different pixel classes, can replace convolution layers in
state-of-the-art denoising networks. With a smaller num-
ber of features, the proposed network with CSConv can re-
duce the computational cost while maintaining the denois-
ing performance. The proposed method is evaluated on ad-
ditive Gaussian denoising benchmarks and obtains competi-
tive denoising performance relative to state-of-the-art meth-
ods with less computation.
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