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Abstract

Existing datasets for training pedestrian detectors in images
suffer from limited appearance and pose variation. The most
challenging scenarios are rarely included because they are too
difficult to capture due to safety reasons, or they are very un-
likely to happen. The strict safety requirements in assisted
and autonomous driving applications call for an extra high
detection accuracy also in these rare situations. Having the
ability to generate people images in arbitrary poses, with ar-
bitrary appearances and embedded in different background
scenes with varying illumination and weather conditions, is
a crucial component for the development and testing of such
applications. The contributions of this paper are three-fold.
First, we describe an augmentation method for the controlled
synthesis of urban scenes containing people, thus producing
rare or never-seen situations. This is achieved with a data gen-
erator (called DummyNet) with disentangled control of the
pose, the appearance, and the target background scene. Sec-
ond, the proposed generator relies on novel network architec-
ture and associated loss that takes into account the segmen-
tation of the foreground person and its composition into the
background scene. Finally, we demonstrate that the data gen-
erated by our DummyNet improve the performance of sev-
eral existing person detectors across various datasets as well
as in challenging situations, such as night-time conditions,
where only a limited amount of training data is available. In
the setup with only day-time data available, we improve the
night-time detector by 17% log-average miss rate over the
detector trained with the day-time data only.

1 Introduction
A high-quality dataset is a crucial element for every system
using statistical machine learning and should represent the
target scenarios. Usually, however, we do not have access to
such high-quality data due to limited resources for capture
and annotation or the inability to identify all the aspects of
the target use-case in advance. A key challenge is to cover all
the corner-case scenarios that might arise to train and deploy
a reliable model.

Dataset diversity is crucial for the automotive industry,
where handling highly complex situations in a wide variety
of conditions (weather, time of day, visibility, etc.) is neces-
sary given the strict safety requirements. Our goal is to ad-
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dress these requirements and enable a controlled augmenta-
tion of datasets for pedestrian detection in urban settings for
automotive applications. While we focus here only on train-
ing dataset augmentation as a first, crucial step, the approach
also aims at generating data for the system validation. Vali-
dation on such augmented data could complement track tests
with dummy dolls of unrealistic appearance, pose, and mo-
tion, which are the current industry standard (Fig. 1). By
analogy, we named our system DummyNet after this iconic
doll that replaces real humans.

The key challenge in automotive dataset augmentation is
to enable sufficient control over the generated distributions
via input parameters that describe important corner cases
and missing situations. In this work, we take a step in that di-
rection and develop a method for controlled augmentation of
person datasets, where people with adjustable pose and ap-
pearance are synthesized into real urban backgrounds in var-
ious conditions. This is achieved by a new Generative Ad-
versarial Network (GAN) architecture, coined DummyNet,
which takes as input the desired person pose, specified by
skeleton keypoints, the desired appearance, specified by an
input image, and a target background scene. See the image
synthesis diagram in Fig. 2. The output of DummyNet is the
given background scene containing the pedestrian with tar-
get pose and appearance composited into one image.

We demonstrate that augmenting training data in this way
improves person detection performance, especially in low-
data regimes where the number of real training examples
is small or when the training and target testing distribu-
tions differ (e.g., day/night). The basic assumption of match-
ing training and testing distributions is typically not satis-
fied when developing real detection systems (e.g., different
country, time of day, weather, etc.). Our method allows for
adapting the model to known or estimated target (real world)
distribution via controlled augmentation of the training data.

Contributions. Our contributions are three-fold: (1) we
develop an approach (DummyNet) for controlled data aug-
mentation for person detection in automotive scenarios that
enables independent control of the person’s pose, appear-
ance and the background scene; (2) the approach relies on
a novel architecture and associated appearance loss that
take into account the segmentation of the foreground pedes-
trian and its composition into the background scene. (3) we
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Figure 1: Left: Testing emergency breaking with a standard pedestrian dummy with a fixed pose and unified clothing. Right:
Illustration of the improved performance of state-of-the-art person detector (“Center-and-Scale-Prediction”, CSP, (Liu et al.
2019b)) trained on a dataset set augmented with samples produced by our DummyNet generator. Top: full testing scene. Bot-
tom: close-ups. Detections (all correct) produced by both vanilla and DummyNet augmented CSP person detector are in blue.
Additional detections (all correct) produced only by the DummyNet augmented CSP detector are shown in green. Note that the
additional detections often correspond to hard occluded examples and are missed by the state-of-the-art CSP person detector.

demonstrate that the data generated by our DummyNet im-
prove several existing person detectors with different archi-
tectures on standard benchmarks, including both day-time
as well as challenging night-time conditions. In the setup
with only day-time data available, using our artificial data,
we improve the night-time detector by 17% LAMR over the
detector trained with the day-time data only. 1

2 Related Work and Positioning
Inserting humans. Inserting humans into a given scene is
an old problem in image editing and visual effects. There
are multiple good tools for image/video clipart (Lalonde
et al. 2007) and for producing high-quality images (Karsch
et al. 2011; Kholgade et al. 2014). However, such methods
are meant for interactive manipulation of individual pho-
tos/shots, not for an automatic, large-scale generation of
data. We do not necessarily need to generate high-quality
visual data since what matters is the usefulness of the gen-
erated data for improving the person detector performance.
There are several lines of work demonstrating improvements
in various recognition tasks, even with non-photorealistic
training data. The two prime examples are: (i) recent ad-
vances in domain randomization in robotics (Tobin et al.
2017; Loing, Marlet, and Aubry 2018) where object detec-
tors are trained using synthetic scenes with random fore-
ground and background textures, and (ii) optical flow esti-
mators trained using the flying chairs dataset (Dosovitskiy
et al. 2015), which pastes synthetically generated chairs onto
a random background images. We follow this line of work
and aim primarily at covering the different modes of appear-
ance variation (pose, clothing, background) rather than syn-
thesizing photorealistic outputs.

1Code is available at https://github.com/vobecant/DummyNet

Generative data augmentation. We build on Generative
Adversarial Networks (GANs) (Goodfellow 2016; Arjovsky,
Chintala, and Bottou 2017; Lin et al. 2018; Salimans et al.
2016; Dumoulin et al. 2016; Nowozin, Cseke, and Tomioka
2016; Xiao, Zhong, and Zheng 2018; Donahue, Krähenbühl,
and Darrell 2016; Radford, Metz, and Chintala 2015; Reed
et al. 2016; Metz et al. 2016), which have shown a great
progress recently in generating visual data (Mirza and Osin-
dero 2014; Wang et al. 2018; Isola et al. 2017; Zhu et al.
2017; Liu, Breuel, and Kautz 2017; Huang et al. 2018; Park
et al. 2019; Karras et al. 2018; Karras, Laine, and Aila 2019;
Shaham, Dekel, and Michaeli 2019). GANs have also been
useful for various forms of data augmentation, including (i)
adding synthetic samples to expand a training set of real ex-
amples (Dwibedi, Misra, and Hebert 2017); (ii) improving
the visual quality of synthetic samples generated via com-
puter graphics (Huang and Ramanan 2017); or (iii) generat-
ing variants of original real samples (Wang et al. 2018; Choi
et al. 2018; Pumarola et al. 2018). Recent progress in condi-
tional image generation has enabled the generation of plau-
sible images, and videos of never seen before humans (full
body and faces) (Wu et al. 2019b; Karras, Laine, and Aila
2019), but these methods generate full images and cannot in-
sert people into given backgrounds. Others have considered
re-animating (re-targeting, puppeteering) real people in real
scenes (Chan et al. 2019; Thies et al. 2016; Ma et al. 2017;
Dong et al. 2018; Balakrishnan et al. 2018). These methods
have demonstrated impressive visual results in image/video
editing set-ups but are not geared towards large-scale gen-
eration of training data. We build on this work and develop
an approach for disentangled and controlled augmentation
of training data in automotive settings, where in contrast to
previous work, our approach produces a full scene by ex-
plicitly estimating the foreground mask and compositing the
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pedestrian(s) into the background scene.

Synthesizing people. Other related methods, aiming to
synthesize images of people, typically use conditional
GANs. One line of work aims at changing the pose of a given
person or changing the viewpoint. This is achieved either by
using a two-stage approach consisting of pose integration
and image refinement (Ma et al. 2017), by performing the
warping of a given person image to a different pose with
a specially designed GAN architecture (Dong et al. 2018),
or by requiring segmentation of the conditional image into
several foreground layers (Balakrishnan et al. 2018). Some
works consider different factors of variation in person gen-
eration (Ma et al. 2018), but do not insert people into given
full scenes in automotive settings as we do in our work. Oth-
ers aim at changing only the pose (Balakrishnan et al. 2018;
Liu et al. 2019a; Siarohin et al. 2018) or viewpoint (Si et al.
2018) of a given person in a given image keeping the ap-
pearance (e.g., clothing) of the person and the background
scene fixed. In contrast, our model is designed to control
independently the person’s pose, appearance and the back-
ground scene.

The recent work (Wu et al. 2019a) uses as an input a sil-
houette (mask) sampled from an existing database of poses,
which limits the diversity of the generated outputs. Our ap-
proach uses a generative model for poses (represented as
keypoints), and we estimate the silhouette automatically.
This allows for more complete control and higher diversity
of output poses, including rare ones.

Others have also considered detailed 3D modeling of peo-
ple and the input scene (Zanfir et al. 2020), or modeling in-
dividual component attributes (e.g., mixing clothing items
such as shorts and a tank top from different input pho-
tographs (Men et al. 2020). While the outputs of these mod-
els are certainly impressive, their focus (and their evalua-
tion) is on generating visually pleasing fashion photographs
in, typically, indoor scenes with a limited variation of imag-
ing conditions. In contrast, our model does not require 3D
models of people or individual clothing attributes as input;
we focus on demonstrating improved person detection per-
formance in automotive settings and consider the appear-
ance, pose, and the background scene in a single data gen-
erator model, which allows us to handle scenes with widely
changing imaging conditions (e.g., day, night, snow).

The problem of enlarging the training dataset has been re-
cently explored in (Liu et al. 2019a) where the generative
model and a detector are optimized jointly, and in (Wu et al.
2019b) where a class-conditional GAN is used for synthesiz-
ing pedestrian instances. In contrast to these works, we train
the generator and classifier separately and focus on having
full control of generated person images as well as integration
into complete scenes.

Cut-and-paste data augmentation methods. Cut-and-
paste techniques can be also used to insert humans or objects
into the given background image either randomly (Dwibedi,
Misra, and Hebert 2017), ensuring a global visual consis-
tency (Georgakis et al. 2017; Lee et al. 2018), or using

3D human models (Varol et al. 2017; Chen et al. 2016;
Pishchulin et al. 2017; Zhou et al. 2010). The automotive
setting related to our work has been considered in (Huang
and Ramanan 2017), emphasizing the importance of detect-
ing corner cases such as people in rare poses, children play-
ing on the street, skateboarders, etc. To this end, the authors
have collected an annotated dataset of pedestrians in dan-
gerous scenarios obtained from a computer game engine.
Using straight-up computer graphics generated samples is
an approach parallel to ours. While it may offer higher im-
age quality, it struggles to capture the diversity of the real
world (e.g., texture, clothing, backgrounds) (Hattori et al.
2018; Marı́n et al. 2010) or require to control a lot of pre-
cise scene parameters (geometry, environment maps, light-
ing) and some user intervention (Alhaija et al. 2018).

3 Proposed Architecture and Loss
Our objective is the complete control of the target person’s
pose, appearance, and background. For example, suppose it
is difficult to collect large amounts of training data of people
in the night or snowy conditions, but “background” imagery
(with no or few people only) is available for these condi-
tions. Our approach allows synthesizing new scenes contain-
ing people with various poses and appearances embedded in
the night and snowy backgrounds.

To achieve that, we have developed DummyNet, a new
generative adversarial network architecture that takes the
person’s pose, appearance and target background as input
and generates the output scene containing the composited
person. Our approach has the following three main innova-
tions. First, the control is achieved by explicitly condition-
ing the generator on these three different inputs. Second, the
model automatically estimates a mask that separates the per-
son in the foreground from the background. The mask allows
focusing compute on the foreground or background pixels as
needed by the different components of the model and is also
used in calculating the loss function. Third, the architecture
is trained with a new loss ensuring better appearance control
of the inserted people. The overview of the entire approach
is shown in Fig. 2.

The rest of this section describes the individual compo-
nents of the model along with the three main areas of inno-
vation. Additional details of the architecture, including the
detailed diagrams of training and inference, as well as losses,
are in the supplementary material (Vobecký et al. 2020).

3.1 Controlling Pose, Appearance and
Background

As illustrated in Fig. 2, at inference time, the model takes
three inputs (green boxes) that influence the conditional gen-
erator: (i) person’s appearance (clothing, hair, etc.) is speci-
fied by an image sampled from a dataset of training images
containing people and encoded by an image encoder. (ii)
background scene (typically an urban landscape) is sampled
from a dataset of background scenes; finally, (iii) a person’s
keypoints are produced by a keypoint generator. The main
components of the architecture are described next.
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Figure 2: Augmenting training data with our DummyNet approach. The inputs are the desired pose (keypoints), desired pedes-
trian appearance (specified by an image), and the target background scene. The output is a scene with the composited pedestrian.
The DummyNet data generator (1) augments the training data (2), which leads to improved person detector performance (3).
The data generator box (1) displays the inference-time setup. For additional details, please see supp. mat. (Vobecký et al. 2020).

Conditional Generator. The generator takes as input the
latent person appearance code, the background scene (with
masked-out foreground pixels), and target keypoints in the
form of 17 individual-channel heatmaps, one for each key-
point. The keypoint representation allows for fine control
over the person’s pose, including the ability to distinguish
between frontal/back as well as left/right views, which
would not be possible when using a person mask only. Con-
ditioned on these inputs, the generator outputs an image
of a person placed into the given background image in the
pose given by the person keypoints and with the appear-
ance specified by the provided appearance code (latent vec-
tor). This latent vector is passed through a fully-connected
layer and further to the convolutional layers of the genera-
tor. The background image is concatenated with the keypoint
heatmaps and used as an additional input to the generator.
The generator architecture is based on residual blocks con-
taining SPatially-Adaptive (DE)normalization layers (Park
et al. 2019) and uses progressive growing. In each such
block, the keypoints and the background are injected into
the network through the SPADE layer. The corresponding
patch discriminator based on (Isola et al. 2017) is described
in the supplementary (Vobecký et al. 2020).

Person Appearance Encoder. We pre-train a variational
autoencoder (VAE) separately from DummyNet. During
DummyNet training, we use the encoder part of this VAE as
a person appearance encoder. Its architecture comprises con-
volutional layers that take as input a 64×64 px person image
with masked-out background and produce a latent vector en-
coding the appearance.

Keypoint Generator. The keypoint generator was created
from the OpenPose (Cao et al. 2018) training set via view-
point and pose clustering followed by principal component
analysis within each pose cluster. This set of simple models
fully captures the pose distribution and allows us to sample
from it and use the result as input to the generator and the
mask estimation network.

3.2 Mask Estimation and fg/bg Compositing
An essential component of our approach is the mask esti-
mator (ME) that predicts the foreground/background (fg/bg)
segmentation mask from the input set of keypoints. This
is a U-Net-type network (Ronneberger, Fischer, and Brox
2015) that ingests keypoint locations encoded in 17 chan-
nels (COCO format, one channel per keypoint), and out-
puts a mask predicting which pixels belong to the person.
This output is a one-channel map M ∈ [0, 1]H×W , where
(H,W ) are the height and the width of the output image,
respectively. Output mask values are in the range of [0, 1]
to composite the generated person image smoothly into the
target real background image. We pre-train this network sep-
arately from DummyNet using person mask and keypoint
annotations in MS COCO dataset (Lin et al. 2014). Using
the pre-trained mask estimator network ME, we obtain the
output maskM from the given input skeleton keypoints as
M = ME(kpts). The estimated fg/bg mask is used at dif-
ferent places of the architecture as described next.

First, it is used to produce the foreground person image as
input to the encoder producing the appearance vector and the
background scene with masked out pixels prepared for fore-
ground synthesis that are used as inputs to the conditional
generator. Details are in the learning and inference diagrams
in the supplementary material (Vobecký et al. 2020).

Second, the fg/bg mask is used to composite the final
output. Given a background image Ibg and the output of
the conditional generator Igen, the final augmented training
image Iaug is obtained by compositing the generated fore-
ground image with the background scene as

Iaug =M� Igen + (1−M)� Ibg, (1)

where� denotes the element-wise multiplication andM the
estimated mask. In contrast to other works, we do not need
to use manually specified masks during the inference time
as we estimate them automatically with the Mask Estimator.
This allows us to process more data and hence a more di-
verse set of poses. If the manual mask is available, it can be
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used as well. Finally, the estimated person mask is also used
to compute fg/bg appearance losses as described next.

3.3 Masked Losses and Training
At training time, the model takes as input an image sepa-
rated into the foreground person image and the background
scene using the estimated fg/bg mask. The model is then
trained to produce a realistic-looking output that locally fits
the background scene and uses the appearance condition-
ing from the input foreground image. The network is trained
with a weighted combination of four losses, described next.

For the discriminator, we use the Improved Wasserstein
loss (WGAN-GP) (Gulrajani et al. 2017) as we found it more
stable than other adversarial losses. The loss measures how
easy it is to discriminate the output image composite given
by Equation 1 from the real input training image.

Next, we introduce a new loss term that we found im-
portant for inserting pedestrians into various backgrounds.
This person appearance consistency loss Lapp encourages
the generator to change the appearance of the inserted pedes-
trian with the change of the input person appearance latent
vector. This is achieved by enforcing the latent appearance
vector of the output image to match the latent appearance
vector provided at the input of the generation process, mea-
sured by L1 distance. This is implemented as

Lapp = ‖ENC (M� Iin)− ENC (M� Igen)‖1 , (2)

where ENC is the Image Encoder,M is the estimated per-
son mask, Iin is the input image, and Igen is the generated
output. Please note how the estimated foreground maskM
allows focusing the person appearance consistency loss on
the person foreground pixels. An experiment showing the ef-
fect of appearance preconditioning can be found in the sup-
plementary material (Vobecký et al. 2020).

We further add two reconstruction losses to our objective
function but have them act only on the foreground person
pixels via the estimated person mask. The first reconstruc-
tion loss, LRec-dis, compares features extracted using the dis-
criminator from the real input and generated output samples.
The second reconstruction loss, LRec-VGG compares the real
input and generated output in the feature space of a VGG19
network (Simonyan and Zisserman 2015) pre-trained for Im-
ageNet classification. In both cases, the losses are modu-
lated by the foreground mask to focus mainly on the fore-
ground person pixels, similar to (2), and use L1 distance.
We found these losses greatly stabilize training. The final
loss is a weighted sum of the terms described above:

L = λ1LWGAN-GP +λ2LRec-dis +λ3LRec-VGG +λ4Lapp, (3)

where hyperparameters λi’s are set experimentally to ensure
convergence and prevent overfitting. Please see the supple-
mentary material for ablations measuring (among others) the
influence of our proposed appearance loss and the impor-
tance of having control over the background scene as the
input to the generator.

4 Experiments
In this section, we present a series of experiments on con-
trolled dataset augmentation with the aim to improve the ac-

curacy of a person classifier/detector in the context of au-
tonomous driving. The augmentation is controlled as our
DummyNet can generate images of people with a specific
distribution of poses, appearances, and backgrounds. We
consider four experimental set-ups. The first experiment
(Sec. 4.1) focuses on augmenting the daytime Cityscapes
dataset. We test data augmentation in the low-data regime,
i.e., with insufficient real training data for training the per-
son classifier. In the second experiment (Sec. 4.2), we use
DummyNet to generate night-time person images and show
significant improvements in classifier performance on the
NightOwls dataset (Neumann et al. 2018). In the next ex-
periment (Sec. 4.3) we use DummyNet to improve per-
formance of the state-of-the-art person detection network
CSP (Liu et al. 2019b) in the standard (full) data regime on
the Cityscapes and Caltech datasets. Finally, we demonstrate
the benefits of our approach in set-ups (Sec. 4.4) where we
have only access for training to day-time annotated images
(CityPersons) along with night-time images devoid of peo-
ple, and we wish to detect pedestrians at night (NightOwls).
See Fig. 3 for images generated by DummyNet.
Person Classifier. In experiments 4.1 and 4.2, we consider
a CNN-based classifier with 6, 729 parameters, which is a
realistic set-up for a digital signal processor in a car (where
GPU is not available in a deployed system) and is trained
from scratch. The classifier consists of 4 convolutional lay-
ers with a 3 × 3 kernel, stride 2, ReLU activations, max-
pooling, and one fully connected layer with sigmoid activa-
tion. For both experiments, the classifier is trained for 1, 000
epochs and the classifier with the best validation error is
kept.
Training Data for DummyNet. For training the genera-
tor, we aim for the real-world data with all its artifacts (blur,
low/high res, changing lighting, etc.) and with enough sam-
ples with a person height of at least 190px. To achieve that,
we leveraged the YoutubeBB (Real et al. 2017) dataset that
contains a large number of videos with people in a large vari-
ety of poses, illuminations, resolutions, etc. We used Open-
Pose (Cao et al. 2018) to automatically detect people and
annotate up to 17 keypoints based on their visibility.

The final dataset contains 769, 176 frames with annotated
keypoints. Please note that the keypoints and mask annota-
tions (estimated by our mask estimator) are noisy as they
have been obtained automatically, yet, are sufficient for our
needs. More details about the dataset, examples of training
images with skeleton annotations, and the keypoint genera-
tor are in the supplementary (Vobecký et al. 2020).

4.1 Data Augmentation in a Low-Data Regime
In this experiment, we show how adding training person
samples generated by DummyNet influences the testing per-
formance of the person classifier. We conduct an experiment
where there is only a small number of training samples avail-
able and investigate how adding synthesized images of the
positive class (person) helps the performance of the resulting
classifier. We compare against two baseline methods Cut,
Paste and Learn (CPL) (Dwibedi, Misra, and Hebert 2017)
and pix2pixHD (Wang et al. 2018). Both methods require
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Figure 3: Artificial people in urban scenes produced by our DummyNet approach. Examples are shown at various scales and
levels of detail. Top: Each full-scene image contains one synthetic person except for the winter scene where there are two.
Bottom: Close-ups of day and night scenes with one synthetic person in each. Please see the supp. mat. (Vobecký et al. 2020)
for qualitative results and ablations evaluating the importance of the different contributions.

generated pix2pixHD CPL DummyNet

FPR 1% 10% 1% 10% 1% 10%

0 0.980 0.682 0.980 0.682 0.980 0.682
75 0.852 0.424 0.795 0.467 0.763 0.425
200 0.800 0.438 0.809 0.466 0.836 0.490
500 0.865 0.616 0.818 0.567 0.861 0.636
1000 0.922 0.731 0.813 0.514 0.790 0.463

Table 1: Data augmentation in low-data regimes on the
Cityscapes dataset. We report classifier test set miss rate
(lower is better) at 1% and 10% false positive rate (FPR).
100 real samples were used for training, plus different
amounts of generated samples (leftmost column) for aug-
mentation. The best results are marked for 1% FPR in bold.

stronger input information as they need to have a segmen-
tation mask of the inserted object. Besides, pix2pixHD re-
quires to have a complete segmentation of the input scene.
Therefore pix2pixHD and CPL have the advantage of addi-
tional information that our DummyNet does not require.

In Table 1, we report results in the form of a miss rate at
1% and 10% false positive rate. We compare results to the
baseline classifier trained with only 100 real and no synthetic
samples (first row) and investigate adding up to 1000 syn-
thetic samples. In this low-data regime, the classifier trained
on real data only performs poorly and adding synthesized
images clearly helps. However, when too many synthetic
examples are added, performance may decrease, suggesting
that there is a certain amount of domain gap between real
and synthetic data. Compared to the pix2pixHD and CPL,
our DummyNet performs the best, bringing the largest per-
formance boost, lowering the baseline miss rate by 21.7% at
1% FPR and by 25.7% at 10% FPR.

4.2 Person Classification at Night Time
Annotated training images with pedestrians at night are hard
to obtain. On the other hand, it is relatively easy to get
night scenes that contain no people. To this end, we con-

gen\real 0 100 1000 12000 (full)

FPR 1% 10% 1% 10% 1% 10% 1% 10%

0 0.88 0.62 0.64 0.34 0.51 0.28
5k 0.76 0.49 0.72 0.44 0.63 0.33 0.48 0.24

10k 0.71 0.46 0.72 0.42 0.58 0.33 0.47 0.25
20k 0.76 0.52 0.72 0.42 0.62 0.36 0.50 0.22

Table 2: Night-time person detection on the NightOwls
dataset. We report the mean classifier test set miss rate
(lower is better) over 5 runs. Test results are reported at
1% and 10% FPR. The best results for every combination
are shown in bold. Samples generated by our method help
to train a better classifier, often by a large margin, over the
baseline trained only from real images (the first row).

struct an experiment on the NightOwls dataset (Neumann
et al. 2018) and vary the number of available real (night-
time) training person images. We then add more images of
persons at night synthesized by DummyNet. Generated sam-
ples were obtained by providing the generator with day-time
(but low light, based on thresholding the average brightness)
input images of people together with night-time background
scenes to get night-time output scenes with people. Please
see the supp. mat. (Vobecký et al. 2020) for details.

Classification results on testing NightOwls data are shown
in Table 2 and demonstrate that generated samples help to
train a better classifier, which improves over the baseline by
a large margin. The reported results are mean miss rates over
five runs. In a low-data regime, we can lower the miss rates
by nearly 20%. Adding synthetic examples improves perfor-
mance in all settings, even with an increasing amount of real
training data. In particular, note that we can improve perfor-
mance even when having all the available real training data
(column ‘full set’). In that case, we improve MR at 10%
FPR by more than 6%. Please note that DummyNet was not
finetuned on this dataset. Please see additional results and
examples of synthesized night-time data in Fig. 3 and the
supplementary material (Vobecký et al. 2020).

2697



4.3 Improving State-of-the-Art Person Detector
Citypersons. We conduct an experiment with one of the
state-of-the-art person detectors, CSP (Liu et al. 2019b), on
the full Citypersons dataset (Zhang, Benenson, and Schiele
2017). We use our DummyNet to extend the training set of
this dataset. The augmentation procedure is the same for all
the compared methods. It uses the semantic segmentation
of the road scenes to place pedestrians at plausible loca-
tions (ground, road, sidewalk) and uses existing people in
the scene (if available) to choose the position and size of the
inserted people. We require that the new person stands on the
ground and does not occlude other people already present in
the image. The details of the augmentation procedure are
given in the supplementary material (Vobecký et al. 2020).

Following (Liu et al. 2019b), we train the detection net-
work for 150 epochs and report log-average miss rate for
multiple setups of the detector with the best validation per-
formance, see Table 3. We compare the following data aug-
mentation setups: (a) original results reported in (Liu et al.
2019b); (b) our CSP detector retrained on original Cityper-
sons images to reproduce results of (Liu et al. 2019b);
(c) augmentation with the SURREAL (Varol et al. 2017)
dataset, (d) CPL augmentation (Dwibedi, Misra, and Hebert
2017); (e) augmentation with recent ADGAN (Men et al.
2020) generative network; (f)-(g) augmentation with the
Human3.6M dataset (Ionescu et al. 2014; Catalin Ionescu
2011) using provided segmentation or segmentation with
DeepLabv3+ (Chen et al. 2018); and (h) training on Dum-
myNet extended Cityscapes dataset.

We observe a consistent improvement in performance
across all setups (see Supplementary for more details) when
DummyNet augmented samples are used. Please note that
differences between the reported results in (Liu et al. 2019b)
(a) and our reproduced results (b) could be attributed to dif-
ferences in initialization (random seed not provided in (Liu
et al. 2019b)); otherwise, we use the same training setup.

Caltech. Following the experiments and the setup in (Liu
et al. 2019b), we also train a CSP detector on the Cal-
tech (Dollar et al. 2011) dataset. We initialize the detector
weights with the best-performing network on CityPersons.
Our data augmentation improves over the results reported
in (Liu et al. 2019b) (the reasonable setup), reducing the
LAMR from 3.8% to 3.47%, i.e., by almost 0.35%, which is
non-negligible given the overall low LAMR. These results
demonstrate the benefits of our approach on another chal-
lenging dataset.

4.4 Person Detection in Night-Time Scenes
Here we address the problem of an insufficient amount of
annotated training data again. We conduct an experiment
where we have access only to annotated images captured
during daytime (CityPersons dataset), and we wish to de-
tect pedestrians at night time (NightOwls dataset). However,
we do not have any night-time images annotated with peo-
ple. This is a similar setup as in Section 4.2, but here we
consider a well-known object detection architecture.

As a baseline, we train a Faster-RCNN with ResNet-50
backbone initialized from COCO detection task with the

setup reasonable small partial

(a) CSP reported 11.02% 15.96% 10.43%
(b) CSP reproduced 11.44% 15.88% 10.72%
(c) SURREAL aug. 11.38% 17.39% 10.56%
(d) CPL aug. 11.36% 16.46% 10.84%
(e) ADGAN aug. 10.85% 16.20% 10.55%
(f) H3.6M aug., orig. 11.07% 16.66% 10.58%
(g) H3.6M aug., DLv3 10.59% 16.00% 10.21%
(h) DummyNet aug. (ours) 10.25% 15.44% 9.12%

Table 3: Improving state-of-the-art person detector (Liu
et al. 2019b). Log-average miss rate of the detector (lower
is better) in multiple testing setups.

setup reasonable small occluded

(a) CityPersons ann. 41.90% 50.55% 65.95%
(b) ADGAN [Men20] 36.60% 48.91% 54.49%
(c) SURREAL [Varol17] 32.94% 44.05% 49.24%
(d) CPL [Dwibedi17] 30.73% 49.61% 54.60%
(e) H3.6M [Ionescu14] 27.83% 43.81% 45.67%
(f) DummyNet (ours) 24.95% 39.73% 44.89%

Table 4: Person detection in night-time scenes. LAMR
(lower is better) in multiple testing setups on the NightOwls
dataset.

day annotations only (setup (a)). Then, we use the same
augmentation and person placement strategy as described
in Section 4.3, and retrain the Faster-RCNN detector using
the augmented training dataset. The results are summarized
in Table 4 and show that our method (f) performs the best,
outperforming the baseline (a) by 16%, the-state-of-the-art
person generative network (b) by ∼ 12%, the compositing
approach (c) by∼ 8%, and the nearest competitor (e), which
uses much more images depicting people in various poses
but with limited appearance variation, by ∼ 3% measured
by the LAMR (reasonable setup). These results indicate that
it is important to have variability and control over (i) the
appearance, (ii) the pose, and (iii) the background scene of
the generated people for person detection in automotive sce-
narios. The complete set of the quantitative results is in the
supplementary material (Vobecký et al. 2020).

5 Conclusion
We have developed an approach for controlled augmenta-
tion of person image datasets, where people with adjustable
pose and appearance can be synthesized into real urban
backgrounds. We have demonstrated that adding such gen-
erated data improves person classification and detection per-
formance, especially in low-data regimes and in challenging
conditions (like the night-time person detection) when posi-
tive training samples are not easy to collect. We have shown
that neural networks of various model complexities designed
for multiple tasks benefit from artificially generated sam-
ples, especially when we have control over the data distribu-
tions. These results open up the possibility to control many
more parameters (e.g., weather conditions, age, gender, etc.)
and make a step towards controllable training and validation
process where generated dummies cover challenging corner
cases that are hard to collect in real-world situations.
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