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Abstract

Most weakly supervised fine-grained image recognition (WF-
GIR) approaches predominantly focus on learning the dis-
criminative details which contain the visual variances and
position clues. The position clues can be indirectly learnt
by utilizing context information of discriminative visual con-
tent. However, this will cause the selected discriminative re-
gions containing some non-discriminative information intro-
duced by the position clues. These analysis motivates us to
directly introduce position clues into visual content to only
focus on the visual variances, achieving more precise dis-
criminative region localization. Though important, position
modelling usually requires significant pixel/region annota-
tions and therefore is labor-intensive. To address this issue,
we propose an end-to-end Dynamic Position-aware Network
(DP-Net) to directly incorporate the position clues into vi-
sual content and dynamically align them without extra anno-
tations, which eliminates the effect of position information
for discriminative variances among subcategories. In partic-
ular, the DP-Net consists of: 1) Position Encoding Module,
which learns a set of position-aware parts by directly adding
the learnable position information into the horizontal/vertical
visual content of images; 2) Position-vision Aligning Mod-
ule, which dynamically aligns both visual content and learn-
able position information via performing graph convolution
on position-aware parts; 3) Position-vision Reorganization
Module, which projects the aligned position clues and visual
content into the Euclidean space to construct a position-aware
feature maps. Finally, the position-aware feature maps are
used which is implicitly applied the aligned visual content
and position clues for more accurate discriminative regions
localization. Extensive experiments verify that DP-Net yields
the best performance under the same settings with most com-
petitive approaches, on CUB Bird, Stanford-Cars, and FGVC
Aircraft datasets.

Introduction
Weakly Supervised Fine-grained Image Recognition (WF-
GIR) aims at identifying sub-category of a given image la-
bel, e.g., different species of birds, and models of cars and
aircrafts (Guo, Ouyang, and Xu 2020). It is a much more
challenging problem than general image recognition due to
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Figure 1: The motivation of the Dynamic Position-aware
Network (DP-Net). FHL denotes the high-level semantic
feature maps and FPA denotes the position-aware feature
maps. (a) is the original image, (b)(d) are the discriminative
response maps to guide network to sample the discriminative
regions and (c) (e) are localization results without and with
DP-Net learning, respectively. We can see that after intro-
ducing position clues, (d) is more compact and sparse than
(b) and the resulted regions in (e) are more accurate and dis-
criminative than those in (c).

the inherently subtle intra-class object variations among sub-
categories. As a result, the key to fine-grained image recog-
nition lies in picking out the discriminative regions in an im-
age to address the aforementioned challenge of WFGIR.

Existing fine-grained image recognition methods can be
roughly divided into three categories. The first category,
multi-stage schemes is that the object and local parts/patches
are localized either by explicitly detecting semantic parts
(Zhang et al. 2016; Wei, Xie, and Wu 2016) or via im-
plicit saliency localization (He and Peng 2017; He, Peng,
and Zhao 2017; Peng, He, and Zhao 2018). The shortcom-
ing of multi-stage schemes is that they are difficult to guar-
antee the selected regions are discriminative enough. There-
fore, the second category, end-to-end setting focuses on au-
tomatically localizing the most discriminative patches via
the attention mechanism in a weakly supervised manner (Fu,
Zheng, and Mei 2017; Ding et al. 2019; Zheng et al. 2019b).
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Instead of picking out discriminative regions independently,
the third category, group learning (Wang et al. 2019, 2020b)
tends to select discriminative region group automatically by
the correlation-guided discriminative learning.

All previous works tend to pick out discriminative details,
which contain the discriminative visual content and posi-
tion clues. The position clues can be indirectly learnt by uti-
lizing context information of discriminative visual content,
which leads into the position clues containing some non-
discriminative information, thus degrading the recognition
performance. For example, a bird can be identified using the
spot on the wings in Fig. 1, but previous works by indirectly
introducing position clues need to locate the entire wing to
make sure that the spot is on the wings, making the selected
regions contain much noisy and therefore increase the diffi-
culty of recognition. These analysis motivate us to directly
incorporate the position clues into visual content to make
the network only pay attention to the discriminative visual
content, which is more powerful to grab finer details.

Though important, position modelling usually requires
significant pixel/region annotations and therefore is labor-
intensive. Inspired by the natural language processing
(Vaswani et al. 2017), we propose an end-to-end Dynamic
Position-aware Network (DP-Net) to directly incorporate
the position clues into visual content and dynamically align
them without extra annotations, which eliminates the effect
of position information for discriminative variances among
subcategories. The DP-Net consists of Position Encoding
Module (PEM), Position-vision Aligning Module (PAM)
and Position-vision Reorganization Module (PRM). PEM
learns a set of position-aware parts by adding the learn-
able position information into the horizontal and vertical vi-
sual content of images. PRM dynamically aligns both visual
content and learnable position information via performing
graph convolution on position-aware parts. PRM projects the
aligned horizontal and vertical position-aware parts into the
Euclidean space to construct a position-aware feature maps.
Finally, the position-aware feature maps are used which is
applied the visual content and corresponding position clues
for more accurate discriminative region localization.

Main contributions of this paper can be summarized:

• To the best of our knowledge, we are the first to directly
introduce the position clues into visual content in WFGIR.

• We propose an end-to-end Dynamic Position-aware Net-
work (DP-Net) to directly incorporate the position clues
into visual content and dynamically align them without
extra annotations, eliminating the effect of position infor-
mation for discriminative variances among subcategories.

• We evaluate the proposed method on three datasets (CUB-
Bird, Stanford Cars, and FGVC Aircraft), and the results
demonstrate that our PR-Net achieves state-of-the-art.

Related Work
Position encoding: Position encoding was originally pro-
posed for natural language processing (Vaswani et al. 2017),
where the model makes use of the order of the sequence and
must inject some information about the relative or absolute

position of the tokens in the sequence. Recently, position en-
coding is mainly applied to vision tasks including text recog-
nition (Yue et al. 2020) and semantic segmentation (Choi,
Kim, and Choo 2020). RobustScanner (Yue et al. 2020) en-
ables the encoder to output characters encoding their own
sequence positions for scene text recognition. HANet (Choi,
Kim, and Choo 2020) introduces the absolute position prior
for improving semantic segmentation for urban-scene im-
ages. Different from their works, we incorporate a learnable
instead of absolute position encoding into visual content and
dynamically align them.
Discriminative region localization: Recent WFGIR works
mainly focus on designing end-to-end learning frameworks
(Ding et al. 2019; Yang et al. 2018; Wang et al. 2020a,c; Ji
et al. 2020). S3Ns (Ding et al. 2019) produces sparse atten-
tion to localize object and discriminative parts by collect-
ing local maximums of class response maps. TASN (Zheng
et al. 2019b) learns subtle feature representations from hun-
dreds of part proposals and uses an attention-based sampler
to highlight attention regions. DCL (Chen et al. 2019) auto-
matically detects the discriminative regions by region con-
fusion mechanism. More recent works (Wang et al. 2019;
Zheng et al. 2017; Wang et al. 2020b) try to find discrim-
inative region groups to improve discriminative ability for
WFGIR. CGP (Wang et al. 2020b) establishes correlation
between regions by graph propagation to discover the more
discriminative region groups for WFGIR.

Most approaches predominantly tends to focus on learn-
ing the discriminative visual patterns which contain the dis-
criminative visual content and position clues. However, the
position clues can be indirectly learnt by utilizing context in-
formation of discriminative visual content, which leads into
the selected tegions containing some non-discriminative in-
formation introducing by the position clues. Based on these
consideration, we propose DP-Net to directly incorporate
the position clues into visual content and dynamically align
them for grabbing finer details. To our best knowledge, this
is the first work to directly introduce the position clues into
visual content for more accurate discriminative regions lo-
calization.

Proposed Method
We present our proposed Dynamic Position-aware Network
in Fig.2. In order to better introduce position clues into dif-
ferent visual content, we propose a dual pathway to learn
the aligned horizontal and vertical position-aware parts from
horizontal and vertical direction of images, respectively. Fi-
nally, we project the aligned horizontal and vertical position-
aware parts into the Euclidean space to construct a position-
aware feature maps for discriminative region localization.

Position Encoding Module
Our proposed Position Encoding Module (PEM) consists
of two sub-modules to learn position-aware horizontal and
vertical parts: 1) part generator (PG) which divides the im-
ages into the horizontal and vertical parts from the horizontal
and vertical direction; 2) learnable position encoding (LPE)
which is adopted to add the learnable position information
into the horizontal and vertical parts.
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Figure 2: An overview of our DP-Net to directly introduce the position clues into visual content and dynamically align them for
recognition. We begin by adding the learnable position information into horizontal and vertical parts by the Position Encoding
Module (PEM) and aligning the position clues and visual content of position-aware parts through Position-vision Aligning
Module (PAM). With these, we project the aligned position clues and visual content into the Euclidean space by reorganizing
the aligned horizontal and vertical parts based on their feature similarity in Position-vision Reorganizing Module (PRM). At
the sampling phase, the discriminative patches are located by collecting local maximums from MD. Next, we crop and resize
the patches to 224×224 from the original image and extract the corresponding features through CNN. Finally, the features of
all branches are aggregated to produce the final recognition vectors.

Part generator. Given an image X , we feed X into the CNN
backbone and extract the high-level feature maps from the
top convolutional layer. The high-level feature maps are in-
dicated as MI ∈ RC×Hh×W , where C, Hh and W denote
the channel, height and width of feature maps. Then, let MI

be an input tensor with specific signal S into the module PG
to obtain a set of specific parts:

H = PG(MI , S = SH), V = PG(MI , S = SV ), (1)
where H ∈ RHh×C and V ∈ RW×C denote the horizontal
parts and vertical parts obtained by selecting corresponding
horizontal pooling operation with different signals (S = SH

and S = SV ), respectively. concretely, the input of PIE
can be divided into two cases to obtain different parts: 1)
input = (MI , S = SH), which processes MI by horizontal
pooling operation with pooling kernel W × 1 to obtain the
horizontal parts H:

Hi =
1

W

∑
0≤j<W

M ij
I . (2)

2) input = (MI , S = SV ), which reshapes MI into M̃I ∈
RC×W×Hh followed by a horizontal pooling operation with
pooling kernel Hh × 1 to generate vertical parts V :

Vj =
1

Hh

∑
0≤i<Hh

M̃ ji
I . (3)

According to the horizontal pooling operation, it is easy
to gather sufficient local details and destroy the global se-
mantic information for WFGIR. It should be clarified that
the horizontal and vertical parts cannot always guarantee the
completeness of all the divided parts which are smaller than
the size of certain semantic regions. However, it should not
be a bad news for model training, since we also adopt ran-
dom cropping which is a standard data augmentation strat-
egy and leads to the result that divided parts are different
compared with those of previous iterations. Small semantic
parts, which are split at this iteration due to the horizontal
pooling, will not be always split in other iterations. Hence, it
brings an additional advantage of forcing our model to find
more different granularity parts.
Learnable position encoding. For injecting visual content-
related positional encodings, we propose to extend the basic
sine and cosine functions of different frequencies proposed
in Transformer by introducing a learnable mixture of posi-
tion encoding. Concretely, the learnable positional encoding
layer is defined as:

PE = PE(pos, 2i) = w2i
pos · sin(pos/100002i/C), (4)

PE = PE(pos, 2i+ 1) = w2i+1
pos · cos(pos/100002i/C),

(5)
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where PE ∈ RN×C indicates the position information, and
N and C are the number of position encoding and the di-
mension of parts, respectively. pos denotes the index of posi-
tion encoding ranging from 0 to N − 1, and w2i

pos and w2i+1
pos

denote the learnable weight coefficients of the pos-th row
the 2i-th and the (2i+1)-th columns in weight matrix param-
eters W ∈ RN×C , respectively. For horizontal parts H with
horizontal position information PH

E ∈ RHh×C and vertical
parts V with vertical position information PV

E ∈ RW×C ,
they can be incorporated by element-wise sum⊕ as follows:

HP = H ⊕ PH
E , VP = V ⊕ PV

E . (6)

Note that absolute position information is randomly jit-
tered by up to two positions to generalize over different part
location from various images to prevent an inordinately tight
position-object coupling. Besides, we regard the horizontal
and vertical parts of the image as the smallest unit of po-
sition encoding instead of each pixel of the feature maps.
Concretely, the number of horizontal and vertical parts is se-
lected manually and usually satisfies (Hh + W ) < (Hh ×
W ). There are two obvious disadvantages of all pixels with
position encoding. First, the position information are lying
in a low dimensional manifold, so the position encodings are
over-complete. Second, the computation overhead is heavy
and the memory cost is also large.

Position-vision Aligning Module
Each image can be represented into the horizontal and ver-
tical position-aware parts by PEM. Although the parts con-
tains the corresponding learnable position encoding, they are
not aligned between the visual content and position infor-
mation. We propose the Position-vision Aligning Module
(PAM) to learn the correlation between the vision content
and position information to align them. Here, let’s take the
horizontal position-aware parts as example to represent a de-
tailed formulation for one graph propagation process.

The horizontal position-aware parts can be regarded as
the nodes G of graph, and the adjacent matrix of nodes
can be calculated, which indicates correlation intensity be-
tween nodes. Inspired by the work of multiple kernel learn-
ing (Dereli, Oguz, and Gönen 2019; Zhu et al. 2017), we
propose to extend the basic graph neural network by intro-
ducing a learnable mixture of adjacent matrix for capturing
more complex relations between nodes. Concretely, each el-
ement of the adjacent matrix can be calculated as below:

Rij = cij · < h(Gi), h(Gj) >, (7)

where Rij denotes the correlation coefficient between each
two nodes (Gi, Gj), and h is a fully connected function
where all nodes are mapped in a same space, followed by the
similarity measure operation <,>. cij is a learnable corre-
lation weight coefficient in weighted matrix C ∈ R|G|×|G|,
and cij can be learned to adjust correlation coefficient Rij

through back propagation. Note that the naive multiplication
between correlation coefficients R and nodes G will com-
pletely change the scale of the feature vectors. Therefore,
we perform normalization on each row of adjacent matrix
to ensure that the sum of all the edges connected to one

node equals to 1. The normalization of the adjacent ma-
trix A ∈ R|G|×|G| is realized by a symmetric normaliza-
tion, which corresponds to taking the average of neighboring
node features. This formulation arrives at the new propaga-
tion rule shown as follows:

A = Q−
1
2 (R+ I)Q−

1
2 , (8)

where Q is the diagonal node degree matrix of R + I , and
R + I is the adjacent matrix of the graph with added self-
connections for considering its own representation of each
node and I is the identity matrix, which could directionally
attend over other nodes’ and its own features to learn the
correlation between position information and visual content
and align them.

After we obtain the adjacent matrix, we both take feature
representations G ∈ R|G|×C and the corresponding adjacent
matrix A ∈ R|G|×|G| as inputs, and update the node features
as G

′ ∈ R|G|×C′
. Formally, one layer process of GCN can

be represented as:

G
′
= f(G,A) = l(A ·G ·W ), (9)

where W ∈ RC×C′
is the learned weight parameters, and l

is a non-linear function (we use Rectified Linear Unit in the
experiments). Since the visual content and learnable position
information of horizontal and vertical parts are in a same
graph space, they are mutually correlated and can align each
other after multiple graph propagations, which obtains the
aligned horizontal and vertical parts HA V A.

Position-vision Reorganization Module
Learning aligned horizontal and vertical parts only forces
the parts in alignment between visual content and posi-
tion information rather than to consider their spatial con-
text. The network has difficulty in selecting discriminative
patches/regions without spatial information. To deal with
this limitation, we propose a Position-vision Reorganization
Module (PRM) to resume the spatial information by reorga-
nizing the aligned horizontal and vertical parts.

Before resuming the spatial information, we propose a
semantic reassembly layer to stay semantic coherency of
the aligned horizontal and vertical parts HA V A. Let’s take
aligned horizontal parts HA as an example to represent the
semantic coherence layer:

NH
i =

1∑
j=−1

Wj ⊗HA
i+j ; (10)

where the reassembly horizontal part NH
i ∈ RC can be

obtained through performing element-wise multiplication⊗
between the neighboring part HA

i+j and the corresponding
learnable weight coefficients Wj ∈ RC . With the reassem-
bly process, each part with neighboring parts contributes to
the reassembly parts NH and NV differently for guaran-
teeing the neighboring parts more correlated, based on the
content of features instead of distance of locations.

And then, we utilize the feature similarity between NH

and NV to more easily resume the original Euclidean space,
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Feature Map Stride Scale Scale Step Aspect ratio
MD 32 32 2

1
3 , 2

2
3

2
3 , 1,

3
2

M1
D 64 64 2

1
3 , 2

2
3

2
3 , 1,

3
2

M2
D 128 128 1, 2

1
3 , 2

2
3

2
3 , 1,

3
2

Table 1: The stride, patch scale size, scale step and aspect
ratios of the three different layers. M1

D and M2
D are feature

maps after down-sampling MD.

since the i-th row and j-th column feature vectors in the
original Euclidean space can find a unique part group <
NH

i , NV
j >:

Vij = NH
i ⊗NV

j ; (11)

where Vij ∈ RC represents the i-th row and j-th column
projecting feature vectors of the position-aware feature maps
MP , which can be obtained through element-wise multipli-
cation ⊗ between the horizontal reassembly node NH

i and
vertical reassembly node NV

j .
Finally, we integrate the original discriminative features

MI and the position-aware features MP into a new feature
maps MD, which leads to more stable performance:

MD = MI +MP . (12)

Discriminative Information Sampling
We use MD with three different scales to generate default
patches, inspired by Feature Pyramid Network (Lin et al.
2017). Table 1 displays the design details, containing the
scale size, scale step and aspect ratio of default patches.

Let’s take MD as an example. We feed the features MD

into a score layer. Concretely, we add a 1 × 1 × N con-
volution layer to learn discriminative response maps R ∈
RN×Hh×W , which indicates the impact of discriminative re-
gions on the final classification, as follows:

R = WD ∗MD, (13)

where WD ∈ RC×1×1×N represents the convolution ker-
nels, N is the number of the default patches at a given loca-
tion in the feature maps. Meanwhile, we assign the discrim-
inative response value to each default patch pijk:

pijk = [tx, ty, tw, th, Rijk], (14)

where Rijk denotes the value of the ith row, the jth column
and the kth channel, and (tx, ty, tw, th) denotes each patch’s
coordinates. Finally, the network picks the top-M patches
with a response value, where M is a hyper-parameter.

Loss Function
The full multi-task loss L can be represented as the follow-
ing:

L = Lcls + Lgud + Lrela + Lrank, (15)
where Lcls represents the fine-grained classification loss.
Lgud, Lrela and Lrank represent the guided loss, correlation
loss and rank loss, respectively.

We denote the selected discriminative patches as P =
{P1, P2, ..., PN} and the corresponding discriminative re-
sponse values as R = {R1, R2, ..., RN}. Then the guided

Method Accuracy
BL (Li et al. 2017) 84.5%

BL + Sample 87.1%
BL + Sample + PEM + PRM 88.4%

BL + Sample + PEM + PRM + PAM 89.3%

Table 2: The ablative recognition results of different variants
of our method. We test the models on CUB.

loss and the correlation loss as well as the rank loss are de-
fined as follows:

Lgud(X,P ) =
N∑
i

(max{0, logC(X)− logC(Pi)}), (16)

Lrela(Pc, P ) =
N∑
i

(max{0, logC(Pi)−logC(Pc)}), (17)

Lrank(R,P ) =
∑

logC(Pi)<logC(Pj)

(max{0, (Ri −Rj)}),

(18)
where X is the original image and the function C is the con-
fidence function which reflects the probability of classifica-
tion into the correct category, Pc is the concatenation of all
selected patch features.

The guided loss is designed to guide the network to se-
lect the more discriminative regions. The correlation loss
can guarantee that the prediction probability of combined
features is greater than that of single patch features. The
rank loss strives for consistency of the discriminative scores
and the final classification probability values of the selected
patches, encouraging them in the same order.

Experiments
Datasets
We comprehensively evaluate our algorithm on Caltech-
UCSD Birds (Branson et al. 2014) (CUB-200-2011), Stan-
ford Cars (Krause et al. 2013) (Cars) and FGVC Aircraft
(Airs) (Maji et al. 2013) datasets, which are widely used
benchmark for fine-grained image recognition. The CUB-
200-2011 dataset contains 11,788 images spanning 200 sub-
species. The ratio of train data and test data is roughly 1:1.
The Cars dataset has 16,185 images from 196 classes offi-
cially split into 8,144 training and 8,041 test images. The
Airs dataset contains 10,000 images over 100 classes, and
the train and test sets split ratio is around 2 : 1.

Implementation Details
In all our experiments, all images are resized to 448 × 448,
and we crop and resize the patches to 224 × 224 from the
original image. We use fully-convolutional network ResNet-
50 as feature extractor and apply Batch Normalization as
regularizer. We also use Momentum SGD with initial learn-
ing rate 0.001 and multiplied by 0.1 after 60 epochs. We use
weight decay 1e−4. To reduce patch redundancy, we adopt
the non-maximum suppression (NMS) on default patches
based on their discriminative scores, and the NMS threshold
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Method Box Annotation Part Annotation CUB Acc. Cars Acc. Airs Acc.
PN-DCN (Branson et al. 2014) BBox Parts 85.4% - -

M-CNN (Wei, Xie, and Wu 2016) n/a Parts 84.2% - -
PG (Krause et al. 2015) BBox n/a 82.8% 92.8% -
SCDA (Wei et al. 2017) n/a n/a 80.1% 85.1% 79.5%

AutoBD (Yao et al. 2018) n/a n/a 81.6% 88.9% -
OPAM (Peng, He, and Zhao 2018) n/a n/a 85.8% 92.2% -
lB-CNN (Kong and Fowlkes 2017) n/a n/a 84.2% 90.9% 87.3%

Kernel-Activation (Cai, Zuo, and Zhang 2017) n/a n/a 85.3% 91.7% 88.3%
Kernel-Pooling (Cui et al. 2017) n/a n/a 86.2% 92.4% 85.7%
DBT-Net (Zheng et al. 2019a) n/a n/a 88.1% 94.5% 91.6%
PA-CNN (Zheng et al. 2020) n/a n/a 87.8% 93.3% 91.0%

DCL (Chen et al. 2019) n/a n/a 87.8% 94.2% 93.0%
TASN (Zheng et al. 2019b) n/a n/a 87.9% 93.8% -

CDL (Wang et al. 2019) n/a n/a 88.4% 94.5% -
LIO (Zhou et al. 2020) n/a n/a 88.0% 94.5% 92.7%
ACNet (Ji et al. 2020) n/a n/a 88.1% 94.6% 92.4%

CGP (Wang et al. 2020b) n/a n/a 88.3% 94.0% 93.2%
S3Ns (Ding et al. 2019) n/a n/a 88.5% 94.7% 92.8%

Our DP-Net n/a n/a 89.3% 94.8% 93.9%

Table 3: Comparison of different methods on CUB-200-2011(CUB), Cars 196 (Cars) and Aircraft (Airs).

is set to 0.25. Note that the architecture in principle contains
multiple CNN modules and for clarity, these CNN modules
share the same parameters.

Ablation Experiments
For understanding the influence of different components in
our proposed method, we conduct some ablation studies.
As shown in Table 2, we design different settings on CUB-
200-2011 dataset by using ResNet-50 as the backbone net-
work. First, the features are extracted from the original im-
age through ResNet-50 (He et al. 2016) without any ob-
ject or partial annotation for fine-grained recognition, and
we set it as the baseline (BL) of our model. When we
introduce the score mechanism (Sample) to only preserve
the highly discriminative patches and reduce the number of
patches to single-digit, the top-1 recognition accuracy on
CUB-200-2011 dataset improves 2.6%. Finally, we take ac-
count into the position clues into visual content through DP-
Net for more accurate discriminative region localization, and
achieve the state-of-the-art result of 89.3%. The PEM and
PRM can effectively make the network focus on the local
details and introduce the learnable position information into
parts, thus and still improves the accuracy. For locating dis-
criminative regions, the PAM can learn and align both the vi-
sual content and position information of parts to eliminates
the effect of location for discriminative variances among
subcategories, thus outperforming by 0.9%. Ablation exper-
iments have verified that the proposed DP-Net focuses on
the finer details to precisely find the discriminative details,
thus effectively improves the recognition accuracy.

Performance Comparison
Due to the proposed model only utilizing image-level an-
notations, our comparisons focus on the weakly supervised
methods. In Tab.3, the performance of different methods

on CUB-200-2011 dataset, Stanford Cars-196 dataset and
FGVC-Aircraft dataset is reported, respectively. In the ta-
ble from top to bottom, the methods are separated into
six groups, which are (1) supervised multi-stage meth-
ods, (2) weakly supervised multi-stage frameworks, (3)
weakly supervised end-to-end feature encoding, (4) end-to-
end localization-classification networks, and (5) DP-Net.

Earlier multi-stage methods rely on the object and even
part annotations to achieve comparable results. However, us-
ing the object or part annotations limits the performance
due to the fact that human annotations only give the co-
ordinates of important parts rather than the accurate dis-
criminative region location. Weakly supervised multi-stage
frameworks gradually exceed the strong supervised meth-
ods though picking out discriminative regions. The end-to-
end feature encoding methods have good performance via
encoding the CNN feature vectors into high-order informa-
tion, while they result in high computational cost. Although
the localization-classification sub-networks works well on
various datasets, they neglect that the indirect position clues
contain some non-discriminative information obtained by
utilizing context information of visual content, which leads
to the effect of location for discriminative variances among
subcategories. Our end-to-end DP-Net approach achieves
new state-of-the-art without any extra annotations and en-
joys consistent performance on various datasets.

As shown in Table 3, our approach outperforms these
strong supervised methods in the first group, which indicates
that the proposed method can find the discriminative patches
without any fine-grained annotations. Compared with recent
weakly supervised end-to-end methods, they find discrimi-
native patches from high-level feature maps directly. We run
DP-Net to directly learn the position-aware feature maps that
the highlighted regions are finely related to visual content
and position clues for discriminative region localization and
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Figure 3: Visualization of intermediate results in DP-Net.
(a) is the original images, (b)(d)indicate the original feature
maps MI and (c)(d) denote the reconstructing feature maps
of the special channel, respectively. (b)(c) are the same chan-
nel feature. (d)(e) are also the same channel feature.

Depth 1 2 3 4 5
Accuracy 88.2% 88.7% 89.3% 89.1% 88.6%

Table 4: The recognition accuracy on CUB-200-2011 of
model trained with different depth of graph in PAM.

achieves the new state-of-the-arts.

Visualization Analysis
Insights about the influence of our proposed approach can be
obtained by visualizing the effects of feature maps MI and
MP , i.e. the feature maps without and with DP-Net respec-
tively. Compared with the feature maps MI without DP-Net,
the feature map response can be shrank to focus on the accu-
rate discriminative regions without attending on background
noise in Fig. 3, which indicates our method can directly learn
and use the position clues instead of introducing position in-
formation by utilizing context information of discriminative
visual content. To intuitively display the effect of position
clues, We draw the discriminative regions and display the
discriminative response map predicted by our model without
and with DP-Net in Fig. 4, respectively. It can be seen that
the discriminative response maps without DP-Net focus on
the wide area which results in the problem of hard localiza-
tion, as shown in Fig. 4(b). However, Our DP-Net could pay
attention to a small region or region group in discriminative
response maps, where the discriminative patches can be lo-
cated more easily and accurately. For more intuitive presen-
tation, we display the localization results in original images,
as shown in Fig. 4(c)(e).

Discussions
The deeper, the better? We show the recognition results
with different depth of graph, as shown in Tab. 4. It is obvi-
ous that the performance of DP-Net drops when the depth of
graph increases to 4. The possible reason of the performance
drop is that after using more graph layers, the propagation
between nodes will be overwhelmed.

The importance of position clues: We show the recog-
nition results with different branch of our model, as shown
in Tab.5. The original feature branch, position-aware feature

Figure 4: Visualization of discriminative response maps and
localization results with and without DP-Net.(a) is the orig-
inal images. (b)(c) are the discriminative response maps
through sampling stage with and without the DP-Net, re-
spectively. (d)(e) are the localization results with and with-
out DP-Net, respectively.

Branch Accuracy
Original Feature Branch w/o DP-Net 87.1%

Original Feature Branch 88.2%
Position-aware Feature Branch 88.5%

Original + Position-aware Feature Branch 89.3%

Table 5: The recognition accuracy on CUB-200-2011 of
model trained with the different branch.

branch and the combination of both original and position-
aware feature branches denote that the sampling process is
on feature maps MI , MP and MD, respectively. To make
fair comparison, we pick out 4 discriminative regions on
corresponding feature maps. Compared to the original fea-
ture branch without the DP-Net, it can be seen that the orig-
inal features MI can be optimized through the position clue
learning to achieve more accurate discriminative localiza-
tion. Moreover, it is clear that the position-aware feature
branch can exceed the original feature branch, outperform-
ing by 0.3%. Finally, the original feature branch and the
position-aware feature branch can promote each other, thus
achieving the state-of-the-art.

Conclusion

In this paper, we first directly introduce the position clues
into the visual content and align them in WFGIR. We argue
that learning the indirect position information aggravates the
difficulty of recognition for existing methods. We propose an
end-to-end Dynamic Position-aware Network (DP-Net) to
directly incorporate the position clue into visual content by
dynamically aligning visual content and learnable position
encoding without extra annotations. Extensive experiments
show that the recognition accuracy can be improved signif-
icantly by localizing patches on the position-aware feature
maps. The last but the most important, our algorithm is end-
to-end trainable and achieves state-of-the-art in CUB-Bird,
FGVC Aircraft and Stanford Cars datasets.
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