Temporal Relational Modeling with Self-Supervision for Action Segmentation

Dong Wang, Di Hu, Xingjian Li, Dejing Dou

Abstract

Temporal relational modeling in video is essential for human action understanding, such as action recognition and action segmentation. Although Graph Convolution Networks (GCNs) have shown promising advantages in relation reasoning on many tasks, it is still a challenge to apply graph convolution networks on long video sequences effectively. The main reason is that large number of nodes (i.e., video frames) makes GCNs hard to capture and model temporal relations in videos. To tackle this problem, in this paper, we introduce an effective GCN module, Dilated Temporal Graph Reasoning Module (DTGRM), designed to model temporal relations and dependencies among actions in different timescales. Further, to enhance temporal reasoning ability of the proposed model, an auxiliary self-supervised task is proposed to encourage the dilated temporal graph reasoning module to find and correct wrong temporal relations in videos. Our DTGRM model outperforms state-of-the-art action segmentation models on three challenging datasets: 50Salads, Georgia Tech Egocentric Activities (GTEA), and the Breakfast dataset. The code is available at https://github.com/redwang/DTGRM.

Introduction

Action understanding and prediction are fundamental to accomplishing effective communication and interaction between human beings. And the ability to reasoning the temporal relations between actions over time is crucial for human action understanding in daily life. Therefore, temporal relational reasoning in videos is of significant importance for action understanding algorithms, which is the key component in many artificial intelligence systems, such as robot vision (Krüger et al. 2007; Koppula and Saxena 2015), intelligent surveillance (Danafar and Gheissari 2007), and autonomous vehicles (Rasouli and Tsotsos 2019; Sadigh et al. 2016).

Video-based action segmentation (Fathi, Farhadi, and Rehg 2011; Fathi and Rehg 2013; Kuehne, Gall, and Serre 2016; Lea et al. 2016, 2017) is the core task for human action understanding, which aims at temporally locating and recognizing human action segments (constituting by consecutive frames with same action labels) in long untrimmed videos, and is much more difficult than action recognition task. The temporal relations between sequential human actions play an important role in action segmentation, because the sequential human actions in daily life always constitute one meaningful event (e.g., making breakfast contains making salad, toasting bread, drinking milk, and etc.).

The topic of action segmentation has been studied by many researchers in the computer vision field. Earlier approaches (Rohrbach et al. 2012; Karaman, Seidenari, and Del Bimbo 2014; Cheng et al. 2014) tried to improve the discriminability of the representations of single frame or video clip and predicted the action label based on learned representations, ignoring the temporal relations between actions. Segmental models (Pirsiavash and Ramanan 2014; Lea et al. 2016) and recurrent networks (Huang, Fei-Fei, and Niebles 2016; Singh et al. 2016) paid attention to local temporal dependencies between consecutive actions in videos, and have been demonstrated to have difficulty in modeling long-range temporal relations. Recently, GCNs (Huang, Sugano, and Sato 2020) were introduced to improve action segmentation results via modeling temporal relations between precomputed action segments, while it still focused on the temporal relations among local consecutive action segments. In fact, temporal relations in various timescales (i.e., short-term and long-term timescales) are all of importance to infer action label of each frame. For example, when cooking, people usually first turn on the rice cooker, then cut vegetables and stir fry a few dishes, and at last turn on the rice cooker. There are temporal relations occurring on different timescales, e.g., turn on/off rice cooker, cut different vegetables for one dish, cut and stir fry actions for one dish. Therefore, capturing and modeling temporal relations in various timescales effectively are at the core of action segmentation and remain difficult for existing methods.

In this work, we propose a Dilated Temporal Graph Reasoning Module (DTGRM) to capture and model the temporal relations and dependencies among actions in different timescales. Further, to enhance temporal reasoning ability of the proposed model, an auxiliary self-supervised task is introduced to identify the wrong-ordered frames in video and predict the correct action labels for them. Specifically, we...
construct multi-level dilated temporal graphs to effectively capture temporal relations in different timescales, and conduct temporal relational reasoning on the dilated temporal graphs with two complementary edge weights. In the multi-level dilated temporal graphs, we view each video frame as a graph node and update the frame-wise feature representations via the proposed dilated graph reasoning module. Moreover, the auxiliary self-supervision signals are automatically generated by randomly exchanging a fraction of frames in video. By jointly optimizing the auxiliary self-supervised objective function and traditional classification loss function (i.e., cross-entropy loss), the proposed model can effectively learn temporal relations of actions from different time spans, resulting in an improvement on the action segmentation predictions.

The proposed model is evaluated on three challenging benchmark datasets. The experimental results demonstrate the proposed DTGRM is capable of capturing temporal actions and dependencies between video frames in different timescales. Especially, the proposed model outperforms the state-of-the-arts on structure evaluation metrics, i.e., segmental edit score and segmental overlap F1 score. To summarize, the main contributions of this work include:

- The proposed DTGRM construct multi-level dilated temporal graphs on video frames to effectively model temporal relations in various timescales, and compute two complementary edge weights to conduct temporal relational reasoning with GCNs.
- An auxiliary self-supervised task is proposed to enforce the proposed model focus on temporal relational reasoning, which improves the accuracy of the prediction and alleviates the over-fitting problem.
- Experiments on multiple benchmark datasets demonstrate the effectiveness of the proposed DTGRM for addressing action segmentation task.

Related Work

Action Segmentation Action segmentation aims at temporally locating and recognizing multiple action segments in long untrimmed videos. To address this problem, earlier approaches (Rohrbach et al. 2012; Karaman, Seidenari, and Del Bimbo 2014) employed the temporal sliding windows to detect the action segments with different lengths. Fathi et al. (Fathi, Farhadi, and Rehg 2011; Fathi, Ren, and Rehg 2011; Fathi and Rehg 2013) attempted to use a segmental model to predict the temporally consistent action segments. Cheng et al. (Cheng et al. 2014) adopted a hierarchical Bayesian non-parametric model to model the temporal dependency between action segments. However, the optimization of these temporal models are mostly time-consuming.

Other approaches tried to accomplish action segmentation task by predicting action label for every frame in the video. Lea et al. (Lea et al. 2017) first proposed to use temporal convolution networks (TCN) to predict frame-wise action labels. Lei and Todorovic (Lei and Todorovic 2018) further proposed deformable temporal convolutions equipped with residual connections to replace the regular temporal convolutions. In addition, Farha et al. (Farha and Gall 2019) proposed to use dilated TCN to model the long-range temporal dependencies in videos, and refine the prediction via a multi-stage framework. Recently, Huang et al. (Huang, Sugano, and Sato 2020) exploited the temporal relations among multiple action segments with graph convolution networks. However, this method constructed the graph by viewing single action segment from backbone model as one node in graph, which may be very noisy for modeling temporal relations since the prediction from backbone model are mostly inaccurate, resulting in inefficient optimization for GCNs.

Relational Reasoning with GCNs The graph convolution network (GCN) was proposed by Kipf et al. (Kipf and Welling 2017) and has been proved to be effective in modeling the relations in data (Li and Gupta 2018; Liang et al. 2018). Recently, GCNs have been widely applied to several research topic in computer vision filed, such as person re-identification (Shen et al. 2018), skeleton-based action recognition (Yan, Xiong, and Lin 2018) and video action recognition and detection (Wang and Gupta 2018; Zhang et al. 2020, 2019; Zeng et al. 2019). For instance, Zeng et al. (Zeng et al. 2019) proposed to exploit the temporal action proposal-proposal relations using graph convolutional networks. Huang et al. (Huang, Sugano, and Sato 2020) improved action segmentation result via modeling temporal relations with GCNs. However, these methods constructed relative small graph based on pre-computed proposals or predicted segments rather than frames. As we all know, the pre-computed proposals and predicted segments are mostly inaccurate and the constructed graphs are noisy. To avoid this problem, in this work, we construct the graphs upon individual frames to achieve more effective relation reasoning.

Self-Supervision for Video Representation The self-supervised pre-trained models and auxiliary self-supervision signals have been proved to be beneficial to many computer vision tasks (Doersch, Gupta, and Efros 2015; Girardis, Singh, and Komodakis 2018; Hu, Nie, and Li 2018; Hu et al. 2020). For learning effective video representations with self-supervision, several methods (Misra, Zitnick, and Hebert 2016; Lee et al. 2017; Fernando et al. 2017) designed auxiliary tasks to verify the input short video clips (i.e., several seconds) is in the correct order or not. These pre-trained models were usually fine-tuned to recognize action on short trimmed videos, while the self-supervised task in this work is specifically designed for action segmentation in long untrimmed videos.

Our Approach

We introduce a dilated temporal graph reasoning module (DTGRM) for capturing temporal relations from various timescales in videos, which is essential for the action segmentation task. Given a video of a total \(T \) frames, the action segmentation methods need to infer the action class label for each frame \(c_{1:T} = (c_1, ..., c_T) \), whose ground-truth is given by \(y_{1:T} = (y_1^g, ..., y_T^g) \), where \(y_t^g \in \{0, 1\}^C \) is a one-hot vector indicating the true action label. \(C \) is the number of action classes including the background class (i.e., no action). Our DTGRM is used to refine the predicted result in an iterative manner, which is built upon a backbone prediction.
model. In the rest of this section, we first give an overview of the proposed model. Then, the details of our DTGRM and auxiliary self-supervised task are carefully explained.

Overview
The architecture of the proposed model is illustrated in Fig. 1. We take the dilated TCN in MS-TCN (Farha and Gall 2019) as the backbone model. The backbone model takes frame-wise feature representations $x_{1:T} = (x_1, ..., x_T)$, which are extracted using pre-trained 3D network (Carreira and Zisserman 2017), and outputs the predicted action class likelihoods $y_{1:T} = (y_1, ..., y_T)$, where $y_t \in \mathbb{R}^C$ are obtained through softmax function. The prediction $y_{1:T}$ is the only input to our DTGRM, which refines the input prediction with GCNs by modeling temporal relations between actions. In addition, inspired by the success on multi-stage refinement (Farha and Gall 2019) in action segmentation, we also iteratively refine the prediction using our DTGRM S times to obtain the final prediction result.

In the proposed DTGRM, we view each frame in video as one node and construct multi-level dilated temporal graphs on frames to capture temporal relations in various timescales. Along the constructed multi-level graphs, DTGRM stacks K Dilated Residual Graph Convolution layer (DRGC layer) to conduct temporal relational reasoning on various timescales. Specifically, for each frame in video at each level, we construct two graphs, called S-Graph and L-Graph, on its dilated neighborhood frames. The dilation factor is increasing exponentially while stacking DRGC layers in DTGRM. Note that the edges of dilated graphs represent the relations between frames from various timescales. In the following, a graph with N nodes in GCNs are denoted as $\mathcal{G}(\mathcal{V}, \mathcal{E})$, where \mathcal{V} is the set of the node v_i and $e(i, j) \in \mathcal{E}$ represents the edge weight between node v_i and v_j.

Moreover, the over-segmentation problem (Lea, Vidal, and Hager 2016) is one of the key factors affecting action segmentation accuracy. To reduce over-segmentation errors in action segmentation results, we introduce an auxiliary self-supervised task to simulate the over-segmentation errors manually. In detail, we first random choose some frames from videos and pairwise exchange them. The goal of the self-supervised task is to identify the exchanged frame and predict the correct action label by temporal relational reasoning in various timescales.

Dilated Temporal Graph Reasoning Module
GCNs have shown promising ability on relational reasoning (Chen et al. 2019; Hussein, Gavves, and Smeulders 2019; Zeng et al. 2019). The key step in GCNs is to construct the graphs and compute the edge weights. Previous works usually construct graphs based on action proposals or action segments, which are pre-computed by other models and mostly inaccurate. In contrast, we directly construct graphs on frames and address large graph problem with the proposed multi-level dilated temporal graphs.

Multi-Level Dilated Temporal Graphs
Temporal relations from various time spans are very useful to infer action label on single frame, i.e., successive frames always belong to the same action class and long-range temporal relations always capture the relationship between different action classes. But, it is hard to train and optimize GCNs with one large graph containing all frames (i.e., nodes) in videos. To address this problem, we propose to construct multi-level dilated temporal graphs to capture temporal relations between all the frames in videos.

Suppose we have a total of T frames in video and the dilated temporal graphs at k-th level are constructed based on dilation factor τ_k. To be specific, for the frame at timestep t, its dilated neighborhood frames is $\{t - \tau_k, t + \tau_k\}$. Then, the frames at time $\{t - \tau_k, t + \tau_k\}$ are viewed as nodes and the dilated temporal graph \mathcal{G}_k^t is constructed upon them. We denote the order of the graph (its number of vertices) as \mathcal{O}_k^t, i.e., $\mathcal{O}_k^t = 3$. As shown in Fig. 1, to capture temporal relations in various time spans, we construct K levels

![Figure 1: The pipeline of the proposed DTGRM model. The frame-wise features are fed into the backbone model, and the action segmentation results are refined by our DTGRM model. Note that the dilated factor τ is doubled at each level in DTGRM. L_{seg} and L_{self} represent the action segmentation loss and auxiliary self-supervision loss respectively.](image)
of dilated temporal graphs and apply the proposed DRGC layer at each level, where the dilation factor τ_k is doubled at each level, i.e., $\tau_k = 2^{k-1}, \forall k \in \{1,2,\ldots,K\}$. Note that all the dilated temporal graphs contain three nodes (i.e., node $v_{l+i}, v_{l}, v_{l+i+k}$). At k-th level, to alleviate the noise problem in single constructed graph, we compute two complementary edge weights for dilated temporal graph $G_t^{(k)}$ and name them as S-Graph $G_t^{s,(k)}$ and L-Graph $G_t^{l,(k)}$.

S-Graph The motivation of constructing S-Graph (Similarity Graph) $G_t^{s,(k)}$ is that the nodes with similar action class likelihoods y should have larger edge weights. Therefore, we first apply one 1×1 convolution layer to transfer action class likelihoods $y \in \mathbb{R}^{C \times T}$ into d-dimensional hidden representations $h_{1:T} = (h_1, \ldots, h_T)$. Then, for S-Graph $G_t^{s,(k)}$, the edge weight $e_s(i, j)$ between node v_i and v_j are defined by the cosine similarity between their hidden representations h_i, h_j, i.e.,

$$e_s(i, j) = \frac{h_i \cdot h_j}{\max(\|h_i\|_2, \|h_j\|_2, \epsilon)}, \quad (1)$$

where ϵ is a small constant avoiding divide-by-zero. We gather all edge weights in $G_t^{s,(k)}$ to an adjacency matrix $A_t^{s,(k)}$. The graph convolution operation is used to update the hidden representation h_i of each frame according to its S-Graph $G_t^{s,(k)}$ at each DRGC layer.

L-Graph Since there are mostly some wrong predictions in action class likelihood y that make the edge weight $e_s(i, j)$ inaccurate, we propose to construct L-Graph (Learned Graph) $G_t^{l,(k)}$ whose edge weights are generated by one sub-network, which can capture the important temporal relations that are complementary to S-Graph after training. Specifically, we apply one dilated 1D convolution on hidden representations $h_{1:T}$, and the dilation factor of this 1D convolution layer equals to corresponding dilated temporal graph, i.e., dilation $= \tau_k$. The outputs of this layer is the adjacency matrix of graph $G_t^{l,(k)}$, where the value with index i, j represent the edge weight between node v_i and v_j. Formally, the adjacency matrix $A_t^{l,(k)}$ of the graph $G_t^{l,(k)}$ are defined as

$$A_t^{l,(k)} = \text{Conv}(h[t-\tau_k, t, t+\tau_k], W, \text{dilation} = \tau_k), \quad (2)$$

where $W \in \mathbb{R}^{k \times (O_t \times O_t) \times d}$ are the weights of the dilated convolution filter with kernel size $ks = 3$. $O_t = 3$ is the number of vertices of the graph $G_t^{l,(k)}$. The output $A_t^{l,(k)}$ is an $O_t \times O_t$-dimensional vector and reshaped to the adjacency matrix with size (O_t, O_t). Note that the adjacency matrix $A_t^{l,(k)}$ is asymmetric.

Reasoning on Dilated Temporal Graph Given the constructed dilated temporal graphs at each frame t and level k, $G_t^{s,(k)}$ and $G_t^{l,(k)}$, we apply the proposed DRGC layer on them to conduct temporal relational reasoning in various timescales. To be specific, we first normalize the adjacency matrices $A_t^{s,(k)}$ and $A_t^{l,(k)}$ with softmax function. Then, for relational reasoning on constructed graphs, our DRGC layers employ the graph convolution layer proposed in (Kipf and Welling 2017):

$$X = \sigma(AXW), \quad (3)$$

where $A \in \mathbb{R}^{N \times N}$ is the adjacency matrix of the graph, $X \in \mathbb{R}^{N \times d}$ are the hidden representation of all nodes in the graph, and $W \in \mathbb{R}^{d \times d}$ is the parameter matrix to be learned. σ is the ReLU activation function.

Based on the graph convolution layer and constructed dilated temporal graphs, our DTGRMs stacks K-level DRGC layers to model temporal relations in various timescales. Specifically, at k-th DRGC layer ($k \in \{0, 1, \ldots, K-1\}$), the dilated temporal graphs are constructed with dilation factor $\tau = 2^k$. As illustrated in Fig. 1, at t-th frame, we first separately apply graph convolution on $G_t^{s,(k)}$ and $G_t^{l,(k)}$, and then fuse their output with addition operation, i.e.,

$$X_t = h_t^{(k)} + O_t^{(k)} = \text{GCN}(X_t, A_t^{s,(k)}, W_t^{s,(k)}) + \text{GCN}(X_t, A_t^{l,(k)}, W_t^{l,(k)}), \quad (4)$$

where GCN is the graph convolution operation defined in Eq. 3. $A_t^{s,(k)}, A_t^{l,(k)} \in \mathbb{R}^{N \times N}$ are the adjacency matrix of the graph $G_t^{s,(k)}$ and $G_t^{l,(k)}$, $W_t^{s,(k)}, W_t^{l,(k)} \in \mathbb{R}^{d \times d}$ are the parameter matrix of the graph convolution layer for t-th frame at k-th layer. $W_t^{(k)} \in \mathbb{R}^{1 \times d \times d}$ is the weights of the 1D convolution filter with kernel size 1, which is shared with each timestep in video. With stacking the DRGC layer K times, our DTGRMs can efficiently capture short and long-range temporal relations in videos and avoid the large graph problem. In this way, our DTGRMs conduct temporal real-valued reasoning in various timescales, which is essential for action segmentation.

To get the action class likelihoods $y_{1:T}$ for each frame, we apply a fully-connected layer over the outputs of the last DRGC layer followed by a softmax activation, i.e.,

$$y_{1:T} = \text{softmax}(W h_{1:T}^{(K)} + b), \quad (5)$$

Where $W \in \mathbb{R}^{C \times d}$ and $b \in \mathbb{R}^C$ are the weights and bias for the FC layer. $h_{1:T}^{(K)}$ is the output of the K-th DRGC layer.

Auxiliary Self-Supervision Self-supervision signals have been used for video representation learning (Misra, Zitnick, and Hebert 2016; Lee et al. 2017; Fernando et al. 2017; Korbar, Tran, and Torresani 2018) and improved the downstream tasks, such as action recognition and action detection. Compared to supervised learning methods, self-supervised methods automatically generate the supervisory signals (i.e., pseudo label) that are inferred from the structure of the data, without involving any human annotation. In this work, different from previous works that only provide the self-supervision signals
on video-level, we obtain the frame-wise self-supervision signals in the context of the pairwise exchanging frames in video, which simulates the over-segmentation errors in the action segmentation results.

Specifically, given the input video sequence $x_{1:T} = (x_1, \ldots, x_T)$ with correct temporal order. We select $\eta\%$ frames and randomly form them as frame pairs $\{x_i, x_j\}$, then the frames in each pair are exchanged. The resulting video sequence $x'_{1:T} = (\ldots, x_j, \ldots, x_i, \ldots)$ contains some wrong ordered frame and is fed into the proposed model along with original video sequence $x_{1:T}$. The outputs corresponding to $x'_{1:T}$ consist of action class likelihoods $y^x_{1:T}$ and exchange likelihood $e^x_{1:T}$, which are obtained by feeding the hidden representation $h^x_{1:T}$ into a fully-connected layer. The goal of the auxiliary self-supervised task is to identify the exchanged frames and predict the correct action labels that should be at their moments. Formally, we generate a binary self-supervised signal $p_{1:T} = (p_1, \ldots, p_T)$ to label the exchanged frames, where $p_t \in \{0, 1\}^2$ is the one-hot vector indicating whether t-th frame is exchanged or not. Moreover, exchanged frames are the prefect simulation of the over-segmentation errors in action segmentation task. Therefore, except the binary training label $p_{1:T}$, we directly take the ordered ground-truth action label $y^{gt}_{1:T}$ as another training label. The overall loss function of self-supervision is

$$L_{self} = L_{ex}(e^x, p) + L_{corr}(y^x, y^{gt}),$$

(6)

where $e^x \in \mathbb{R}^{T \times 2}$ and $y^x \in \mathbb{R}^{T \times C}$ (for simplicity, we drop the timestep notation). With the above self-supervised objective function, our DTGRM learns to do accurate temporal relational reasoning about the temporal relation structure, leading to better action segmentation results.

Training and Loss Function

We train the backbone model and our DTGRM in an end-to-end manner with a combination of the multiple loss functions. The inputs of the whole network is the ordered video sequence $x_{1:T}$ and exchanged video sequence $x'_{1:T}$, and the outputs is the action class likelihood $y_{1:T}$, $y^{gt}_{1:T}$ and exchange likelihood $e^x_{1:T}$. As for the action class likelihood $y_{1:T}$ and $y^{gt}_{1:T}$, we apply the typical cross entropy loss

$$L_{cls}(y, y^{gt}) = \frac{1}{T} \sum_{t} \sum_{c} -y^{gt}_{t,c} \log(y_{t,c}).$$

(7)

And we adopt the truncated mean squared error L_{t-mse} proposed in (Farha and Gall 2019) to punish local inconsistency in action class likelihood. Based on these loss functions, the action segmentation loss for ordered video sequence and auxiliary self-supervised task loss function are defined as follows,

$$L_{seg} = L_{cls}(y, y^{gt}) + \omega L_{t-mse},$$

$$L_{ex}(e^x, p) = \lambda_e L_{cls}(e^x, p),$$

$$L_{corr}(y^x, y^{gt}) = \lambda_c L_{cls}(y^x, y^{gt}) + \omega L_{t-mse},$$

$$L = L_{seg} + L_{self},$$

(8)

where $\omega, \lambda_e, \lambda_c$ are hyper-parameters that balance the components in loss function. Since we apply our DTGRM S times sequentially, the loss function L is applied on the outputs from the each DTGRM and backbone model.

Experiments

Implementation Details The whole model proposed in this paper consists of one backbone network and three DTGRMs (i.e., $S = 3$) that are implemented with Pytorch library on Nvidia 2080Ti GPU. We set the dimension of hidden representation d as 64 for backbone network and our DTGRMs. The proposed DTGRM constructs $K = 10$ dilated temporal graphs and apply DRGC layer on each level, where the dilation factor is doubled at each level. For hyperparameter η in auxiliary self-supervised task, we set it as $\eta = 20$. For the loss function, we set $\omega = 0.15, \lambda_e = 2$ and $\lambda_c = 0.5$. In all experiments, the network is trained using Adam optimizer with a learning rate of 5e-4.

Datasets The 50Salads (Stein and McKenna 2013) dataset consists of 50 videos of 17 action classes, which averagely contains 20 action instances and is 6.4 minutes long. The videos capture the salad preparation activities performed by 25 actors where each actor prepares two different salads. The GTEA (Fathi, Ren, and Rehg 2011) dataset contains 28 videos with 7 different activities performed by 4 subjects, such as preparing coffee and cheese sandwich. Each video is annotated with 11 fine-grained action classes and averagely has 20 action instances. The Breakfast (Kuehne, Arslan, and Serre 2014) dataset is the largest among the three datasets with 1712 videos, recording the breakfast related activities in 18 different kitchens. The videos are annotated with 48 different actions and contain 6 action instances on average. In all datasets, we sample the videos with fixed fps rather than fixed number of frames and extract I3D (Carreira and Zisserman 2017) features for the video frames, which are input to the proposed model.

Evaluation Metrics For evaluating our model, we adopt the following evaluation metrics as in (Lea et al. 2017; Farha and Gall 2019; Huang, Sugano, and Sato 2020): frame-wise accuracy (Acc), segmental edit distance (Edit) and segmental F1 score at overlapping thresholds 10%, 25% and 50%, denoted by F1@\{10,25,50\}. The overlapping ratio is the intersection over union (IoU) ratio between predicted and ground-truth action segments. Frame-wise accuracy is the most commonly used metric for action segmentation. However, actions with long duration tend to have a higher impact than actions with short duration on this metric, and there is no explicit penalty on over-segmentation errors. In contrast, segmental edit score and F1 score presented in (Lea et al. 2017, 2016) are used to penalizes the over-segmentation errors and measure the quality of the prediction.

Comparison with the State-of-the-Art

In this section, we compare the proposed model with several state-of-the-art models on three datasets: 50Salads, GTEA, and the Breakfast dataset. The results are presented in Table 1. Specifically, the comparison methods consists of five closely related state-of-the-art models, including MSTCN (Farha and Gall 2019), MSTCN++(Li et al.
MSTCN++ and MDTA are the extended works of MSTCN. BCN improves the smoothness of frame-wise predictions by cooperating action boundary information. MSTCN+GTRM is the most related to our models, where the GCNs are used to model relations between action segments upon the results of MSTCN model.

As can be seen in Table 1, the proposed DTGRM model outperforms the baseline method MSTCN on the three datasets and by a large margin with respect to three evaluation metrics. Specifically, our DTGRM model achieves a moderate improvement on 50Salads and GTEA dataset, i.e., around 2-5% in all evaluation metrics, except the frame-wise accuracy on the 50salads. As for the Breakfast dataset, our approach outperforms MSTCN and MSTCN+GTRM with a larger margin, i.e., near 10% improvement on F1 score and segmental edit score. This shows that our DTGRM is capable of reducing over-segmentation errors in prediction. In addition, the improvements over MSTCN demonstrate that dilated temporal convolution in MSTCN is inefficient in temporal relations reasoning.

Ablation Studies

The Effectiveness of DTGRM model

To verify the effect of each constructed graph in our DTGRM, we conduct ablation studies by changing or deleting part of DRGC layer in our DTGRM. All these models are implemented based on the same backbone model and trained without auxiliary self-supervision on GTEA dataset. As shown in upper part of Table 2, “DTCN” is the case where GCNs in DRGC layers are replaced by the dilated temporal convolution layer presented in (Farha and Gall 2019). Our DTGRM outperforms this approach by 1-3% in all metrics, which validates that our method can effectively capture temporal relations from various time spans to improve action segmentation. “S-Graph” indicates the model that only applies GCNs on S-Graph while ignoring the L-Graph. The results of this model suggest that the S-Graph may be very noisy due to the errors in prediction from backbone model. “L-Graph” represents the model that only applies GCNs on L-Graph while ignoring the S-Graph and achieves comparable performance, which shows the learned graph weights are more appropriate and useful to capture the temporal relations in videos. In addition, we compare the results from backbone model (denoted as “BK”) and models with different number of DTGRMs (denoted as “BK+*-DTGRM”) that are trained with auxiliary self-supervision on 50Salads dataset. As shown in middle part of Table 2, the performance is significantly improved after using only one DTGRM and stacking more DTGRMs can improve the predictions performance on segmental edit distance and segmental F1 score progressively, which demonstrates the effectiveness of our DTGRM on improving the quality of the predictions. The results on Breakfast dataset also prove the effectiveness of the proposed method.

The Effectiveness of Auxiliary Self-Supervision

To demonstrate the necessity and superiority of the auxiliary self-supervision signals, we report the performance of our DTGRM model and its variants with or without auxiliary self-supervision signal during training stage on 50Salads dataset. As we can see in Table 3, the models trained with self-supervision signals outperforms their duplicates, which are trained only with ground-truth action segmentation labels. Specifically, the “S-Graph” performs very bad because the constructed S-Graph usually is very noisy, while its performance is improved by a large margin after trained with

<table>
<thead>
<tr>
<th>50Salads</th>
<th>F1@{10,25,50}</th>
<th>Edit Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTCN</td>
<td>76.3 74.0 64.5</td>
<td>67.9 80.7</td>
</tr>
<tr>
<td>MSTCN++</td>
<td>80.7 78.5 70.1</td>
<td>74.3 83.7</td>
</tr>
<tr>
<td>BCN</td>
<td>82.3 81.3 74.0</td>
<td>74.3 84.4</td>
</tr>
<tr>
<td>MSTCN+GTRM</td>
<td>75.4 72.8 63.9</td>
<td>67.5 82.6</td>
</tr>
<tr>
<td>DTGRM</td>
<td>79.1 75.9 66.1</td>
<td>72.0 80.0</td>
</tr>
<tr>
<td>GTEA</td>
<td>F1@{10,25,50}</td>
<td>Edit Acc</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>MSTCN</td>
<td>85.8 83.4 69.8</td>
<td>79.0 76.3</td>
</tr>
<tr>
<td>MSTCN++</td>
<td>88.8 85.7 76.0</td>
<td>83.5 80.1</td>
</tr>
<tr>
<td>BCN</td>
<td>88.5 87.1 77.3</td>
<td>84.4 79.8</td>
</tr>
<tr>
<td>MTDA</td>
<td>82.0 80.1 72.5</td>
<td>75.2 83.2</td>
</tr>
<tr>
<td>DTGRM</td>
<td>87.8 86.6 72.9</td>
<td>83.0 77.6</td>
</tr>
<tr>
<td>Breakfast</td>
<td>F1@{10,25,50}</td>
<td>Edit Acc</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>MSTCN</td>
<td>52.6 48.1 37.9</td>
<td>61.7 66.3</td>
</tr>
<tr>
<td>MSTCN++</td>
<td>64.1 58.6 45.9</td>
<td>65.6 67.6</td>
</tr>
<tr>
<td>BCN</td>
<td>68.7 65.5 55.0</td>
<td>66.2 70.4</td>
</tr>
<tr>
<td>MSTCN+GTRM</td>
<td>57.5 54.0 43.3</td>
<td>58.7 65.0</td>
</tr>
<tr>
<td>DTGRM</td>
<td>68.7 61.9 46.6</td>
<td>68.9 68.3</td>
</tr>
</tbody>
</table>

Table 1: Comparisons with the state-of-the-art methods on 50Salads, GTEA, and the Breakfast dataset.

<table>
<thead>
<tr>
<th>GTEA</th>
<th>F1@{10,25,50}</th>
<th>Edit Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTCN</td>
<td>85.8 83.4 69.8</td>
<td>79.0 76.3</td>
</tr>
<tr>
<td>DTCN</td>
<td>86.3 83.6 70.6</td>
<td>80.8 76.1</td>
</tr>
<tr>
<td>S-Graph</td>
<td>48.2 44.9 37.4</td>
<td>38.4 71.3</td>
</tr>
<tr>
<td>L-Graph</td>
<td>85.6 83.7 70.3</td>
<td>78.8 76.4</td>
</tr>
<tr>
<td>DTGRM(w/o self)</td>
<td>87.3 85.5 72.3</td>
<td>80.7 77.5</td>
</tr>
<tr>
<td>50Salads</td>
<td>F1@{10,25,50}</td>
<td>Edit Acc</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>MSTCN(IDT)</td>
<td>58.2 52.9 40.8</td>
<td>61.4 65.1</td>
</tr>
<tr>
<td>S-Graph(w/ self)</td>
<td>49.6 43.7 31.9</td>
<td>54.6 66.3</td>
</tr>
<tr>
<td>L-Graph(w/ self)</td>
<td>67.5 60.7 45.3</td>
<td>68.2 68.0</td>
</tr>
<tr>
<td>DTGRM</td>
<td>68.7 61.9 46.6</td>
<td>68.9 68.3</td>
</tr>
</tbody>
</table>

Table 2: Comparisons of performance by our DTGRM and its variants on the GTEA, 50 Salads and Breakfast dataset.
self-supervision task. As shown in Table 4, increasing \(\eta \) from 5 to 20 significantly improves the performance. This is mainly because the exchanged frames perfectly simulate the over-segmentation errors and make the model explicitly penalizes them. However, when there are too many exchanged frames (i.e., \(\eta = 30 \)), the model performs worse since the correct temporal relations in video have been disturbed heavily.

Conclusion

In this paper, we propose to model the short and long-range temporal relations in action segmentation. We construct multi-level dilated temporal graphs to capture the temporal relations in various time spans and propose DRGC layers to perform relational reasoning. Further, an auxiliary self-supervision is introduced to explicitly simulate the over-segmentation errors in predictions. Extensive experiments showed that our model can effectively conduct temporal relational reasoning in different timescales, and outperform the state-of-the-art methods on three challenging datasets.
Acknowledgments
This work was supported in part by the Beijing Outstanding Young Scientist Program NO. BJJWZYJH012019100020098, the Fundamental Research Funds for the Central Universities, the Research Funds of Renmin University of China, and Public Computing Cloud, Renmin University of China.

References

