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Abstract

Visual information extraction (VIE) has attracted consider-
able attention recently owing to its various advanced appli-
cations such as document understanding, automatic mark-
ing and intelligent education. Most existing works decoupled
this problem into several independent sub-tasks of text spot-
ting (text detection and recognition) and information extrac-
tion, which completely ignored the high correlation among
them during optimization. In this paper, we propose a ro-
bust visual information extraction system (VIES) towards
real-world scenarios, which is an unified end-to-end trainable
framework for simultaneous text detection, recognition and
information extraction by taking a single document image
as input and outputting the structured information. Specif-
ically, the information extraction branch collects abundant
visual and semantic representations from text spotting for
multimodal feature fusion and conversely, provides higher-
level semantic clues to contribute to the optimization of text
spotting. Moreover, regarding the shortage of public bench-
marks, we construct a fully-annotated dataset called EPHOIE
(https://github.com/HCIILAB/EPHOIE), which is the first
Chinese benchmark for both text spotting and visual informa-
tion extraction. EPHOIE consists of 1,494 images of exami-
nation paper head with complex layouts and background, in-
cluding a total of 15,771 Chinese handwritten or printed text
instances. Compared with the state-of-the-art methods, our
VIES shows significant superior performance on the EPHOIE
dataset and achieves a 9.01% F-score gain on the widely used
SROIE dataset under the end-to-end scenario.

Introduction
Recently, visual information extraction (VIE) has attracted
considerable research interest owing to its various advanced
applications, such as document understanding (Wong,
Casey, and Wahl 1982), automatic marking (Tremblay and
Labonté 2003), and intelligent education (Kahraman, Sa-
giroglu, and Colak 2010).
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Most existing works for VIE mainly comprise two in-
dependent stages, namely text spotting and information ex-
traction. The former aims to locate and recognize the texts,
while the latter extracts specific entities based on previous
results. Recent studies (Liu et al. 2019; Yu et al. 2020; Xu
et al. 2020) revealed that in addition to semantic features,
the visual and spatial characteristics of documents also pro-
vided abundant clues. Although achieved encouraging re-
sults, these approaches still suffered from the following lim-
itations: (1) Although their text spotting models had learned
effective representations for detection and recognition, their
information extraction modules discarded and then retrieved
them again from the OCR results. This resulted in redun-
dant computation, and the discarded features might be more
effective than the newly learned ones. (2) The training pro-
cesses of independent parts were irrelevant, leading to the
lack of clues obtained by the information extraction module,
while the text spotting module cannot be optimized adap-
tively according to the fundamental objective. Continuous
stages were usually combined to accomplish a common task,
while they did not collaborate with each other. To address
the limitations mentioned above, in this paper, we propose
a robust visual information extraction system towards real-
world scenarios called VIES, which is an unified end-to-end
trainable framework for simultaneous text detection, recog-
nition and information extraction. VIES introduces vision
coordination mechanism (VCM) and semantics coordina-
tion mechanism (SCM) to gather rich visual and seman-
tic features from text detection and recognition branches
respectively for subsequent information extraction branch
and conversely, provides higher-level semantic clues to con-
tribute to the optimization of text spotting. Concurrently, a
novel adaptive feature fusion module (AFFM) is designed to
integrate the features from different sources (vision, seman-
tics and location) and levels (segment-level and token-level)
in information extraction branch to generate more effective
representations.

With the development of learning-based algorithms, a
comprehensive benchmark conducted for a specific task is
a prerequisite to motivate more advanced works. In VIE,
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SROIE (Huang et al. 2019) is the most widely used one,
which concentrates both on the optical character recogni-
tion (OCR) and VIE tasks for scanned receipts in printed
English. However, it’s difficult to satisfy the demand of real-
world applications for documents with complex layouts and
handwritten texts. To address this issue and promote the de-
velopment of the field of VIE, we furthermore establish a
challenging dataset called Examination Paper Head Dataset
for OCR and Information Extraction (EPHOIE), which con-
tains 1,494 images which are collected and scanned from
real examination papers of various schools in China, and we
crop the paper head regions which contains all key infor-
mation. The texts are composed of handwritten and printed
Chinese characters in horizontal and arbitrary quadrilateral
shape. Complex layouts and noisy background also enhance
the generalization of EPHOIE dataset. Typical examples are
shown in Figure 1.

Our main contributions can be summarized as follows:

• We propose a robust visual information extraction sys-
tem towards real-world scenarios called VIES, which is
an unified end-to-end trainable framework for simultane-
ous text detection, recognition and information extraction.

• We introduce VCM and SCM to enable the independent
modules to benefit from joint optimization. AFFM is also
designed to integrate features from different sources and
levels to boost the entire framework.

• We propose a fully-annotated dataset called EPHOIE,
which is the first Chinese benchmark for applications of
both text spotting and visual information extraction.

• Our method achieves state-of-the-art performance on both
the EPHOIE and widely used benchmarks, which fully
demonstrated the effectiveness of the proposed VIES.

Ralated Work
Datasets for Visual Information Extraction For VIE,
SROIE (Huang et al. 2019) is the most widely used public
dataset that has brought great impetus to this fields. It con-
centrates on scanned receipts in printed English, and con-
tains complete OCR annotations and key-value pair infor-
mation labels for each image. (Guo et al. 2019) proposed a
Chinese benchmark with fixed layouts including train tick-
ets, passports and business cards. However, the overwhelm-
ing majority of images were totally synthetic and only an-
notated with key-value pair labels without any OCR anno-
tations. In this regard, for the development of both OCR
and VIE tasks in Chinese documents and handwritten infor-
mation, a comprehensive dataset with complex background,
changeable layouts and diverse text styles towards real-
world scenarios is in great demand.

Methods for Visual Information Extraction In recent
years, VIE methods have achieved encouraging improve-
ment. Early works mainly used rule-based (Esser et al. 2012;
MUSLEA 1999) or template matching (Huffman 1995)
methods, which might led to the poor generalization. With
the development of deep learning, more researchers con-
verted the results obtained by text spotting into plain texts,

(a) Complex Layout (b) Noisy Background

Figure 1. Some typical and challenging instances in
EPHOIE. (a) Complex layout. (b) Noisy background.

and then extracted feature embeddings for a subsequent se-
quence labeling model such as BiLSTM-CRF (Lample et al.
2016) to obtain the final entities. However, the lack of visual
and location information often led to poor performance.

The fact that visual and spatial features of documents also
play a vital role in information extraction has been recog-
nized by recent works. Typical methods such as Post-OCR
parsing (Hwang et al. 2019) took bounding box coordinates
into consideration. LayoutLM (Xu et al. 2020) modeled the
layout structure and visual clues of documents based on the
pre-training process of a BERT-like model. GraphIE (Qian
et al. 2019), PICK (Yu et al. 2020) and (Liu et al. 2019) tried
to use Graph Neural Networks (GNNs) to extract global
graph embeddings for further improvement. CharGrid (Katti
et al. 2018) used CNNs to integrate semantic clues contained
in input matrices and the layout information simultaneously.
However, these existing traditional methods only focused on
the performance related to the information extraction stage,
but ignored the preconditioned OCR module.

At present, more related works of VIE were gradually de-
veloping towards end-to-end manner. (Guo et al. 2019) gen-
erated feature maps directly from input image and used sev-
eral entity-aware decoders to decode all the entities. How-
ever, it could only process documents with fixed layout and
its efficiency could be significantly reduced as the number of
entities increases. (Carbonell et al. 2020) localized, recog-
nized and classified each text segment in image, which was
difficult to handle the situation where a text segment was
composed of characters with different categories. (Zhang
et al. 2020) proposed an end-to-end trainable framework to
solve VIE task. However, it focused more on the perfor-
mance of entity extraction and can only be applied to the
scenarios where the OCR task was relatively simple.

Examination Paper Head Dataset for OCR
and Information Extraction

In this section, we introduce the new Examination Pa-
per Head Dataset for OCR and Information Extraction
(EPHOIE) benchmark and its characteristics.
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Dataset Year Scenario Language Image Number Text Shape Script Entities
SROIE 2019 Scanned receipts English 973 H Printed 4

EPHOIE 2020 Scanned paper head Chinese 1494 H, Q Printed/Handwritten 10

Table 1. Comparison between EPHOIE and SROIE. ‘H’ or ‘Q’ denotes horizontal or arbitrary quadrilateral text.

①Content: 学校:          Entity:Key_111        Position: [x1,y1,x2,y2,x3,y3,x4,y4]
②Content: 耀华中学   Entity:Value_1111    Position: ......
③Content: 班级:          Entity:Key_222        Position: ......
④Content:七.16           Entity:Value_2222    Position: ......

① ②
③ ④

(a)

①Content: 四年级下册语文配套练习(六)          
       Entity:Value_33300440000000      Position: [x1,y1,x2,y2,x3,y3,x4,y4]
②Content: 15-6                  Entity:None_0000        Position: ......
③Content: 姓名                 Entity:Key_55              Position: ......
④Content:郑益娇              Entity:Value_555          Position: ......

①

②

③ ④

(b)

Figure 2. Examples of annotations in EPHOIE. In Entity
field, ‘Key’ or ‘Value’ indicates it’s key or value of an en-
tity respectively, whereas ‘None’ indicates neither of them.
The different numbers in Entity denotes different categories.

Dataset Description To the best of our knowledge, the
EPHOIE benchmark is the first public dataset for both OCR
and VIE tasks in Chinese and aims to motivate more ad-
vanced works in the fields of both document intelligence and
VIE. It contains 1,494 images with 15,771 annotated text in-
stances, including handwritten and printed characters. It is
divided into a training set with 1,183 images and a testing
set with 311 images respectively. All the images in EPHOIE
are collected and scanned from real examination papers of
various schools with the diversity of text types and layout
distribution. The statistic of our dataset and the compari-
son with the most widely used public benchmark SROIE are
shown in Table 1. For EPHOIE, we only crop the paper head
regions that contain all key information.

Annotation Details The detailed annotation forms of
EPHOIE are presented in Figure 2. As there exist both hor-
izontal and arbitrary quadrilateral texts, four vertices were
required to surround them. In addition to annotating bound-
ing boxes for text detection, text content is also required for
both text recognition and information extraction. We anno-
tate all the texts appearing on the image, while additionally
label the entity key-value pair for all key information. The
number string in Entity denotes the category of each token,
since there may exists multiple entities in a single segment.

Methodology
The overall framework of our VIES is illustrated in Fig-
ure 3. It consists of a shared backbone and three specific
branches of text detection, recognition and information ex-
traction. Given an input image, the text spotting branches are
responsible for not only localizing and recognizing all the
texts in it, but also providing abundant visual and semantic
features through vision and semantics coordination mecha-
nisms for subsequent networks. The adaptive feature fusion
module in information extraction branch first gathers these
abundant representations with additional spatial features ex-
tracted from detected boxes to adaptively generate fused fea-
tures in decoupled levels (segment-level and token-level). In
this part, the multi-head self-attention mechanism is intro-
duced to allow each individual to freely attend to all the oth-
ers. Then, the features in decoupled levels are re-coupled
and finally the specific entities are distinguished from rec-
ognized strings using sequence labeling module.

Text Detection with
Vision Coordination Mechanism (VCM)
Accurate text detection is the prerequisite for text recogni-
tion and information extraction. An intuitive idea to boost
the detection branch is to make the IE branch provide feed-
back guidance in an end-to-end manner during training.

Given an input image, our VIES first uses the shared back-
bone to extract high-level feature representations X . Then,
the detection branch takes X as input and outputs boxes B,
confidence scores C and even binary masks M for arbitrary
quadrilateral texts:

B,C,M = TextDetection(X) (1)

Here, we introduce an innovative vision coordination mech-
anism (VCM), which can effectively transfer rich visual
features Fvis from the detection branch to the IE branch
and conversely provide additional supervised information to
contribute to the optimization of the detection branch. It can
be shown in Figure 4(a) and defined as follows:

Fvis = Linear(AvgPool(Conv2D(RegionPool(X,B))))
(2)

Here, RegionPool denotes region feature pooling methods
such as RoIPooling (Girshick 2015) and RoIAlign (He et al.
2017). AvgPool reduces both height and width dimension
to unit size. Linear is learned projection to transform Fvis

into d channels.
For visually rich documents, the key visual clues such as

shapes, fonts and colors have been integrated in Fvis. The
gradients of IE branch can also help the detection branch
learn more general representations that are beneficial to the
entire framework.
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Figure 3. The overall framework of VIES. It consists of a shared backbone network and three specific branches: (1) text
detection, (2) text recognition and (3) information extraction. Boxt denotes boxes of single tokens which divided from the box
of entire text segment Box.

Box
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RegionPool
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Figure 4. The detailed structures of Vision and Seman-
tics Coordination Mechanisms. (a) Vision Coordination
Mechanism (VCM). (b) Semantics Coordination Mecha-
nism (SCM).

Text Recognition with
Semantics Coordination Mechanism (SCM)
Text recognition greatly limits the upper bound of the per-
formance of the entire system. If the recognized strings are
less accurate, it will always be useless no matter how pow-
erful the IE branch is. Based on this consideration, whether
semantic supervision of IE stage can boost the recognition
branch is particularly critical.

In our VIES, given the shared features X , high-level
representations in specific text regions are collected and
fed into an encoder to extract the input feature sequence
H = (h1, h2, · · · , hN ), where N is the feature length.
Then, an attention-based decoder (Bahdanau, Cho, and Ben-
gio 2015) is adopted to recurrently generate the hidden states
S = (s1, s2, · · · , sM ) by referring to the history of rec-
ognized characters and H , where M indicates the maxi-
mum decoding step. Finally, the output text sequence O =
(o1, o2, · · · , oM ) is computed using S.

Here, we introduce our semantics coordination mecha-
nism (SCM) to establish the bidirectional semantics flow
between our recognition branch and IE branch. The hidden
states S in our recognition branch contain high-level seman-
tic representations of each single token in every decoding
step. Therefore, we regard it as token-level semantic features
Fsem,t and send it to the IE branch:

Fsem,t = (s1, s2, · · · , sM ) = S, (3)
where Fsem,ti = si

Here, Fsem,ti ∈ Rd denodes the d-dimensional vector corre-
sponding to the i-th token in the segment.

Note that, the segment-level semantic features Fsem,s also
greatly affect the category characteristics. Further, Fsem,t

captures local clues and Fsem,s contains global informa-
tion, indicating that they are complementary to each other.
Inspired by the previous works (Zhang, Zhao, and LeCun
2015; Kim 2014) which adopted CNNs to integrate holistic
expression for each sentence from the words’ or characters’
embeddings, our VIES generates the summarization of each
segment Fsem,s from Fsem,t as follows:

Fsem,t1:n = Fsem,t1 ⊕ · · · ⊕ Fsem,tn , (4)
ci = Conv1Di(Fsem,t1:n), (5)
ci =MaxPool1D(ci), (6)
i = 1, . . . , nc

Fsem,s = Linear(c1 ⊕ · · · ⊕ cnc) (7)

Here, ⊕ is the concatenation operator, n is the length of the
current segment and nc is the number of 1D convolution
kernels. Note that all 1D operations are carried out over the
length dimension.

The overall structure of SCM is illustrated in Figure 4(b).
In this way, the extracted competent semantic representa-
tions can be passed forward directly, and the higher-level
semantic constraints of IE branch can guide the training pro-
cess of recognition branch.
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Information Extraction with
Adaptive Feature Fusion Module (AFFM)
Information extraction requires the most comprehensive and
expressive representations to distinguish specific entities
from recognized strings. Besides the visual and semantic
features provided by text spotting branches above, our IE
branch further extracts spatial features from text boxes and
decouples token-level representations so that the relatively
accurate clues can be obtained regardless of whether the to-
ken is attributed to the wrong string or whether the string is
over- or under-cut, which often occur in text detection ow-
ing to the complex background and the variety of shapes and
styles. To encode location information, we generate spatial
features Fspt from relative bounding box coordinates as:

Fspt = Linear([
xmin

Wimg
,
ymin

Himg
,
xmax

Wimg
,
ymax

Himg
]) (8)

where Wimg and Himg are image width and height respec-
tively. Linear is used to transform Fspt into d channels
which is the same as that in the visual and semantic fea-
tures above. We intuitively divide the box of the entire seg-
ment evenly along its longest side into several single to-
kens’ boxesBt according to the length of recognized strings.
Then the token-level visual features Fvis,t and spatial fea-
tures Fspt,t can be generated according to Bt.

After acquiring the features of multi levels from multi
sources as representations in a learned common embed-
ding space, our adaptive feature fusion module (AFFM) in-
troduces two multi-layer multi-head self-attention modules
combined with linear transforms to first enrich all projected
vectors at different fine-granularities respectively. The mul-
timodal features are summarized and followed by the layer
normalization to generate comprehensive representations of
each individual. Then, it serves as the K, Q and V in the
scaled dot-product attention, which can expressed as:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V, (9)

where Q,K, V = LayerNorm(F vis + Fsem + Fspt)

F∗ = Concat(head1, head2, · · · , headh)WO, (10)

where headi = Attention(QWQ
i ,KW

K
i , V W

V
i )

where WQ
i , WK

i , WV
i and WO are projection parameters

and F∗ denotes the fused features in segment-level or token-
level. Then, we re-couple them to combine global and local
information:

F j,ti = Fj,ti ⊕ Fj , (11)
where i = 1, ..., nj , j = 1, ..., ns

where ns is the number of text segments and nj is the length
of j-th segment. F j,ti constitutes input feature sequence for
subsequent sequence labeling module.

Sequence Labeling After feature recoupling, we feed the
input feature sequence into standard BiLSTM-CRF (Lample
et al. 2016) for entity extraction. Intuitively, segment embed-
ding provides extra global representations. The concatenated

features are fed into a BiLSTM network to be encoded, and
the output is further passed to a fully connected network and
then a CRF layer to learn the semantics constraints in an en-
tity sequence.

Optimization Strategy
In the training phase, our proposed framework can be trained
in an end-to-end manner with the weighted sum of the losses
generated from three branches of text detection, recognition
and information extraction:

L = LE +λD LD +λR LR (12)

where λD and λR are hyper-parameters that control the
tradeoff between losses. LD and LR are losses of text de-
tection and recognition branches respectively, and LE is the
loss of information extraction branch.
LD consists of losses for text classification, box regres-

sion and mask identification respectively, as defined in (He
et al. 2017). LR adopts CrossEntropyLoss between output
text sequenceO and ground truth text sequence. CRFLoss is
also adopted as LE for information extraction.

Experiments
Implement Details
We adopt Mask R-CNN (He et al. 2017) as our text detection
branch with ResNet-50 (He et al. 2016) followed by FPN
(Lin et al. 2017) as its backbone. We use LSTM (Hochre-
iter and Schmidhuber 1997) in attention mechanism for text
recognition. In SCM, the sizes of three 1D convolutions are
2, 3 and 4. In AFFM, we set the number of heads and sub-
layers is 4 and 3, the dimension of input features and linear
transforms is 256 and 512 respectively.

The hyper-parameters λD and λR are all set to 1.0 in our
experiments. In end-to-end training phase, the initial learn-
ing rate is set as 0.1 for text spotting branches and 1.0 for in-
formation extraction branch with ADADELTA (Zeiler 2012)
optimization after sufficient pre-training of the former. We
also decrease it to a tenth every 25 epoches for two times.

Ablation Study
In this section, we evaluate the influences of multiple com-
ponents of the proposed framework on the EPHOIE dataset.

Effect of End-to-End Optimization To explore the ef-
fects of end-to-end optimization manner introduced by
VCM and SCM, we perform the following ablation studies
and the results are presented in Table 2. Baseline denotes
the gradients generated by information extraction branch are
detached and cannot be back-propagated to the text spotting
part. We select two other advanced structures – graph atten-
tion network (GAT) (Veličković et al. 2018) similar to (Liu
et al. 2019) and the information extraction module in TRIE
(Zhang et al. 2020), then combine them with the optimiza-
tion methods both in TRIE and our VIES for detailed com-
parison.

From Table 2, it can be seen that VIES(Ours) outper-
forms four counterparts in all of text detection, recogni-
tion and information extraction tasks by a large margin,
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Task Mesure Optimization Strategy
Baseline TRIE E2E(Ours) + IE stage in TRIE E2E(Ours) + GAT VIES(Ours)

Detection

IoU=0.5,

F1-Score

97.00 97.31 97.36 97.10 97.48
IoU=0.6, 96.03 96.33 96.25 96.05 96.15
IoU=0.7, 92.72 93.02 92.92 92.48 93.06
IoU=0.8, 78.89 78.30 79.04 78.16 79.60

Recognition AR 96.43 96.28 96.40 95.59 96.79
LA 93.98 93.53 93.78 93.55 94.52

Information
Extraction F1-Score 80.31 81.24 82.21 80.51 83.81

Table 2. Effect of End-to-End Optimization. LA indicates the whole line accuracy. A + B indicates the combination of opti-
mization method A and IE structure B.

Setting The design of VCM F1-Score
1) Adopting RoIPooling as RegionPool 83.28
Ours Adopting RoIAlign as RegionPool 83.81

Setting The design of SCM F1-Score

2) Taking a further decoding step after
predicting token <END> 80.26

3) Extracting from H with 1D convolutions 82.59
Ours Extracting from S with 1D convolutions 83.81

Table 3. Effects of VCM and SCM.H denotes the input fea-
ture sequence and S denotes hidden states in the recognition
branch.

which reveals the superiority of our framework. TRIE per-
forms better in detection task under low IoU and informa-
tion extraction task than Baseline, however, the performance
of detection with high IoU and recognition are both evi-
dently reduced. This indicates that the improvement of final
achievements does not always mean the overall progress of
the entire system. Compared to it, E2E(Ours) + IE stage
in TRIE achieves comparable detection results under low
IoU and significantly better performances on other counts,
which fully verifies the advantage of our optimization strat-
egy. Moreover, VIES(Ours) shows significant gains in all
tasks over E2E(Ours) + IE stage in TRIE and E2E(Ours)
+ GAT, revealing both the effectiveness of modeling of our
AFFM and the fact that, the co-training method needs to be
built under careful considerations to take full advantage of
its role.

Effects of VCM and SCM Here we conduct the following
experiments to verify the effects of our VCM and SCM. We
design several intuitive and effective structures for them and
the results are shown in Table 3. It totally indicates that al-
though combining text spotting branches and IE branch is a
relatively intuitive idea, how to make the best use of it needs
a comprehensive design. Our VCM and SCM can maximize
the benefits of end-to-end optimization.

Effect of multi-source features We conduct the follow-
ing experiments to verify the effectiveness of multi-source
features in AFFM, and the results are presented in Table 4.
It can be observed that further fusion of the multi-modality

Setting Source F1-ScoreSemantics Vision Location
(1) X 80.51
(2) X X 83.25
(3) X X 81.58
(4) X X X 83.81

Table 4. Effect of multi-source features.

representations in Setting (4) provides the best performance.
Semantic features are the most distinguishable ones for

information extraction. As shown in Setting (1), our method
can achieve satisfactory performance by using only seman-
tic features. Moreover, these features are provided from our
recognition branch, which may be more effective than the
re-extracted ones under traditional routines.

Visual features such as fonts and colors which containing
rich semantic clues is also crucial. This brings significant
performance gains, which can be observed in Setting (2).
When semantics of different texts are highly similar, visual
features play the decisive role.

Note that, introducing spatial features in Setting (3) out-
performs Setting (1) slightly, revealing that the shape and
location of texts also plays a critical role in representing se-
mantic meanings. Through the adaptive feature fusion pro-
cess, the expressive features mentioned above belong to dif-
ferent individuals are allowed freely attending to all the oth-
ers, which enables modeling both inter- and intra- segment
relations in a homogeneous manner. The negative effects of
errors from different sources can also be mitigated here.

Comparison with the State-of-the-Arts
To comprehensively evaluate our framework, we compared
it with several state-of-the-art methods. It is notable that, we
re-implement them based on the original papers or source
codes if available on open-source platforms.

Results on EPHOIE Dataset As shown in Table 5, our
method exhibits superior performance on EPHOIE. (Liu
et al. 2019), TRIE (Zhang et al. 2020) and VIES which in-
troduce multimodal representations outperform counterparts
by significant margins. Under the End-to-End setting where
the OCR results are less accurate, the robustness of our
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Setting Method Entities

Subject Test Time Name School Examination
Number

Seat
Number Class Student

Number Grade Score Mean

Ground
Truth

(Lample et al. 2016) 98.51 100.0 98.87 98.80 75.86 72.73 94.04 84.44 98.18 69.57 89.10
(Liu et al. 2019) 98.18 100.0 99.52 100.0 88.17 86.00 97.39 80.00 94.44 81.82 92.55
GraphIE (Qian et al. 2019) 94.00 100.0 95.84 97.06 82.19 84.44 93.07 85.33 94.44 76.19 90.26
TRIE (Zhang et al. 2020) 98.79 100.0 99.46 99.64 88.64 85.92 97.94 84.32 97.02 80.39 93.21

VIES(Ours) 99.39 100.0 99.67 99.28 91.81 88.73 99.29 89.47 98.35 86.27 95.23

End-to-End

(Lample et al. 2016) 82.08 89.95 72.61 83.29 62.18 64.56 66.87 63.68 81.17 53.09 71.95
(Liu et al. 2019) 84.12 90.61 78.35 87.25 68.60 64.45 71.56 68.39 82.19 55.22 75.07
TRIE (Zhang et al. 2020) 85.92 92.20 85.94 91.92 73.63 69.01 79.91 78.00 83.82 62.74 80.31

VIES(Ours) 86.14 93.50 90.35 95.47 77.72 76.05 85.65 81.05 83.49 68.62 83.81

Table 5. Performance (F1-Score) comparison of the state-of-the-art algorithms on the EPHOIE dataset. Ground Truth means
using ground truth bounding boxes and texts as inputs for information extraction branch, and End-to-End denotes using same
predictions from text spotting branches instead.
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Figure 5. Examples of prediction results of VIES on
EPHOIE. Different colors denotes different entities.

pipeline is more evident. Its reasonable design effectively
reduces the negative effects caused by text spotting errors.
Some examples of qualitative results of VIES are shown in
Figure 5.

Results on SROIE Dataset The results of experiments on
SROIE dataset are shown in Table 6. Our method achieves
competitive results under Ground Truth setting and out-
performs the state-of-the-art results by significant margins
(from 82.06 to 91.07) under End-to-End setting. The meth-
ods in Competition may inevitably introduce model ensem-
ble techniques for each tasks and complex post-processing.
However, our VIES achieves even better results using only a
single framework with light-weight network structures. And
we only introduce simple regularizations to correct the for-
mat of Total and Date results.

Compared with EPHOIE, the layout of scanned receipts
is relatively fixed, the font style is less changeable and there
exists less noise in the background. In such a relatively sim-
ple scenario, the superiority of our method is further con-
firmed.

Conclusion
In this paper, we propose a robust visual information ex-
traction system (VIES) towards real-world scenarios, which

Setting Method F1-Score

Ground
Truth

(Lample et al. 2016)† 90.85
LayoutLM (Xu et al. 2020) 95.24
(Liu et al. 2019) 95.10
PICK (Yu et al. 2020) 96.12
TRIE (Zhang et al. 2020) 96.18
VIES(Ours) 96.12

End-to-End

NER (Ma and Hovy 2016)† 69.09
Chargrid (Katti et al. 2018)† 78.24
(Lample et al. 2016) 78.60
(Liu et al. 2019) 80.76
TRIE (Zhang et al. 2020) 82.06

VIES(Ours) 91.07

Competition
(Huang et al. 2019)

Rank 1 90.49
Rank 2 89.70
Rank 3 89.63

Table 6. Performance comparison of the state-of-the-art al-
gorithms on SROIE dataset. † indicates the result is re-
ported in (Zhang et al. 2020). Competition shows the per-
formance of the top three methods during ICDAR 2019
SROIE Competition which inevitably introduced techniques
such as model ensemble and complex post-processing.

is an unified end-to-end trainable framework for simultane-
ous text detection, recognition and information extraction.
Additionally, we propose a fully-annotated dataset called
EPHOIE, which is the first Chinese benchmark for both
OCR and VIE tasks. Extensive experiments demonstrate that
our VIES achieves superior performance on the EPHOIE
dataset and has 9.01% F-score gains campared with the pre-
vious state-of-the-art methods on the widely used SROIE
dataset under the end-to-end information extraction sce-
nario.

Visual information extraction is a challenging task in the
cross domain of natural language processing and computer
vision. Many issues have not been well addressed, including
complex layouts and background, over-reliance on complete
annotations and continuous accumulation of errors. There-
fore, it remains an open research problem and deserves more
attention and further investigation.
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P.; and Bengio, Y. 2018. Graph Attention Networks. In
ICLR.
Wong, K. Y.; Casey, R. G.; and Wahl, F. M. 1982. Document
analysis system. IBM journal of research and development
26(6): 647–656.
Xu, Y.; Li, M.; Cui, L.; Huang, S.; Wei, F.; and Zhou, M.
2020. LayoutLM: Pre-training of text and layout for docu-
ment image understanding. In ACM-SIGKDD, 1192–1200.
Yu, W.; Lu, N.; Qi, X.; Gong, P.; and Xiao, R. 2020. PICK:
Processing Key Information Extraction from Documents us-
ing Improved Graph Learning-Convolutional Networks. In
ICPR.
Zeiler, M. D. 2012. Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701 .
Zhang, P.; Xu, Y.; Cheng, Z.; Pu, S.; Lu, J.; Qiao, L.; Niu, Y.;
and Wu, F. 2020. TRIE: End-to-End Text Reading and Infor-
mation Extraction for Document Understanding. In ACM-
MM.
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level
convolutional networks for text classification. In NIPS, 649–
657.

2745


