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Abstract

Recent work has exposed the vulnerability of computer vision
models to vector field attacks. Due to the widespread usage
of such models in safety-critical applications, it is crucial to
quantify their robustness against such spatial transformations.
However, existing work only provides empirical robustness
quantification against vector field deformations via adversarial
attacks, which lack provable guarantees. In this work, we pro-
pose novel convex relaxations, enabling us, for the first time,
to provide a certificate of robustness against vector field trans-
formations. Our relaxations are model-agnostic and can be
leveraged by a wide range of neural network verifiers. Experi-
ments on various network architectures and different datasets
demonstrate the effectiveness and scalability of our method.

1 Introduction
It was recently shown that neural networks are suscepti-
ble not only to standard noise-based adversarial perturba-
tions (Szegedy et al. 2014; Goodfellow, Shlens, and Szegedy
2015; Carlini and Wagner 2017; Madry et al. 2018) but also
to spatially transformed images that are visually indistin-
guishable from the original (Kanbak, Moosavi-Dezfooli, and
Frossard 2018; Alaifari, Alberti, and Gauksson 2019; Xiao
et al. 2018; Engstrom et al. 2019). Such spatial attacks can be
modeled by smooth vector fields that describe the displace-
ment of every pixel. Common geometric transformations,
e.g., rotation and translation, are particular instances of these
smooth vector fields, which indicates that they capture a wide
range of naturally occurring image transformations.

Since the vulnerability of neural networks to spatially trans-
formed adversarial examples can pose a security threat to
computer vision systems relying on such models, it is critical
to quantify their robustness against spatial transformations.
A common approach to estimate neural network robustness
is to measure the success rate of strong attacks (Carlini and
Wagner 2017; Madry et al. 2018). However, many networks
that are indeed robust against these attacks were later broken
using even more sophisticated attacks (Athalye and Carlini
2018; Athalye, Carlini, and Wagner 2018; Engstrom, Ilyas,
and Athalye 2018; Tramèr et al. 2020). The key issue is that
such attacks do not provide provable robustness guarantees.
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(a) Original (b) δ = 1, γ = ∞ (c) δ = 3, γ = 0.25

Figure 1: Image instances and corresponding deforming vec-
tor fields (γ and δ explained below): (a) original, (b) adver-
sarially deformed (label 5) by non-smooth vector field, and
(c) adversarially deformed (label 3) by smooth vector field.

To address this issue, our goal is to provide a provable
certificate that a neural network is robust against all possible
deforming vector fields within an attack budget for a given
dataset of images. While various certification methods exist,
they are limited to noise-based perturbations (Katz et al. 2017;
Gehr et al. 2018; Wong and Kolter 2018; Singh et al. 2018;
Zhang et al. 2018) or compositions of common geometric
transformations (e.g., rotations and translations) (Pei et al.
2017; Singh et al. 2019b; Balunovic et al. 2019; Mohapatra
et al. 2020) and thus cannot be applied to our setting.

A common approach in robustness certification is to com-
pute, for a given image, pixel bounds containing all possible
perturbed images within some attack budget, and then prop-
agate these bounds through the network to obtain bounds
on the output neurons. Then, if all images within the output
bounds classify to the correct label, the network is provably
robust against all attacks limited to the same attack budget.
In our work, we intuitively parametrize the attack budget by
the magnitude of pixel displacement, denoted by δ, and the
smoothness of the vector field, denoted by γ. This allows
us to efficiently compute the tightest-possible pixel interval
bounds on vector field deformations limited to a given dis-
placement magnitude δ by using a mathematical analysis
of the transformation. However, even small but non-smooth
vector fields (i.e., small δ but large γ) can generate large
pixel differences, resulting in recognizably perturbed images
(Figure 1b) and leading to large pixel bounds, which limit
certification performance. Thus, a key challenge is to define
smoothness constraints that can be efficiently incorporated
with neural network verifiers to enable certification of smooth
vector fields with large displacement magnitude (Figure 1c).
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Hence, we tighten our convex relaxation for smooth vec-
tor fields by introducing smoothness constraints that can be
efficiently incorporated into state-of-the-art verifiers (Tjeng,
Xiao, and Tedrake 2019; Singh et al. 2019a,c). To that end, we
leverage the idea of computing linear constraints on the pixel
values in terms of the transformation parameters (Balunovic
et al. 2019; Mohapatra et al. 2020). We show that our mathe-
matical analysis of the transformation induces an optimiza-
tion problem for computing the linear constraints, which
can be efficiently solved by linear programming. Finally, we
show that the idea by Balunovic et al. (2019); Mohapatra
et al. (2020) alone is insufficient for the setting of smooth
vector fields, and only the combination with our smoothness
constraints yields superior certification performance. We im-
plement our method in an open-source system and show that
our convex relaxations can be leveraged to, for the first time,
certify neural network robustness against vector field attacks.

Key contributions We make the following contributions:
• A novel method to compute the tight interval bounds for

norm-constrained vector field attacks, enabling the first
certification of neural networks against vector field attacks.

• A tightening of our relaxation for smooth vector fields and
integration with state-of-the-art robustness certifiers.

• An open-source implementation together with extensive
experimental evaluation on the MNIST and CIFAR-10
datasets, with convolutional and large residual networks.
We make our code publicly available as part of the ERAN
framework for neural network verification (available at
https://github.com/eth-sri/eran).

2 Related Work
Here we discuss the most relevant related work on spatial
robustness and certification of neural networks.

Empirical spatial robustness In addition to previously
known adversarial examples based on `p-norm perturba-
tions, it has recently been demonstrated that adversarial ex-
amples can also be constructed via geometric transforma-
tions (Kanbak, Moosavi-Dezfooli, and Frossard 2018), ro-
tations and translations (Engstrom et al. 2019), Wasserstein
distance (Wong, Schmidt, and Kolter 2019; Levine and Feizi
2020; Hu et al. 2020), and vector field deformations (Alaifari,
Alberti, and Gauksson 2019; Xiao et al. 2018). Here, we use
a threat model based on vector field deformations for which
both prior works have proposed attacks: Alaifari, Alberti,
and Gauksson (2019) perform first-order approximations to
find minimum-norm adversarial vector fields, and Xiao et al.
(2018) relax vector field smoothness constraints with a contin-
uous loss to find perceptually realistic adversarial examples.

Robustness certification There is a long line of work on
certifying the robustness of neural networks to noise-based
perturbations. These approaches employ SMT solvers (Katz
et al. 2017), mixed-integer linear programming (Tjeng, Xiao,
and Tedrake 2019; Singh et al. 2019c), semidefinite program-
ming (Raghunathan, Steinhardt, and Liang 2018), and linear

relaxations (Gehr et al. 2018; Wong and Kolter 2018; Singh
et al. 2018; Zhang et al. 2018; Wang et al. 2018; Weng et al.
2018; Singh et al. 2019b; Salman et al. 2019b; Lin et al. 2019).
Another line of work also considers certification via random-
ized smoothing (Lécuyer et al. 2019; Cohen, Rosenfeld, and
Kolter 2019; Salman et al. 2019a), which, however, only
provides probabilistic robustness guarantees for smoothed
models whose predictions cannot be evaluated exactly, only
approximated to arbitrarily high confidence.

Certified spatial robustness Prior work introduces certifi-
cation methods for special cases of spatial transformations:
a finite number of transformations (Pei et al. 2017), rota-
tions (Singh et al. 2019b), and compositions of common
geometric transformations (Balunovic et al. 2019; Mohapatra
et al. 2020). Some randomized smoothing approaches exist,
but they only handle single parameter transformations (Li
et al. 2020) or transformations without compositions (Fis-
cher, Baader, and Vechev 2020). In a different setting, Wu
and Kwiatkowska (2020) compute the maximum safe radius
on optical flow video perturbations but only for a finite set
of neighboring grid points. Overall, previous approaches are
limited because they only certify transformations in specific
templates that can be characterized as special cases of smooth
vector field deformations. Certifying these vector field defor-
mations is precisely the goal of our work.

While rotations are special cases of smooth deformations,
even small rotations can cause not only large pixel displace-
ments (i.e., large δ) far from the center of rotation but also
large smoothness constraints (i.e., large γ) due to the sin-
gularity at the center of rotation. Since such large γ and δ
values are currently out of reach for our method, we advise us-
ing specialized certification methods (Balunovic et al. 2019;
Mohapatra et al. 2020) when considering threat models con-
sisting only of rotations. However, we could combine our
approach with these specialized certification methods, e.g.,
by instantiating DeepG (Balunovic et al. 2019) with our in-
terval bounds, which would correspond to first deforming an
image by a vector field and then rotating the deformed image.

3 Background
Here we introduce our notation, define the similarity metric
for spatially transformed images, and provide the necessary
background for neural network certification.

Vector field deformations We represent an image as a
function I : P ⊆ R2 → RC , where C is the number of
color channels, and P = {1, 2, . . . ,W}2 corresponds to the
set of pixel coordinates of the image with dimension W ×W .

Vector field transformations are parameterized by a vector
field τ : P → R2 assigning a displacement vector τ(i, j)
to every pixel (i, j). Thus, we obtain the deformed pixel
coordinates via (I+τ) : P → R2 with (I+τ)(i, j) = (i, j)+
τ(i, j), where I is the identity operator. Since these deformed
coordinates may not lie on the integer grid, we use bilinear
interpolation II : R2 → RC induced by the image I and
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evaluated at (i, j) + τ(i, j) to get the deformed pixel values:

II (i, j) :=
{
ImnI (i, j) if (i, j) ∈ Amn ,

ImnI (i, j) :=
∑

p∈{m,m+1}
q∈{n,n+1}

I(p, q) (1− |p− i|) (1− |q − j|) ,

(1)

where Amn := [m,m+ 1] × [n, n+ 1] is an interpolation
region. Hence, we define the deformed image as II ◦ (I + τ).
Like Alaifari, Alberti, and Gauksson (2019), we only study
vector fields that do not move pixels outside the image.

Estimating perceptual similarity For noise-based adver-
sarial attacks, an adversarial image Iadv is typically con-
sidered perceptually similar to the original image I if the
`p-norm of the perturbation ‖I − Iadv‖p is small (Szegedy
et al. 2014; Goodfellow, Shlens, and Szegedy 2015; Car-
lini and Wagner 2017; Madry et al. 2018). However, prior
work (Alaifari, Alberti, and Gauksson 2019; Xiao et al. 2018)
has demonstrated that this is not necessarily a good measure
for spatially transformed images. For example, translating
an image by a small amount will typically produce an image
that looks very similar to the original but results in a large
perturbation with respect to the `p-norm. For this reason,
the similarity of spatially transformed images is typically
estimated with a norm on the deforming vector field and
not on the pixel value perturbation. Here, we consider the
Tp-norm (Alaifari, Alberti, and Gauksson 2019), defined as

‖τ‖Tp
:= max

(i,j)∈P
‖τ (i, j)‖p .

We consider p ∈ {1, 2,∞} and note that the case p = 2 cor-
responds to the norm used by Alaifari, Alberti, and Gauksson
(2019). Intuitively, a vector field with T2-norm at most 1 will
displace any pixel by at most one grid length on the image
grid. In general, for a vector field τ with ‖τ‖Tp

≤ δ, the set
of reachable coordinates from a single pixel (i, j) ∈ P is

Bpδ (i, j) :=
{
x ∈ R2 | ‖(i, j)− x‖p ≤ δ

}
.

However, there may be vector fields with small Tp-norm
that produce unrealistic images. For example, moving every
pixel independently by at most one grid length can already
result in very pixelated images that can be easily recognized
as unnatural when comparing with the original (Figure 1b).
To address this, Xiao et al. (2018) introduce a flow loss that
penalizes the vector field’s lack of smoothness. Following this
approach, we say that vector field τ has flow γ if it satisfies,
for each pixel (i, j), the flow-constraints

||τ(i, j)− τ(i′, j′)||∞ ≤ γ, ∀ (i′, j′) ∈ N (i, j), (2)
where N (i, j) ⊆ P represents the set of neighboring pix-
els in the 4 cardinal directions of pixel (i, j). For instance,
translation is parametrized by a vector field that has flow 0
(each pixel has the same displacement vector). These con-
straints enforce smoothness of the vector field τ , which in
turn ensures that transformed images look realistic and better
preserve image semantics – even for large values of δ (Fig-
ure 1c). We provide a more thorough visual investigation of
the norms and constraints considered in Appendix D.

Robustness certification Robustness of neural networks
is typically certified by (i) computing a convex shape around
the input we want to certify (an over-approximation) and
(ii) propagating this shape through all operations in the net-
work to obtain a final output shape. Robustness is then proven
if all concrete outputs inside the output shape classify to
the correct class. For smaller networks, an input shape can
be propagated exactly using mixed-integer linear program-
ming (Tjeng, Xiao, and Tedrake 2019). To scale to larger net-
works, standard approaches over-approximate the shape us-
ing various convex relaxations: intervals (Gowal et al. 2019),
zonotopes (Gehr et al. 2018; Singh et al. 2018; Weng et al.
2018), and restricted polyhedra (Zhang et al. 2018; Singh
et al. 2019b), just to name a few. In this work, we build on
the convex relaxation DeepPoly, an instance of restricted
polyhedra, introduced by Singh et al. (2019b), as it provides
a good trade-off between scalability to larger networks and
precision. For every pixel, DeepPoly receives a lower and
upper bound on the pixel value, i.e., an input shape in the
form of a box. This shape is then propagated by maintain-
ing one lower and upper linear constraint for each neuron.
Here, we first show how to construct a tight box around all
spatially transformed images. However, since this box does
not capture the relationship between neighboring pixels in-
duced by flow-constraints, it contains spurious images that
cannot be produced by smooth vector fields. To address this,
we tighten the convex relaxation for smooth vector fields by
incorporating flow-constraints.

Problem statement Our goal is to prove local robustness
against vector field attacks constrained by maximal pixel dis-
placement, i.e., all vector fields with T -norm smaller than δ.
That is, for every image from the test set, we try to compute a
certificate that guarantees that no vector field with a displace-
ment magnitude smaller than δ can change the predicted label.
Furthermore, since smooth deformations are more realistic,
we also consider the case where the vector fields additionally
need to satisfy our flow-constraints, i.e., that neighboring
deformation vectors can differ by at most γ in `∞-norm.

4 Overview
We now provide an end-to-end example of how to compute
our convex relaxation of vector field deformations and use it
to certify the robustness of the toy network in Figure 2. This
network propagates inputs x0 and x1 according to the weights
annotated on the edges. Neurons x2, x3 and x4, x5 denote the
pre- and post-activation values, and x6, x7 are the network
logits. We augment this network by vector field components
vx, vy , wx, and wy , to introduce the flow-constraints.

The concrete inputs to the neural network are the pixels
marked with blue (x0) and green (x1), shown in Figure 3a.
The image is perturbed by a vector field of T∞-norm δ = 0.5
and flow γ = 0.25. Thus the blue and green pixels are al-
lowed to move in the respective rectangles shown in Figure 3a.
However, to satisfy the flow-constraints, their deformation
vectors can differ by at most γ = 0.25 in each coordinate.

Our objective is to certify that the neural network classifies
the input to the correct label regardless of its deformed pixel
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Figure 2: Convex relaxation of a sample neural network with inputs x0 and x1, and vector field components vx, vy , wx, and wy .

positions. A simple forward pass of the pixel values x0 = 0
and x1 = 0.5 yields logit values x6 = 0 and x7 = 0.625.
Assuming that the image is correctly classified, we thus need
to prove that the value of neuron x7 is greater than the value
of neuron x6 for all admissible smooth vector field transfor-
mations. To that end, we will first compute interval bounds
for the pixels without using the relationship between vector
field components vx, vy, wx, and wy, and then, in a second
step, we tighten the relaxation for smooth vector fields by
introducing linear constraints on x0 and x1 in terms of vx,
vy, wx, and wy to exploit the flow-constraint relationship.
Propagation of our convex relaxation through the network
closely follows Singh et al. (2019b), and we provide a full
formalization of our methods in Section 5.

Calculating interval bounds The first part of our convex
relaxation is computing upper and lower interval bounds for
the values that the blue and green pixel can attain on their
`∞-neighborhood of radius δ = 0.5. For both pixels, the
minimum and maximum are attained on the left and right
border of the `∞-ball, respectively. Using bilinear interpola-
tion from Equation (1), we thus obtain the interval bounds
[l0, u0] = [0, 0.25] for x0 and [l1, u1] = [0.25, 0.75] for x1.

Interval bound propagation The intervals [l0, u0] and
[l1, u1] can be utilized directly for verification using stan-
dard interval propagation to estimate the output of the net-
work (Gehr et al. 2018; Gowal et al. 2019; Mirman, Gehr, and
Vechev 2018). While this method is fast, it is also imprecise.
The interval bounds for x2 and x4 are

[l2, u2] = 2 · [l0, u0]− [l1, u1] + 0.25

= [2l0 − u1 + 0.25, 2u0 − l1 + 0.25] = [−0.5, 0.5],

[l4, u4] = [max(l2, 0),max(u2, 0)] = [0, 0.5].

All lower and upper interval bounds are given in Figure 2.
The output for x6 is thus between l6 = −1 and u6 = 0, while

the one for x7 is between l7 = −0.375 and u7 = 0.875. As
this is insufficient to prove x7 > x6, certification fails.

Backsubstitution To gain precision, one can keep track
of the relationship between the neurons by storing linear
constraints (Zhang et al. 2018; Singh et al. 2019b). In addi-
tion to [l2, u2], we store upper- and lower-bounding linear
constraints

2x0 − x1 + 0.25 ≤ x2 ≤ 2x0 − x1 + 0.25.

Similarly, for x4, we store, in addition to [l4, u4],

0 ≤ x4 ≤ 0.5x2 + 0.25,

where we use the rules given in Singh et al. (2019b) to cal-
culate the upper and lower linear constraints. All linear con-
straints are shown in Figure 2, next to the corresponding neu-
rons. Certification succeeds, if we can show that x7−x6 > 0.
Using the linear constraints, we thus obtain

x7 − x6 ≥ (−x4 + x5)− (−2x4) = x4 + x5
≥ x3 ≥ x1 − x0 + 0.125 ≥ 0.125.

This proves that x7−x6 > 0, implying that the network clas-
sifies to the correct class under all considered deformations.

Spatial constraints Although the above method can cer-
tify robustness, certification fails for a more challenging
network where the bias of x3 is equal to −0.125 instead
of 0.125. With the previous approach, we can only prove
x7 − x6 ≥ x1 − x0 − 0.125 ≥ −0.125, which is insufficient
for certification. However, we can leverage our vector field
smoothness condition (Equation (2)), namely that the defor-
mation vectors of x0 and x1 can differ by at most γ = 0.25
in the `∞-norm. Unfortunately, these constraints cannot be
directly applied since they are defined on the vector field com-
ponents and not on the pixel values. To amend this, we build
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(a) Sample image

vx−0.5
0.0

0.5v
y

−0.5

0.0

0.5

x0

0.00

0.25
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(c) Lower-bounding plane for x1

Figure 3: Bilinear interpolation for a sample image with dots indicating pixel positions and squares denoting the set of reachable
coordinates B∞0.5 for pixels x0 and x1. Figures 3b and 3c display the interval bound candidates, i.e., the potential extrema of
bilinear interpolation (see Section 5), as dots and the linear bounding planes used to enforce flow-constraints. Note that the
candidates are computed separately for every intersection of an interpolation region with the set of reachable coordinates B∞0.5.

on the idea from Balunovic et al. (2019); Mohapatra et al.
(2020) and add upper- and lower-bounding linear constraints
on the pixel values x0 and x1. That is, we compute upper and
lower planes in terms of vector field components vx and vy
for x0 and wx and wy for x1, as shown in Figures 3b and 3c.
The plane equations are shown in Figure 2, and details on the
computation are provided in Section 5. By substituting these
plane equations into our expression and considering that all
vector field components vx, vy ,wx, andwy are bounded from
above and below by [−δ, δ] = [−0.5, 0.5], we thus obtain

x7 − x6 ≥ x1 − x0 − 0.125

≥ (0.5 + 0.5wx)− (0.125 + 0.25vx)− 0.125

= 0.25 + 0.5wx − 0.25vx ≥ −0.125,

showing that a simple instantiation of the idea by Balunovic
et al. (2019); Mohapatra et al. (2020) is insufficient for
certification in our setting. Only with our flow-constraints
−γ ≤ vx − wx ≤ γ with γ = 0.25 can we finally certify:

x7 − x6 ≥ x1 − x0 − 0.125

≥ 0.25 + 0.5wx − 0.25vx
= 0.25 + 0.25wx + 0.25(wx − vx) ≥ 0.0625.

In practice, the resulting expression may have more than two
pixels, and we use a linear program (described in Section 5)
to perform the substitution of flow-constraints.

5 Convex Relaxation
Here, we introduce a novel convex relaxation tailored to vec-
tor field deformations. First, we compute the tightest interval
bounds for each pixel in the transformed image. As intervals
do not capture dependencies between variables, we then pro-
pose a method for introducing linear constraints on the pixel
values in terms of vector field components and show how to
use flow-constraints to further tighten our convex relaxation.

5.1 Computing Tight Interval Constraints
Consider an image I and a maximum pixel displacement δ.
Our goal is to compute, for pixel (i, j), interval bounds li,j
and ui,j such that li,j ≤ II ◦ (I + τ)(i, j) ≤ ui,j , for any
vector field τ of Tp-norm at most δ. We now show how to
compute tight interval pixel bounds [li,j , ui,j ].

Within a given interpolation region Amn, the pixel (i, j)
can move to positions in Bpδ (i, j) ∩ Amn. Thus, for every
pixel, we construct a set of candidates containing the possible
maxima and minima of that pixel inBpδ (i, j)∩Amn. However,
this could potentially yield an infinite set of candidate points,
and we thus make the key observation that the minimum
and maximum pixel values of ImnI in Bpδ (i, j) ∩ Amn are
always obtained at the boundary (see Lemma 5.1 below, with
proof provided in Appendix A). Hence, for any reachable
interpolation regionAmn, it suffices to consider the boundary
of Bpδ (i, j)∩Amn to derive the candidate points analytically.
Finally, we set the lower and upper bound of the pixel value to
the minimum and maximum of the candidate set, respectively.

Lemma 5.1. The minimum and maximum pixel values of
ImnI in Bpδ (i, j)∩Amn are always obtained at the boundary.

We note that it is essential to calculate the candidates ana-
lytically to guarantee the soundness of our interval bounds.
Furthermore, for a single-channel image, our interval bounds
are exact, i.e., for every deformed image within our pixel
bounds there exists a corresponding vector field τ with
||τ ||p ≤ δ. For the derivation of candidates, we make use of
the following auxiliary lemma (with proof in Appendix A):

Lemma 5.2. The bilinear interpolation ImnI (v, w) on the
region Amn can be rewritten as

ImnI (v, w) = A+Bv + Cw +Dvw. (3)
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Candidates for T∞ The boundary ofB∞δ (i, j)∩Amn con-
sists of line segments parallel to the coordinate axes. This
means that for all pixels (v, w) on such a line segment either
v orw is constant. Thus, according to Lemma 5.2, if v is fixed,
then ImnI is linear in w and vice-versa. Hence, we only need
to consider the line segment endpoints to obtain the candidate
set of all possible extremal values in B∞δ (i, j) ∩Amn.

Candidates for T1 The boundary of B1
δ (i, j) ∩Amn con-

sists of line segments parallel to the coordinate axes or lines
defined by w = ±v + a. In the first case, we add the pixel
values of the line segment endpoints to the set of candidates.
In the second case, the bilinear interpolation ImnI restricted
to w = ±v + a is a polynomial of degree 2 given by
ImnI (v,±v + a) = A+Bv + C(±v + a) +Dv(±v + a)

= (A+ Ca) + (B ± C)v ±Dv2.
Thus, the extremum can be attained on the interior of that
line, unlike the T∞-case. Hence, we add both the endpoint
values and the polynomial’s extremum to the candidate set if
the corresponding extremal point lies on the line segment.

Candidates for T2 The boundary of B2
δ (i, j) ∩Amn con-

sists of line segments parallel to the coordinate axes or an
arc with circle center (i, j). We handle the line segments by
adding the pixel values at the endpoints to the candidate set.
However, the interpolation can also have minima and maxima
on the interior of the arc. To find those, we extend the inter-
polation ImnI from Amn to R2 and use Lagrange multipliers
to find the extrema on the circle v2 + w2 = δ2 (assuming
i = j = 0 for notational convenience). The Lagrangian is

Λ(v, w, λ) := ImnI (v, w)− λ(v2 + w2 − δ2),

which yields

∇v,w,λΛ(v, w, λ) =

B +Dw − 2λv
C +Dv − 2λw
δ2 − v2 − w2

 !
= 0.

Solving the first two equations for λ, we obtain

λ =
B +Dw

2v
and λ =

C +Dv

2w
,

assuming v 6= 0 6= w (else δ = 0). Eliminating λ, we have
w(B +Dw)− v(C +Dv) = 0.

We solve this quadratic equation and substitute the solutions

w =
−B ±

√
B2 + 4Dv(C +Dv)

2D
.

into δ2 − v2 − w2 = 0 to obtain

δ2 = v2 +

(
−B ±

√
B2 + 4Dv(C +Dv)

2D

)2

.

Setting E := −B
2D , F := B2

4D2 , and G := C
D we have

δ2 = v2 +
(
E ±

√
F +Gv + v2

)2
= v2 + E2 ± 2E

√
F +Gv + v2 + F +Gv + v2

= 2v2 +Gv ± 2E
√
F +Gv + v2 +H,

for H := (E2 + F ). Solving for v requires squaring both
sides to resolve the square root, yielding(

δ2 −H −Gv − 2v2
)2

=
(
±2E

√
F +Gv + v2

)2
= 4E2(F +Gv + v2).

Thus, we are interested in finding the roots of

J +Kv + Lv2 +Mv3 +Nv4 (4)

with

J :=
(
δ2 −H

)2 − 4FE2,

K := −2G
((
δ2 −H

)
+ 2E2

)
,

L := G2 − 4
((
δ2 −H

)
+ E2

)
M := 4G

N := 4,

which is a polynomial of degree 4. The roots of a polynomial
of degree 4 are known in closed form (Shmakov 2011), and
we use Durand-Kerner’s root finding method (Kerner 1966) to
compute them analytically. We recall that computing the roots
approximately, e.g., via gradient descent or Newton’s method,
does not guarantee the soundness of our interval bounds. If
the coordinates obtained from the roots of Equation (4) lie
within Amn, we add the corresponding pixel values to the
set of candidates. Finally, we add the pixel values of the
endpoints of the arc to the set of candidates.

5.2 Computing Spatial Constraints
While our interval bounds are tight, they can contain spurious
images, which cannot be produced by smooth vector fields of
flow γ. To address this, we build upon the idea of Balunovic
et al. (2019); Mohapatra et al. (2020) and introduce linear
constraints on the pixel values in terms of the vector field,
which can then be paired with flow-constraints to yield a
tighter convex relaxation. We demonstrate how our method
can be applied to tighten the DeepPoly relaxation (Singh et al.
2019b) and robustness certification via mixed-integer linear
programming (MILP) (Tjeng, Xiao, and Tedrake 2019).

Upper- and lower-bounding planes We seek to compute
sound linear constraints on the spatially transformed pixel
value in terms of the deforming vector field τ . Since every
pixel is displaced independently by its corresponding vector,
the linear constraints induce bounding planes of the form

λ0 + λ · τ(i, j) ≤ II((i, j) + τ(i, j)) ≤ υ0 + υ · τ(i, j),

where λT = (λ1, λ2) and υT = (υ1, υ2). To compute a
sound lower-bounding plane, we apply our method from Sec-
tion 5.1 to compute the set of candidate coordinates C of
potential minima and maxima in B∞δ (i, j) and then solve

arg min
λ0,λ1,λ2

∑
(p,q)∈C

II(p, q)− (λ0 + λ1(p− i) + λ2(q − j))

II(p, q) ≥ (λ0 + λ1(p− i) + λ2(q − j)), ∀(p, q) ∈ C.
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MNIST CIFAR-10
CONVSMALL PGD CONVSMALL DIFFAI CONVBIG DIFFAI CONVSMALL DIFFAI CONVMED DIFFAI

δ γ DEEPPOLY MILP DEEPPOLY MILP DEEPPOLY MILP DEEPPOLY MILP DEEPPOLY MILP

0.3

∞ 51 97 90 91 90 91 40 47 51 56
0.1 78 98 90 92 90 94 45 56 53 60
0.01 91 99 91 95 91 95 50 70 57 70
0.001 92 98 92 95 91 95 53 71 58 73

0.4

∞ 6 89 74 76 78 84 31 38 36 42
0.1 40 91 75 84 78 90 32 46 37 51
0.01 75 98 77 92 78 90 35 67 43 57
0.001 77 99 77 92 78 92 37 69 43 58

0.5

∞ 0 76 40 50 36 62 20 32 29 34
0.1 7 85 44 69 37 79 23 47 30 42
0.01 32 88 44 91 37 89 27 53 31 47
0.001 35 89 44 92 37 90 27 53 33 48

Table 1: T∞-norm certification rates (%) for vector fields τ with displacement magnitude ‖τ‖T∞ = δ and flow γ.

Since both the objective and the constraints are linear, we can
compute this plane in polynomial time using linear program-
ming. The upper-bounding plane is obtained analogously.

Given these linear bounding planes, one could be tempted
to simply instantiate the framework from Balunovic et al.
(2019); Mohapatra et al. (2020). Unfortunately, their ap-
proach only works in the setting where multiple pixels are
transformed by the same spatial parameters (e.g., rotation an-
gle). However, we make the key observation that these linear
constraints can be leveraged to enforce the flow-constraints,
thus tightening our convex relaxation. We now describe how
this can be achieved for the DeepPoly relaxation and MILP.

Tightening DeepPoly relaxation To compute precise
bounds, DeepPoly performs backsubstitution for each neu-
ron in the network (recall the example in Section 4). That
is, every backsubstitution step computes a linear expression
e = a1x1 + . . .+ anxn in terms of the input pixels. A naive
way to obtain the upper and lower bounds of e is to substitute
the interval bounds for each pixel xi, which is equivalent to

min a1x1 + . . .+ anxn
li ≤ xi ≤ ui.

However, this can be imprecise as intervals do not capture
flow-constraints. Thus, we extend the above linear program
with variables v(i)x and v(i)y denoting the vector field compo-
nents of every pixel xi, thus allowing us to add the constraints

λ
(i)
0 + (vx, vy)(i)λ(i) ≤ xi ≤ υ(i)0 + (vx, vy)(i)υ(i), (5)

−γ ≤ v(i)x − v(j)x ≤ γ, and − γ ≤ v(i)y − v(j)y ≤ γ, (6)

where λT = (λ
(i)
1 , λ

(i)
2 ) and υT = (υ

(i)
1 , υ

(i)
2 ). Here, Equa-

tion (5) corresponds to the upper- and lower-bounding planes
of pixel xi, and Equation (6) enforces the flow-constraints
for neighboring pixels i and j. Minimization of this linear
program then directly yields the tightest lower bound on the
expression and can be performed in polynomial time. The
upper-bounding plane can be obtained analogously.

Tightening MILP certification To encode a neural net-
work as MILP, we employ the method from Tjeng, Xiao,
and Tedrake (2019), which is exact for models with ReLU
activations. Our approach of leveraging linear planes on pixel
values to enforce flow-constraints can then be directly applied
to the resulting MILP by adding the same variables and linear
constraints (Equations (5) and (6)) as in the DeepPoly case.

6 Experiments
We now investigate the precision and scalability of our
certification method by evaluating it on a rich combina-
tion of datasets and network architectures. We make all
our networks and code publicly available as part of the
ERAN framework for neural network verification (available
at https://github.com/eth-sri/eran) to ensure reproducibility.

Experiment setup We select a random subset of 100 im-
ages from the MNIST (LeCun, Cortes, and Burges 2010) and
CIFAR-10 (Krizhevsky 2009) test datasets on which we run
all experiments. We consider adversarially trained variants
of the CONVSMALL, CONVMED, and CONVBIG architec-
tures proposed by Mirman, Gehr, and Vechev (2018), using
PGD (Madry et al. 2018) and DiffAI (Mirman, Gehr, and
Vechev 2018) for adversarial training. For CIFAR-10, we also
consider a ResNet (He et al. 2016), with 4 residual blocks
of 16, 16, 32, and 64 filters each, trained with the provable
defense from Wong et al. (2018). We present the model accu-
racies and training hyperparameters in Appendix B. While
we only consider networks with ReLU activations for our ex-
periments, our relaxations seamlessly integrate with different
verifiers, including DeepPoly, k-ReLU, and MILP, which al-
lows us to certify all networks employing the activation func-
tions supported by these frameworks. For example, DeepPoly
handles ReLU, sigmoid, tanh, quadratic, and logarithmic ac-
tivations, while MILP can only exactly encode piecewise
linear activation functions such as ReLU or LeakyReLU. We
use a desktop PC with a single GeForce RTX 2080 Ti GPU
and a 16-core Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz,
and we report all certification running times in Appendix C.
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T1-NORM T2-NORM T∞-NORM
δ DEEPPOLY MILP DEEPPOLY MILP DEEPPOLY MILP

0.3 96 97 95 95 90 91
0.5 75 79 70 74 40 50
0.7 23 43 13 33 2 15
0.9 4 21 2 13 1 5

Table 2: Certification rates (%) of CONVSMALL DIFFAI on
MNIST for different Tp-norms with γ =∞.

Robustness certification We demonstrate the precision of
our convex relaxations via robustness certification against
vector field transformations. To that end, we run DeepPoly
and MILP with our interval and spatial constraints and com-
pute the percentage of certified MNIST and CIFAR-10 im-
ages for different networks and values of δ and γ. Note that
γ =∞ corresponds to Section 5.1, and γ <∞ corresponds
to Section 5.2. We limit MILP to 5 minutes and display the
results in Table 1 (showing only T∞-norm results for brevity).
We observe that our interval bounds successfully enable cer-
tification of vector field attacks and that our tightened convex
relaxation for smooth vector fields offers (at times substan-
tial) improvements across all datasets, verifiers, and networks.
For example, for CONVSMALL PGD on MNIST, DeepPoly
certification increases from 6% (γ =∞) to 77% (γ = 0.001)
for δ = 0.4. Similarly, for CONVSMALL DIFFAI on CIFAR-
10, MILP certification increases from 38% (γ =∞) to 69%
(γ = 0.001) for δ = 0.4. In fact, our convex relaxation can
also be applied with the k-ReLU verifier (Singh et al. 2019a)
where it increases certification from 24% (γ = ∞) to 51%
(γ = 0.1) for δ = 0.4 for CONVSMALL PGD on MNIST.
Note that while our tightened convex relaxation increases cer-
tification rates, it does so only for the more restricted setting
of sufficiently smooth deformations.

We also compare the certification rates for the different
Tp-norms on a CONVSMALL network trained to be provably
robust with DiffAI on MNIST. For brevity, we only consider
the case where γ = ∞, and we display the percentage of
certified images in Table 2 (with MILP timeout of 5 minutes).

Scaling to larger networks We evaluate the scalability of
our convex relaxation by certifying spatial robustness of a
large CIFAR-10 ResNet with 108k neurons trained with the
provable defense from Wong et al. (2018). To account for
the large network size, we increase the MILP timeout to 10
minutes. For δ = 0.4, DeepPoly increases certification from
72% (γ = ∞) to 76% (γ = 0.1), whereas MILP increases
certification from 87% (γ = ∞) to 89% (γ = 0.1). The
average running times per image are 77 seconds (γ = ∞)
and 394 seconds (γ = 0.1) for DeepPoly, and 446 seconds
(γ =∞) and 1168 seconds (γ = 0.1) for MILP.

We do not evaluate our convex relaxation on robustness
certification of ImageNet (Deng et al. 2009) models, since
normally trained ImageNet networks are not provably robust
and adversarially trained networks have very low standard
and certifiable accuracy (Gowal et al. 2019). However, our
method effortlessly scales to large images since computing
our interval bounds requires at most 0.02 seconds per image

for MNIST, CIFAR-10, and ImageNet, and the average run-
ning time for computing our linear bounds is 1.63 seconds
for MNIST, 5.03 seconds for CIFAR-10, and 236 seconds for
ImageNet (this could be optimized via parallelization). Thus,
any improvement in robust training on ImageNet would im-
mediately allow us to certify the robustness of the resulting
models against vector field deformations. For completeness,
we note that randomized smoothing approaches do scale to
ImageNet, but only provide probabilistic guarantees for a
smoothed neural network, as we discussed in Section 2.

Approximation error for multi-channel images We re-
call that our interval bounds are only exact for single-channel
images. That is, compared to the single-channel case where
the shape of all deformed images is a box, which we can
compute exactly, the output shape for the multi-channel case
is a high-dimensional object, which is not even polyhedral.
Thus, we over-approximate the output shape with the tightest-
possible box. To calculate the approximation error, we would
have to compare its volume with the volume of the exact
output shape, but computing the exact volume is infeasible.
Consequently, we can only estimate the precision by compar-
ing the volume of our box with the volume of the intervals
obtained from sampling vector fields and computing the cor-
responding deformed images. For example, sampling 10’000
vector fields for δ = 1 yields intervals covering 99.10%
(MNIST), 98.84% (CIFAR-10), and 98.76% (ImageNet) of
our bounds. Based on these results, we conclude that our
bounds are reasonably tight, even for multi-channel images.

7 Conclusion
We introduced a novel convex relaxation for images ob-
tained from vector field deformations and showed that this
relaxation enables, for the first time, robustness certifica-
tion against such spatial transformations. Furthermore, we
tightened our convex relaxations for smooth vector fields by
introducing smoothness constraints that can be efficiently
incorporated into state-of-the-art neural network verifiers.
Our evaluation across different datasets and architectures
demonstrated the practical effectiveness of our methods.
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It is well known that neural networks can be successfully
employed in settings with positive (e.g., personalized health-
care) and negative (e.g., autonomous weapons systems) social
impacts. Moreover, even for settings with potentially bene-
ficial impacts, such as personalized healthcare, the concrete
implementation of these models remains challenging, e.g.,
concerning privacy. In that regard, robustness certification is
more removed from the practical application, as it provides
guarantees for a class of models (e.g., image classification
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networks), irrespective of the particular task at hand. For
example, our method could be applied to certify spatial ro-
bustness for self-driving cars in the same way that it could be
employed to prove robustness for weaponized drones. Since
the vector field deformations considered in our work present
a natural way of describing distortions arising from the fact
that cameras map a 3D world to 2D images, our certification
method can be used to comply with regulations or quality
assurance criteria for all applications that require robustness
against these types of transformations.
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