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Abstract

For action recognition learning, 2D CNN-based methods are
efficient but may yield redundant features due to applying
the same 2D convolution kernel to each frame. Recent efforts
attempt to capture motion information by establishing inter-
frame connections while still suffering the limited temporal
receptive field or high latency. Moreover, the feature enhance-
ment is often only performed by channel or space dimension
in action recognition. To address these issues, we first devise a
Channel-wise Motion Enhancement (CME) module to adap-
tively emphasize the channels related to dynamic information
with a channel-wise gate vector. The channel gates generated
by CME incorporate the information from all the other frames
in the video. We further propose a Spatial-wise Motion En-
hancement (SME) module to focus on the regions with the
critical target in motion, according to the point-to-point sim-
ilarity between adjacent feature maps. The intuition is that
the change of background is typically slower than the motion
area. Both CME and SME have clear physical meaning in
capturing action clues. By integrating the two modules into
the off-the-shelf 2D network, we finally obtain a Compre-
hensive Motion Representation (CMR) learning method for
action recognition, which achieves competitive performance
on Something-Something V1 & V2 and Kinetics-400. On the
temporal reasoning datasets Something-Something V1 and
V2, our method outperforms the current state-of-the-art by
2.3% and 1.9% when using 16 frames as input, respectively.

Introduction

Action recognition has been an essential building block for
video understanding, whereby the key is to extract powerful
spatial-temporal features that contain rich motion informa-
tion. 3D CNN-based methods (Tran et al. 2015; Carreira and
Zisserman 2017; Hara, Kataoka, and Satoh 2018) establish
spatial and temporal correlation among video frames by em-
ploying 3D convolution kernels. Due to the large number of
parameters, these methods suffer from heavy computation
and memory costs. To be light-weighted and fast, 2D CNN-
based methods (Wang et al. 2016a; Qiu, Yao, and Mei 2017;
Lin, Gan, and Han 2019) are proposed.
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Figure 1: Comprehensive motion representation learning in
our method. a) Channel-wise: collect motion information
with global temporal receptive field for channel enhance-
ment. b) Spatial-wise: Point-to-point similarity is introduced
to describe the motion region between adjacent frames. c)
Comprehensive learning: By combining the two aspects to-
gether, the features can be enhanced in a fine-grained way.

Most 2D CNN-based methods are dedicated to temporal
relation modeling, which employs well designed convolu-
tional layers or blocks to process features along the tem-
poral dimension. Since the convolution kernels are shared
when processing each frame, the features of each frame may
contain excessive redundant background information, lead-
ing to covering the crucial motion features. Therefore, mo-
tion enhancement for 2D CNN-based methods has attracted
much attention in recent years. It focuses on utilizing the
inter-frame information, especially motion clues, to guide
the feature generation progress. The goal of these methods is
to make the model automatically emphasize what is impor-
tant for video recognition. Some representative work (Wang
etal. 2016b; Meng et al. 2019; Liu et al. 2020; Li et al. 2020;
Weng et al. 2020) has proved its effectiveness with great im-
provement. However, there are still several issues in this di-
rection that deserve rethinking. First, most methods focus on
designing channel enhancement module but suffer from the
limited temporal receptive field. They only collect informa-
tion from part of frames to construct a channel enhancement
vector, so that some irrelevant motion information is easily
mistaken for the vital factor of video to be analyzed. It might
be much better to decide which channel is important if we
look through the whole action progress. Furthermore, pre-



vious methods are intended to perform enhancement only
from channel-wise aspect. Features from the same channel
are assigned with the same coefficient. It will fail to distin-
guish the crucial moving objects on the spatial dimension.
A similar issue appears if we only enhance features from
the spatial dimension, which ignores the fact that different
channels play different roles in capturing specific semantic
information. Neither the channel-wise or spatial-wise en-
hancement can provide a fine-grained description for the
motion clues individually. We are motivated by the above
analysis to propose a Comprehensive Motion Representa-
tion (CMR) learning framework. The CMR framework con-
tains two specific designed modules to capture motion infor-
mation in features: the Channel-wise Motion Enhancement
(CME) module and the Spatial-wise Motion Enhancement
(SME) module. By fully taking advantage of both channel-
wise and spatial-wise enhancement, our model achieves the
fine-grained motion enhancement as described in Fig. 1.

Specifically, the CME module is employed to highlight
the motion-related channels utilizing the self-gating mech-
anism (Hu, Shen, and Sun 2018). Different from previ-
ous works, we design a global temporal information fusion
mechanism to form the channel gate for each frame. The
channel gate is generated by the weighted summation of
spatial-compressed feature vectors over every frame. Fea-
tures that are significantly different from the current frame
will be assigned with higher summation weights. Besides,
the mechanism is implemented in parallel, thus the motion
clues represented by the diversity can be captured quickly
and precisely by the channel gate to guide the enhancement
process.

Meanwhile, the SME module aims at exploring and
strengthening the motion-related region in each frame. By
establishing the point-to-point similarity map between ad-
jacent feature maps, we can distinguish the dynamic area
from the static background, as the variations can lead to the
lower similarity between the corresponding regions. Higher
weights are then assigned to the dynamic contents to make
the feature better represent the motion information.

We evaluate our method on three benchmark datasets:
Something-Something V1 & V2 (Goyal et al. 2017) and
Kinetics400 (Kay et al. 2017). Specifically, in temporal
reasoning datasets Something-Something V1 and V2, the
proposed method vastly outperforms the state-of-the-art by
2.3% and 1.9%, respectively, which indicates the effective-
ness of CME and SME modules for video action recogni-
tion. Besides, in the scene reasoning dataset Kinetics-400,
our method also achieves competitive results. The contribu-
tions of our work can be summarized:

1) We propose a Channel-wise Motion Enhancement
(CME) module to adaptively enhance motion-related chan-
nels with a global temporal receptive field. Compared with
the previous works that search for motion clues within a lim-
ited temporal range, our method achieves an effective trade-
off between speed and performance.

2) We propose a Spatial-wise Motion Enhancement
(SME) module to explicitly highlight the motion area in the
feature maps according to the point-to-point similarity be-
tween two adjacent feature maps. It is proven to be simple
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but effective than the previous work on utilizing the inter-
frame information to represent the motion information.

3) Both CME and SME are designed with clear physi-
cal meaning, and they complement each other’s strengths.
We combine CME and SME to learn comprehensive mo-
tion representation and our approach achieves state-of-the-
art performance on three benchmark datasets.

Related Work

Video Action Recognition. Compared to image recogni-
tion, video action recognition requires to utilize the tempo-
ral information along with spatial one. Therefore, a simple
method is to utilize 3D convolution kernel to extract spatial
and temporal features jointly (Tran et al. 2015; Carreira and
Zisserman 2017; Hara, Kataoka, and Satoh 2018). Although
3D ConvNets show effectiveness in spatial-temporal mod-
eling and achieve state-of-the-art performance, they suffer
from heavy computing and training difficulty.

To address the limitation of 3D ConvNets, a series of 2D
CNN-based methods have been proposed recently for ef-
ficient video action recognition (Lin, Gan, and Han 2019;
Qiu, Yao, and Mei 2017; Lin, Gan, and Han 2019; Tran
et al. 2018; Liu et al. 2020; Jiang et al. 2019). Among
them, P3D (Qiu, Yao, and Mei 2017) and R(2+1)D (Tran
et al. 2018) decompose the 3D convolution kernel into a
2D convolution for spatial information extracting and a 1D
convolution for temporal modeling. TSM (Lin, Gan, and
Han 2019) further replaces the 1D convolution with a non-
parameter channel shift module to capture the temporal rela-
tionship. However, these 2D-based methods only take how
to model the temporal evolution of frames, neglecting the
influence of redundant information between frames. There-
fore, in this paper, we focus on learning comprehensive mo-
tion enhanced representation which contains less redundant
information, rather than temporal relation modeling.

Attention and Gating Mechanism. Attention mechanism
has been widely used in image recognition (Wang et al.
2017; Woo et al. 2018; Hu, Shen, and Sun 2018). CBAM
(Woo et al. 2018) proposes the combined use of spatial and
channel attention for image recognition. SENet (Hu, Shen,
and Sun 2018) devises a sub-branch to adaptively recal-
ibrate channel-wise features by explicitly modeling inter-
dependencies between channels. For action recognition, at-
tention mechanism is also adopted for discriminative feature
learning (Diba et al. 2018; Liu et al. 2020; Weng et al. 2020;
Li et al. 2020). STC (Diba et al. 2018) simply employs the
fully connected layers to generate the channel and spatial at-
tention for 3D ConvNets, it suffers from the problems that
the enhancing branches are all designed at the channel level
and each frame shares the same attention weights. TEINet
(Liu et al. 2020) and TEA (Li et al. 2020) use the difference
of two adjacent feature maps to generate the channel-wise
modulation weights. However, only the limited temporal re-
ceptive field is considered in TEINet and TEA to emphasize
the motion information in the video, which limits the per-
formance. TDRL (Weng et al. 2020) proposes a Progressive
Enhancement Module (PEM) to extend the temporal recep-
tive field of enhancement learning and achieves encourag-



ing performance. However, in PEM, the calculation of the
channel recalibrate factor is inefficient. At each time step, it
relies on the state of the previous time step, leading to se-
rial computing, and the temporal receptive field of the first
few frames is still limited. We propose two modules to effi-
ciently suppress redundant information and enhance motion
information from the channel and spatial dimension sepa-
rately, achieving better recognition performance.

Proposed Method

In this section, we first introduce the Channel-wise Motion
Enhancement module, as used to adaptively enhance impor-
tant channels and suppress redundant ones from the global
temporal receptive field. Then we present the Spatial-wise
Motion Enhancement module to highlight features in the
motion area. Finally, we describe how to integrate two mod-
ules into off-the-shelf 2D CNN-based methods to learn com-
prehensive motion enhanced representation for actions.

Channel-wise Motion Enhancement Module

It is known that different channels of feature map tend to
describe distinct semantic patterns. Some channels focus
on encoding background patterns, while others focus on
foreground or motion patterns. For video action recogni-
tion, motion-related patterns are more important than static
background patterns. To better capture pivotal patterns, we
propose the Channel-wise Motion Enhancement Module
(CME), to enhance the discriminative channels and suppress
the useless ones with the self-gating mechanism. As shown
in Fig. 2, the input of CME is the feature maps {x;}7_, from
the preceding layer where x; € RE*H*W denotes the fea-
ture map of frame ¢ and the enhancement operation is:

w=x0a;,1 <t <T, (1

where a; € R is the channel enhancement vector, ® is
the channel-wise multiplication operation, and u; is the en-
hanced feature map of ¢-th frame. To obtain channel en-
hancement vector a;, one straightforward method is to ap-
ply the scheme proposed by SENet (Hu, Shen, and Sun
2018). However, SENet is designated for image recogni-
tion tasks, and when generating a channel enhancement vec-
tor, it processes each frame of videos independently without
considering the information from other frames. Some pre-
vious works (Liu et al. 2020; Li et al. 2020; Weng et al.
2020) attempt to utilize inter-frame differences to determine
which channel should be enhanced. However, only the lim-
ited temporal receptive field is considered in these methods,
which may ignore those motion patterns that can only be
observed from multiple frames. Therefore, to better capture
motion information, one should take information from all
the other frames into account when generating the current
frame’s channel enhancement vector.

The process of generating enhancement vector a; can be
divided into three steps. The first step is to yield channel
descriptor z; for each frame individually. Since our goal is
to select motion-sensitive channels and detailed spatial in-
formation is not crucial here, we first apply global average
pooling over the spatial dimension of x; to obtain channel-
wise statistics X;. Then a 1 x 1 convolution is employed to
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Figure 2: Illustration of CME module. Features of each
frame x; is first mapped to an intermediate representation
vector z; through GAP and 1 x 1 convolution. Then we accu-
mulate information from other frames to current frame based
on discrepancy measurement to form the new intermediate
representation vector z; , i.e., Z; = zi+2f:1 ciijzj. Finally,
a sigmoid function o (-) with another 1 x 1 convolution is ap-
plied to convert Z; to channel modulation weights a;.

capture the channel-wise relationship:

z; = Conv (X, W1),1 <t < T, 2)

where W1 is the learnable parameters of the convolution
for feature transformation and the dimension of the output
channel is % z; is the intermediate representation used to
produce the channel enhancement vector. However z; only
contains information from current frame ¢.

The second step is to merge information from other
frames’ intermediate representation into the current frame’s
intermediate representation to help determine which channel
should be enhanced. The fusion coefficient of two frames is
calculated based on the minus of dot-product similarity. To
better calculate the similarity, we first utilize a 1 x 1 con-
volution with parameters W, for feature transformation and
the channel dimension of k; is %:

k; = Conv (X, Wa),1 <t <T. 3)

Based on {k;}7_;, we can calculate the discrepancy be-
tween every two frames:

dij = —kek],1<t,j<T, 4)

where d;; denotes the discrepancy between frame ¢ and j.
We then normalize the discrepancy vector using softmax
function, i.e., E;;l a?tj = 1 to form fusion coefficients and
then perform information fusion:

T
#=z+ Y diyz;, 1 <t<T,
j=1

(&)
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Figure 3: Illustration of the SME module. A spatial weight-
ing map is obtained by calculating the point-to-point sim-
ilarity between two adjacent feature maps to highlight the
features in the motion area.

where Z; is the fused intermediate representation contain-
ing both intra-frame and inter-frame information. The intu-
ition behind Eq. 5 is that when performing temporal fusion,
we expect that the representation of the current frame con-
tains more information from variant frames. Here we adopt
a residual scheme to maintain the knowledge of itself.

Finally, another 1 x 1 convolution with parameters W is
used to recover the channel dimension of Z; to C, and the
channel enhancement vector can be obtained by using the
sigmoid activation o

a; = o(Conv(z;, W3)),1 <t <T. 6)

The CME can be efficiently implemented with matrix op-
erations and we discuss how the values of r; and ro affect
the performance in our experiments.

Spatial-wise Motion Enhancement Module

CME allows the network to enhance discriminative channels
adaptively and suppress redundant ones with a self-gating
mechanism at the channel level. However, for the spatial
dimension of a specific channel, the modulation weight of
each spatial point is the same, which ignores the spatial mo-
tion information. Therefore, we devise a Spatial-wise Mo-
tion Enhancement Module to explicitly highlight features in
the motion area. It serves as the complement of CME.

The input of SME is also a set of frame-level feature maps
{x;}L_, from the preceding layer. As shown in Fig. 3, for
a specific feature map x; € RE*H*W each point in x;
represents a i X w region at the input frame if the receptive
field of current layer is A X w. Therefore, we can calculate
the similarity of corresponding points between two adjacent
feature maps to represent the motion area of input frames:

)

where 7 is a function to calculate cosine similarity of corre-
sponding points (7, j) in the feature map between two input

st = N(X¢, Xe41), 1 <t < T —1,
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Figure 4: The framework and CMR-Block. a) ResNet: We
construct our model on the ResNet structure, which con-
tains four stages. b) StageN: The blocks in each stage are
equipped with a combination of TIM, CME, and SME. c)
CMR-Block: Two basic blocks are designed for efficiency.
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we can explicitly highlight the area where two adjacent fea-
ture maps have low similarity. The intuition behind this is
that the change of background area is typically slower than
the motion area for a video. For a specific spatial point, as all
channels share the same attention weight, s; will be treated
as a matrix that s, € RE*H*W for convenience in sub-
sequent computations. To help convergence, we adopt the
following residual learning scheme:

v = BN(Conv(x; 0 (1 —s8¢))) + x4, 1 <t <T —1, (8)

where v, is the spatial motion enhanced feature. o is the
element-wise product. Batch normalization and 1 x 1 convo-
Iution are used to adjust the scale of enhanced feature maps.
One may notice that in Eq. 8, ¢ € [1,T — 1]. To keep the
enhanced features’ temporal scale consistent with that of the
input features, sp_; is copied to s, namely sp = sp_;.

The Overall Framework

After introducing the CME and SME module separately,
we describe in detail how to integrate them into the net-
work to learn comprehensive motion enhancement features
for action recognition. Our proposed modules are efficient,
generic, and can be plugged into any existing network to
boost the performance. Here we use Resnet (He et al. 2016)
for its popularity in 2D-based action recognition. As shown
in Fig. 4, inspired by TEINet (Liu et al. 2020) and TDRL
(Weng et al. 2020), we insert the CME module at front of
the original ResNet block, to selectively suppress redun-
dant information in the feature maps produced by the pre-
ceding layer. Without loss of generality, we also insert the
Temporal Interaction Module (TIM) proposed in (Liu et al.
2020) after CME module for temporal relationship model-
ing. Following it, we insert operations taken from the orig-
inal ResNet block, which contains 1x1, 3x3, and 1x1 2D
convolutions. We call this modified block as CMR-BlockA.
Based on CMR-BlockA, we further insert SME module at



the end of the block, as shown in Fig. 4 (c), to explicitly
enhance motion information at spatial dimension, and we
define it as CMR-BlockB. Similar to ResNet architecture,
we cascade CMR-Block to form the action recognition net-
work. As shown in Fig. 4 (b), in each stage, the first block
is replaced with CMR-BlockB, and the rest are with CMR-
BlockA. This achieves a trade-off between performance and
efficiency as will be shown in the ablation study.

Experiments

We test our method on three large-scale benchmark datasets,
i.e., Something-Something V1 & V2 (Goyal et al. 2017)
and Kinetics-400 (Kay et al. 2017). Furthermore, hyperpa-
rameter in our method is discussed. We also conduct ab-
lation study on the temporal reasoning dataset Something-
Something V1 to analyze CME and SME’s performance in-
dividually and visualize each part’s effect. Finally, we give
runtime analysis to show the efficiency of our method com-
pared with state-of-the-art methods.

Datasets

Something-Something V1&V2. They are two large-scale
video datasets for the interaction between people and ob-
jects in daily life. They focus on the temporal correlation of
the movement in video clips with little complex background
information. The representational ability of models for tem-
poral information can be well verified on these two datasets.
V1 includes 108,499 video clips, and V2 includes 220,847
video clips. Both of them contain 174 action categories.

Kinetics-400. It contains 400 human action categories in
different scenarios, with at least 400 clips for each category.
The average duration of each video is around 10 seconds.
Since videos in this dataset mostly contain rich background
information with a large inter-class difference, Kinetics-400
focuses on verifying the model’s capability on scene classi-
fication rather than the effectiveness of temporal modeling.

Experimental Setup

We construct our model and conduct experiments based on
the structure of ResNet-50 (He et al. 2016) pre-trained by
ImageNet (Krizhevsky, Sutskever, and Hinton 2012), con-
sidering the trade-off between performance and efficiency.

Training. We preprocess the training samples with the
strategy adopted in (Wang et al. 2018), which is widely used
in previous works. The shorter side of RGB images is re-
sized to 256 and then center cropping and scale-jittering are
performed. Each frame will be resized to 224 x 224 be-
fore being fed into the neural network. For the Something-
Something V1& V2 datasets, we uniformly sample 8 or 16
frames as a clip from all frames of a video. Since videos in
the Kinetics dataset are relatively longer, a dense sampling
strategy will be applied to generate the input. We uniformly
sample 8 or 16 frames from 64 consecutive frames ran-
domly sampled from the whole video. For the Something-
Something dataset, we train the model for 50 epochs, set the
initial learning rate to 0.01 and reduce it by a factor of 10 at
30, 40, 45 epochs. For Kinetics-400, our model is trained for
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100 epochs. The initial learning rate is set to 0.01 and will be
reduced by a factor of 10 at 50, 75, and 90 epochs. Stochas-
tic Gradient Decent (SGD) with momentum 0.9 is utilized as
the optimizer, and the batch size is 64 for all three datasets.

Testing. For fairness, we follow the widely used setting
adopted in (Wang et al. 2018; Liu et al. 2020; Weng et al.
2020). The shorter side of images will be resized to 256.
Center cropping will be performed on each input frame
when only 1 clip is sampled. In the experiment that contains
multiple clips (e.g. IV), we take three crops from the left,
middle, and right of each frame and then uniformly sample
N clips (8f x N or 16 f x N) in each video for classification
individually. The final prediction is obtained by calculating
the average classification score of the IV clips. For Kinetics-
400, N = 10.

Comparison with State-of-the-Arts

Evaluation is performed on Something-Something V1&V2
and Kinetics-400 datasets. The results on Something-
Something V1& V2 are shown in Table 1. Compared to 2D
CNN-based methods, our method outperforms the current
state-of-the-art TDRL by 1.5% and 1.1% on V1 and V2
under the setting of 8f, meanwhile 2.3% and 1.9% under
the setting of 16f. The better performance under the 16 f
setting can be explained by the powerful ability to capture
discriminative information such as motion information. We
also witness an improvement on Kinetics-400 in Table 2.
Although our method’s accuracy is only 0.2% and 0.1%
higher on the setting of 8f and 16f than the 2D-based state-
of-the-art method TDRL, our method is much faster than
TDRL since the calculating of channel attention weights in
TDRL is serial. One may notice that our method is inferior
to the 3D-based state-of-the-art method NL+SlowFast (Fe-
ichtenhofer et al. 2019). The reasons may be in two-folds.
First, our method focuses on modeling motion information
in videos. The improvement in the scene reasoning dataset
like the Kinetics-400 is not obvious as it on the temporal
reasoning datasets. Second, the backbone of NL+Slowfast
is 3D ResNet-101, and it utilizes more input frames, which
is much computational heavy than our method.

Hyperparameter Setting

A pair of parameters r; and ro in the CME module need to
be adjusted during the experiment, it reflects the degree that
the channel is compressed. To ensure the dimension of the
input and output of CME remain unchanged, r; should be
equal to r2. Considering that r; and r» must be the divisor of
the number of feature channels, we train and test our model
on Something-Something V1 with r; and ry ranged from
1,4, 8, 16. In Table 3, we notice that the accuracy will be se-
riously reduced if there is no channel dimension reduction
and it will also drop as the downsampling rate r; exceeds a
certain range. A reasonable explanation is that when the val-
ues of r; and 75 are too large, the intermediate representation
vector loses key information. However, when r; and ro are
too small, the motion-independent information contained in
the intermediate representation vector will dominate, so that



Method Backbone Frames Flops Val, Test; Val, Tests

I3D (Wang and Gupta 2018) 32fx2 306G 41.6% - - -
NL-I3D (Wang and Gupta 2018) ResNet3D-50 32fx2 334G 44.4% - - -
NL-I3D + GCN (Wang and Gupta 2018) 32fx2 606G 46.1% 45.0% - -

BNIncep+ 16f 64G  41.6% - -

ECO (Zolfaghari, Singh, and Brox 2018) Res3D-18 9 f 267G 46.4% 42'_3% ] )

8f 33G  45.6%

TSM (Lin, Gan, and Han 2019) ResNe2D-50 100 (56 4720 46.0%  634%  64.3%
TEI (Liu et al. 2020) ResNet2D-50 186’} ézg 33:32 ] 2;:?2 28135?;’
STM (liang et al. 2019) ResNeaD-s0  © BE G0 e G s
TEA (Li et al. 2020) ResNet2D-50 186J; o B : )

8f 271G 49.0% - - -
16f 54G  50.6% - - -

8f 33G  498% 427% 62.6% 61.4%

16f 66G  509% 44.7% 63.8% 62.5%
8fx2 198G 50.4% - 63.5% -
16fx2 396G  52.0% - 65.0% -

8/  33G 513% 437% 637% 622%

16f  66G 532% 474% 657% 64.1%

CMR (ours) ResNeZD-30 gr2n 198G 51.9% 44.5% 64.6% 63.3%
16fx2 396G 543% 480% 66.1% 64.7%

GSM (Sudhakaran, Escalera, and Lanz 2020)  Inception V3

TDRL (Weng et al. 2020) ResNet2D-50

Table 1: Comparison with the state-of-the-art on Something-Something V1 & V2. The subscripts of ‘Val’ and ‘Test’ indicate
dataset version and top-1 accuracy is reported.

Method Backbone FLOPsxviews Top-1  Top-5
I3Dg4y (Carreira and Zisserman 2017) Inception V1(I) 108X N/A 72.1%  90.3%
NL+I3D32¢ (Wang et al. 2018) ResNet3D-50(1) 70.5 x 30 74.9%  91.6%
NL+I3D12s¢ (Wang et al. 2018) ResNet3D-50(1) 282 x 30 76.5%  92.6%
Slowfast (Feichtenhofer et al. 2019) ResNet3D-50(S) 36.1 x 30 75.6%  92.1%
Slowfast (Feichtenhofer et al. 2019) ResNet3D-101(S) 106 x 30 779%  93.2%
NL+Slowfast (Feichtenhofer et al. 2019)  ResNet3D-101(S) 234 x 30 79.8% 93.9%
SlowFast+RMS33 ¢ (Kim et al. 2020) ResNet3D-50(S) N/A %30 76.3%  92.5%
R(2+1)D32f (Tran et al. 2018) ResNet2D-34(S) 152 x 10 72.0%  90.0%
S3D-Geay (Xie et al. 2018) Inception VI1(I) 71.4 x 30 74.7%  93.4%
TSMs; (Lin, Gan, and Han 2019) ResNet2D-50(I) 33 x 30 74.1% -

TSMi6y (Lin, Gan, and Han 2019) ResNet2D-50(1) 65 x 30 74.7%  91.4%
STMi6s (Jiang et al. 2019) ResNet2D-50(1) 67 x 30 73.7%  91.6%
TEINets; (Liu et al. 2020) ResNet2D-50(1) 33 x 30 74.9%  91.8%
TEINet;65 (Liu et al. 2020) ResNet2D-50(I) 66 x 30 76.2%  92.5%
TEAgy (Li et al. 2020) ResNet2D-50(1) 35 x 30 75.0%  91.8%
TEA16y (Li et al. 2020) ResNet2D-50(1) 35 x 70 76.1%  92.5%
TDRLs; (Weng et al. 2020) ResNet2D-50(1) 33 x 30 757%  92.2%
TDRL6s (Weng et al. 2020) ResNet2D-50(1) 66 x 30 76.9%  93.0%
CMRsg (Ours) ResNet2D-50(1) 33 x 30 759% 92.3%
CMR 6 (Ours) ResNet2D-50(I) 66 x 30 77.0% 93.0%

Table 2: Comparison with the state-of-the-art on Kinetics-400. The notation ‘I’ in the backbone column indicates that the model
is pre-trained with ImageNet. ‘S’ denotes the model is trained from scratch.

the inter-frame difference caused by motion cannot be ef- by default for all experiments, on which we obtain the best
fectively captured by CME. We finally adopt 7} = 72 = 8 trade-off between complexity and accuracy.
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ri&ry  FLOPs  Top-1
1 55G 47.3%
4 39G 50.6%
8 33G 51.3%
16 32G 50.3%

Table 3: Hyperparameter setting analysis. r; and ry are the
channel scaling factors in CME which are set as the same.

Model Top-1
Res50 18.1%
Res50+CME&SME 43.5%
Res50+TIM (Liu et al. 2020)  46.1%
Res50+TIM+CME&SME 51.3%

Table 4: Baseline design analysis. Based on the result,
ResNet-50 with TIM is chosen as the baseline for further
enhancement by our techniques.

Ablation Study

We validate our framework on Something-Something V1
under the setting of 8 f. In this section, we report the results
using the testing scheme of center crop and one clip.

The temporal interaction module (TIM) (Liu et al. 2020)
is employed as baseline in our framework for fair compar-
ison with other enhanced methods (Liu et al. 2020; Li et
al. 2020; Weng et al. 2020). It must be noted that our en-
hanced module can be combined with any temporal model-
ing method. Another reason that we choose TIM to model
the temporal information is that it is proven to effectively
boost the accuracy when combining with our CME and
SME. As shown in Table 4, the absence of TIM will hurt the
performance, but our method still improve by 25.4% over
pure ResNet50 even without TIM.

Number of CME and SME Inserted into Network. We
first expect to figure out how many CME and SME blocks
inserted into the network can obtain the best trade-off perfor-
mance, although both CME and SME are all lightweight. We
separately attempt to insert CME and SME at every block of
a ResNet stage or only in the first block. From Table 5 we
can see, apart from only inserting CME and SME at the first
block of a stage, other settings achieve almost the same top-
1 accuracy. Hence we choose to insert CME at every block
of a ResNet stage and SME at the first block of a stage (the
second row in Table 5), as shown in Fig. 4 (b), for the best
trade-off performance.

Performance of CME and SME. We then conduct a sep-
arate study to show the effectiveness of CME and SME in
learning motion-related features. The number of CME and
SME inserted is based on the trade-off performance. As
shown in Table 6, the proposed CME and SME achieve al-
most the same improvement compared with the baseline,
which demonstrates that both CME and SME can help to
learn motion-related features. Furthermore, when combin-
ing these two modules, we observe a 0.7% improvement
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Method Top-1 Top-5 Latency
baseline+CME,;;+SME;; 51.0% 79.3% 30.4 ms
baseline+CME,;;+SME 4, 51.3% 79.8% 21.4ms
baseline+CME,,q,++SME; 51.2% 79.2%  26.5 ms
baseline+CME,q,;+SME,.; 50.4%  78.6% 17.4 ms

Table 5: Ablation study for effect of the inserted mod-
ule. The baseline is ResNet-50 equipped with TIM. The
“all” means this module is embedded into each block of
ResNet and the “part” means only each stage’s first block
is equipped with the module.

Method Top-1 Top-5
baseline (Liu et al. 2020) 46.1% 74.7%
+MEM (Liu et al. 2020) 474%  76.6%
+PEM (Weng et al. 2020) 48.7% 77.8%
+CME 50.6% 79.4%
+SME 50.6% 78.9%
+CME&SME 513% 79.8%

Table 6: Ablation study: effectiveness of each module.

concerning top-1 accuracy, showing the effectiveness of
learning motion representation comprehensively. We also
compared our CME with another two channel enhancement
methods MEM and PEM with the same baseline. Owing to
the global temporal receptive field when selecting discrimi-
native channels, our CME outperforms MEM and PEM by
3.2% and 1.9%, respectively.

Visualization

We attain further insight by studying how CME and SME
capture the motion information in videos. The video frames
displayed are all from the Something-Something dataset.

For CME, we compare the channels enhanced by CME
with the ones that are suppressed. We extract the features
before the CMR-BlockB in the first stage of the base model.
The channels of each frame are then sorted in descending or-
der according to the generated channel importance weights.
We take the top-10 and bottom-10 of these channels as two
groups and merge each group to a single channel by an aver-
age operation. The single-channel feature is used to generate
the heat map. As illustrated in the top half of Fig. 5, we dis-
play the heat maps of the top-10 and bottom-10 groups in
the third and fourth row, respectively. It is obvious that top-
10 channels, which will be strengthened by the CME mod-
ule, intend to focus on the moving target. In contrast, the
bottom-10 channels are sensitive to the static background.
It indicates that our CME module has a strong ability to
distinguish motion-related channels and background-related
channels.

For SME, we visualize the weighting map generated by
SME in the first stage of the model. As shown in the bottom
half of Fig. 5, only the moving object (paper) will be high-
lighted, avoiding overfitting to the background (table lamp).



Original
Feature Input

Top-10

Bottom-10

Input

Weighting
Input

visualization of SME

Figure 5: Visualizations of CME and SME. The action of
moving an object is analyzed in the CME part: The third
row shows the channels selected by CME to strengthen, and
the fourth row displays the channels to suppress. A scene
of paper falling is discussed in SME visualization, and the
spatial-wise attention map is shown in the last row.

Model L T A

TSM (Lin, Gan, and Han 2019) 12.3  107.3 45.6
TEI (Liu et al. 2020) 204 785 474
STM (Jiang et al. 2019) 1477 932 492
TDRL (Weng et al. 2020) 63.8 495 498
baseline++CME 189 752 50.6
baseline+-SME 163 726 50.6
baseline+CME&SME 214 618 513

Table 7: Runtime comparison on Something-Something V1
dataset. L denotes Latency (ms), T denotes Throughput
(videos/s), A denotes Top-1 Accuracy (%). The baseline is
ResNet-50 equipped with TIM.

Runtime Analysis

We follow the inference settings in (Lin, Gan, and Han 2019)
by using a single NVIDIA Tesla V100 GPU to measure the
latency and throughput. We use a batch size of 1 and 8, to
measure the latency and throughput, respectively. The re-
sults are shown in Table 7. Our method achieves similar la-
tency with TEI but outperforms it by 3.9%. Compared with
the state-of-the-art method TDRL, our model is nearly three
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times faster and obtains 1.5% improvement on accuracy.

Conclusion and Outlook

In this paper, we have proposed the CMR-Block for com-
prehensive motion representation learning, which consists
of Channel-wise Motion Enhancement Module and Spatial-
wise Motion Enhancement Module. Specifically, the CME
is designed to enhance the discriminative channels and sup-
press the useless ones from the global temporal receptive
field. The SME is designated to highlight the features in mo-
tion area based on the similarity map between two adjacent
frames. The experiments are conducted on three benchmark
datasets to demonstrate the effectiveness of our proposed
method. On two temporal reasoning datasets, our method
achieves the state-of-the-art results by a large margin with a
little additional computation cost.

In future work, we are exploring the way of integrating
optical flow networks into our learning pipeline, especially
for those unsupervised flow models based on our previous
work (Ren et al. 2017, 2020a,b), as the two tasks for action
recognition and flow estimation can be of mutual benefit to
each other.
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