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Abstract

Recently end-to-end scene text spotting has become a popu-
lar research topic due to its advantages of global optimization
and high maintainability in real applications. Most methods
attempt to develop various region of interest (RoI) operations
to concatenate the detection part and the sequence recogni-
tion part into a two-stage text spotting framework. However,
in such framework, the recognition part is highly sensitive to
the detected results (e.g., the compactness of text contours).
To address this problem, in this paper, we propose a novel
Mask AttentioN Guided One-stage text spotting framework
named MANGO, in which character sequences can be direct-
ly recognized without RoI operation. Concretely, a position-
aware mask attention module is developed to generate atten-
tion weights on each text instance and its characters. It al-
lows different text instances in an image to be allocated on
different feature map channels which are further grouped as
a batch of instance features. Finally, a lightweight sequence
decoder is applied to generate the character sequences. It is
worth noting that MANGO inherently adapts to arbitrary-
shaped text spotting and can be trained end-to-end with only
coarse position information (e.g., rectangular bounding box)
and text annotations. Experimental results show that the pro-
posed method achieves competitive and even new state-of-
the-art performance on both regular and irregular text spotting
benchmarks, i.e., ICDAR 2013, ICDAR 2015, Total-Text, and
SCUT-CTW1500.

Introduction
Scene text spotting has attracted much attention due to its
various practical applications such as key entities recogni-
tion in invoice/receipt understanding, product name identifi-
cation in the e-commerce system, and license plate recog-
nition in the intelligent transportation system. Traditional
scene text spotting systems are usually in three steps: lo-
calizing text regions, cropping text regions from the original
image, and recognizing them as character sequences (Wang
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Figure 1: Illustration of the traditional two-stage text spot-
ting process and the proposed MANGO. Sub-figure (a)
shows the two-stage text spotting strategy by using RoI op-
erations to connect the detection and recognition parts. Sub-
figure (b) is the proposed one-stage text spotting approach,
which can directly output the final character sequences.

et al. 2012; Jaderberg, Vedaldi, and Zisserman 2014; Neu-
mann and Matas 2015; i Bigorda and Karatzas 2017). While
such text spotting model brings many considerable problem-
s, such as (1) errors will be accumulated among the multiple
individual tasks, (2) it is costly to maintain multiple sepa-
rate models, and (3) the model is hard to adapt to various
applications.

Therefore, many works (Li, Wang, and Shen 2017; Bartz,
Yang, and Meinel 2018; He et al. 2018; Sun et al. 2018;
Liao et al. 2019) are proposed to optimize the text spot-
ting process in an end-to-end manner. These methods usual-
ly use various Region of Interest (RoI) operations to bridge
the text detection and recognition parts in a differentiable
way, which form the two-stage framework. Roughly speak-
ing, the early end-to-end methods (Li, Wang, and Shen 2017;
Busta, Neumann, and Matas 2017; Liu et al. 2018; He et al.
2018) used the axis-aligned rectangular RoIs as the connect-
ing modules. These methods are limited to cope with irreg-
ular (e.g., perspective, or curved) text instances since such
kind of RoIs might bring interferences from background or
other texts. To solve this problem, the later methods (Feng
et al. 2019; Qiao et al. 2020; Wang et al. 2020a; Qin et al.
2019; Liu et al. 2020) designed some shape-adaptive RoI
mechanisms to extract the irregular text instances and recti-
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fy them into regular shapes.
In two-stage methods, the recognition part highly depend-

s on the localization results, which needs the detection part
must be capable of capturing accurate text boundaries to e-
liminate the background interference. Thus, training a robust
text detection model relies on accurate detection annotation-
s, such as polygonal or mask annotations used in irregular
text spotting. Naturally, labeling such kind of annotation-
s is laborious and costly. On the other hand, it is not easy
to ensure that the tightly enclosed text regions (supervised
by detection annotations) are the best form for the follow-
ing recognition task. For example, in Figure 1(a), tight text
boundaries may erase the edge texture of characters and lead
to erroneous results. These tight detection results often need
to be expanded manually for adapting to recognition well in
real applications. Besides, performing complex RoI opera-
tions with non-maximum suppression (NMS) after propos-
als is also time-consuming, especially for arbitrary-shaped
regions. Though (Xing et al. 2019) proposed a one-stage
character-level spotting framework with its character seg-
mentation strategy, it is difficult to extend to the situations
with more character classes (e.g., Chinese characters). It al-
so loses crucial context information among characters.

In fact, when people read, they do not need to depict the
accurate contours of text instances. It is enough to identify
text instance via rough text position attended by visual atten-
tion. Here, we rethink the scene text spotting as an attending
and reading problem, i.e., directly reading out the text con-
tents of the coarsely attended text regions all at once.

In this paper, we propose a Mask Attention Guided One-
stage text spotter called MANGO, a compact and powerful
one-stage framework that directly predicts all texts simulta-
neously from an image without any RoI operation. Specifi-
cally, we introduce a position-aware mask attention (PMA)
module to generate spatial attention over text regions, which
contains both the instance-level mask attention (IMA) part
and the character-level mask attention (CMA) part. IMA and
CMA are responsible for perceiving the positions of tex-
t and characters in an image, respectively. Text instances’
features can be directly extracted by the position-aware at-
tention maps rather than explicit cropping operation, which
reserves the global spatial information as much as possible.
Here, different text instances’ features will be mapped into
different feature map channels using dynamic convolutions
(Wang et al. 2020c), as shown in Figure 1(b). After that, a
lightweight sequence decoder is applied to generate charac-
ter sequences in a batch all at once.

Note that MANGO can be end-to-end optimized with on-
ly rough position information (e.g., a rectangular bounding
box, or even the center point of the text instance) as well
as sequence annotations. Benefiting from PMA, this frame-
work can adaptively spot various irregular text without any
rectification mechanism, and is also capable of learning the
reading order for arbitrary-shaped text.

The major contributions of this paper are as follows: (1)
We propose a compact and robust one-stage text spotting
framework named MANGO that can be trained in an end-
to-end manner. (2) We develop the position-aware mask at-
tention module to generate the text instance features into a

batch, and build the one-to-one mapping with final charac-
ter sequences. The module can be trained with only rough
text position information and text annotations. (3) Extensive
experiments show that our method achieves competitive and
even state-of-the-art results on both regular and irregular text
benchmarks.

Related Works
We divide existing scene text spotting methods into the fol-
lowing two categories.

Two-stage End-to-end Scene Text Spotting
Early scene text spotting methods (Liao, Shi, and Bai 2018;
Liao et al. 2017; Wang et al. 2012) usually first localize each
text with a trained detector such as (Liao et al. 2017; Zhou
et al. 2017; He et al. 2017; Ma et al. 2018; Xu et al. 2019;
Baek et al. 2019) and then recognize the cropped text region
with a sequence decoder (Shi et al. 2016; Shi, Bai, and Yao
2017; Cheng et al. 2017; Zhan and Lu 2019; Luo, Jin, and
Sun 2019). To sufficiently exploit the complementarity be-
tween text detection and text recognition, some works have
been proposed to optimize the scene text spotting framework
in an end-to-end manner, in which module connectors (e.g.,
RoI Pooling (Ren et al. 2015a) used in (Li, Wang, and Shen
2017; Wang, Li, and Shen 2019), RoI-Align used in (He
et al. 2018) and RoI-Rotate used in (Liu et al. 2018)) are
developed to bridge the text detection and text recognition
parts. Notice that these methods are incapable of spotting
arbitrarily shaped text.

To address the irregular problems, many recent works
have been proposed to design various adaptive RoI opera-
tions to spot arbitrary-shape text. (Sun et al. 2018) adopted a
perspective RoI transforming module to rectify perspective
text, but this strategy still has difficulty in handling heavily
curved text. (Liao et al. 2019) proposed the mask textspotter
inspired by the two-stage Mask-RCNN for detecting arbi-
trarily shaped text character-by-character, but this method
loses the context information of characters and requires
character-level location annotations. (Qin et al. 2019) di-
rectly adopted Mask-RCNN and an attention-based text rec-
ognizer using an RoI-Masking module to remove the back-
ground interferences before recognition. (Feng et al. 2019)
treated a text instance as a group of feature pieces and adopt-
ed the RoI-Slide operation to reconstruct a straight feature
map. Both (Qiao et al. 2020) and (Wang et al. 2020a) de-
tected the key points around text and applied the thin-plate-
spline transformation (Bookstein 1989) to rectify irregular
instances. To obtain the smooth feature of the curved text,
(Liu et al. 2020) used a Bezier curve to represent the top and
bottom boundaries of text instances, and proposed a Bezier-
Align operation to obtain the rectified feature maps.

The above methods achieve the end-to-end scene tex-
t spotting in a two-stage framework, in which the RoI-based
connectors (e.g., RoI-Align, RoI-Slide and Bezier-Align,
etc.) need to be designed to explicitly crop the feature map.
In two-stage frameworks, the performance highly depend-
s on the text boundary accuracy acquired by the RoI oper-
ations. However, these complicated polygonal annotations
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Figure 2: The workflow of MANGO. We take S=6 as an example. The input features are fed into a Position-aware Mask Atten-
tion module to map different features of instances/characters into different channels. The recognizor finally outputs character
sequences in a batch all at once. A Centerline Segmentation branch is used to generate the rough positions of all text instances.
Prefix ‘R-’ and ‘C-’ separately denote the grid row and column.

are usually expensive and not always suited to the recogni-
tion part, as mentioned previously.

One-stage End-to-end Scene Text Spotting
In general object localization area, many recent advances
have demonstrated the efficiency and effectiveness of one-
stage frameworks studied in Object Detection (Redmon
et al. 2016; Liu et al. 2016; Lin et al. 2017b; Redmon and
Farhadi 2018; Tian et al. 2019; Duan et al. 2019) or In-
stance Segmentation (Wang et al. 2019b; Tian, Shen, and
Chen 2020; Wang et al. 2020c; Xie et al. 2020; Chen et al.
2020). However, scene text spotting is a much more chal-
lenging task. This is because scene text has many particu-
lar traits: arbitrary shaped (e.g., curve, slant or perspective,
etc.), millions of character combinations, and even uncon-
strained reading orders (e.g., from right to left). Recently,
(Xing et al. 2019) proposed a one-stage scene text spotting
approach by directly segmenting single characters. Howev-
er, it loses the sequence context information among individ-
ual characters and is hard to be transferred to more character
classes. To the best of our knowledge, there is no previous
work to cope with the sequence-level scene text spotting task
in a one-stage framework.

Methodology
Overview
We propose a one-stage scene text spotter named MAN-
GO, as shown in Figure 2. The deep features are extracted
through the backbone of ResNet-50 (He et al. 2016) and a
feature pyramid network (FPN) (Lin et al. 2017a). The gen-
erated feature maps are then fed into three learnable mod-
ules: (1) The position-aware mask attention (PMA) mod-
ule for learning spatial attention of individual text instances,
which consists of the instance-level mask attention (IMA)
sub-module and the character-level mask attention (CMA)

sub-module. (2) The sequence decoding task for decoding
the attending instance features as character sequences. (3)
The global text centerline segmentation task for providing
the rough text position information in the inference stage.

Position-aware Mask Attention Module
A one-stage text spotting problem can be treated as a pure
text recognition task in the original image. The critical step
is to build the direct one-to-one mapping between the tex-
t instances to the final character sequences in a fixed or-
der. Here, we develop the position-aware attention (PMA)
module to capture all represented text features once for the
following sequence decoding module. Inspired by the grid
mapping strategy used in (Wang et al. 2019b), we find that d-
ifferent instances can be mapped into different specific chan-
nels and achieve the instance-to-feature mapping. That is,
we first divide the input image into S×S grids. Then the
information around a grid will be mapped into the specific
channel of feature maps by the proposed PMA module.

Specifically, we denote the obtained feature map after fea-
ture extraction as x∈RC×H×W , where C, H and W are
channel size, width and height of the feature map, respec-
tively. We then feed x into PMA (including IMA and CMA
modules) to generate the feature representations of text in-
stances (described bellow).

Instance-level Mask Attention IMA is responsible for
generating the instance-level attention mask and assigning
different instances’ features into different feature map chan-
nels. It is achieved by operating a group of dynamic con-
volutional kernels (Wang et al. 2020c) on the sliced grids,
denoted as GS×S×C . The kernel size is set as 1×1.

Therefore, the instance-level attention mask can be gener-
ated by applying these kernels to the original feature map:

xins = G(x), (1)
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where xins ∈ RS2×H×W . Note that the generated feature
channels are corresponding to the grid numbers.

To learn the dynamic convolutional kernels G, we need
to make grid matching between the text instances and grid-
s. Unlike general object detection or instance segmentation
task, text instances usually appear in a large aspect ratio or
even seriously curved. It is not reasonable to directly use the
center of the text bounding box to perform grid matching.
Hence, we define the term occupation ratio oi,j to represent
how closely a text instance ti matches a grid gj :

oi,j=max

(
Inter(A(gj), A(ti))

A(gj)
,
Inter(A(gj), A(ti))

A(ti)

)
,

(2)
where A(.) is the region area and Inter(., .) is the intersec-
tion area of two regions. We say that text instance ti occu-
pies a grid gj if oi,j is larger than a preset threshold µ. Then
the feature channel j of xins is in charge of learning the at-
tention mask of text ti. In our experiments, µ is set to 0.3.
Note that, in the training stage, occupation ratio is calculat-
ed based on the shrunk detected ground truth, such as text
centerline regions.

For example in Figure 2, we set S=6. The word ‘WEL-
COME’ occupies the (row-2, col-3) and (row-2,col-4) grids.
Thus, the 9-th ((2−1)×6+3) and the 10-th ((2−1)×6+4)
grids will predict the same attention mask. If there are two
instances occupying the same grid, we simply choose the
one with a larger occupation ratio.

Character-level Mask Attention As many works (Cheng
et al. 2017; Xing et al. 2019) demonstrated, the character-
level position information can help to improve the recog-
nition performance. This inspires us to design the glob-
al character-level attention submodule to provide the fine-
grained feature for the subsequent recognition task.

As shown in Figure 2, CMA first concatenates the origi-
nal feature map x and the instance-level attention mask xins,
and then two convolutional layers (kernel size=3×3) are fol-
lowed to predict the character-level attention mask:

xchar = f(xins ⊕ x), (3)

where xchar ∈ R(S2×L)×H×W and ⊕ means the channel-
wise concatenation. Here, L is the predefined maximum
length of character strings.

With the same grid matching strategy to IMA, if a
text instance ti occupies grid gj at (row-h,col-w), the
((h−1)×S×L+(w−1)×L+k) channel of xchar is in
charge of predicting the text’s k-th character mask. We again
take the word ‘WELCOME’ as an example (See Figure 2).
If L = 25, then the 151-st ((2−1)×6×25+(3−1)×25+1)
channel predicts the attention mask of the character ‘W’, and
the 152-nd channel predicts ‘E’ and so on.

Sequence Decoding Module
Since attention masks of different text instances are allocat-
ed to different feature channels, we can packet the text in-
stance features into a batch. A simple idea is to conduct the
attention fusion operation as used in (Wang et al. 2020b) to
generate the batched sequential features xseq , i.e.,

xseq = x′char ⊗ x′>, (4)

where xseq ∈ RS2×L×C , ⊗ is the matrix multiplication op-
eration. x′char ∈ R(S2×L)×(H×W ) and x′ ∈ RC×(H×W ) are
reshaped matrices of xchar and x, respectively.

Then we can transfer the text spotting problem as a pure
sequence classification problem. The following sequence
decoding network is responsible for generating a batch (S2)
of character sequences. Concretely, we add two layers of
Bidirectional long short-term memory (BiLSTM) (Hochre-
iter and Schmidhuber 1997) on xseq to capture the sequen-
tial relations, and finally output the character sequences by
a fully connected (FC) layer.

xrecog = FC(BiLSTM(xseq)) (5)

where xrecog ∈ RS2×L×M and M is the size of character
dictionary (including 26 letters, 10 digits, 32 ASCII punctu-
ation marks and 1 EOS symbol). In specific, if the length of
the predicted character string is less than L, the rest of the
predictions are supplemented with the EOS symbols.

Since xins are sparse at most time, we only focus on the
positive (oi,j>µ) samples in xins for reducing computation-
al cost. In both training and inference stages, after the com-
putation of Equation (1), we dynamically choose positive
channels of the feature map as follows:

x′ins = ⊕ j∈S2,
ti∈T ,
oi,j>µ

xins[j], (6)

where x′ins ∈ RN×H×W , xins[j] denotes the j-th channel
of xins and T is the set of text instances.N is the dynamic s-
elected number, which equals to the number of grids that are
occupied by texts. Then, xmul in Equation (4) and xrecog in
Equation (5) can be separately rewritten as xseq ∈ RN×L×C
and xrecog ∈ RN×L×M .

Text Centerline Segmentation
The model is now able to output all predicted sequences for
S2 grids separately. However, if there are more than two text
instances in an image, we still need to point out which grid-
s correspond to those recognition results. Therefore, a text
detection branch is required.

Since our method does not rely on the accurate bound-
ary information, we can apply any text detection strategy
(e.g., RPN (Ren et al. 2015b) and YOLO (Redmon et al.
2016)) to obtain the rough geometry information of text
instances. Considering that scene texts might be arbitrary-
shaped, we follow most segmentation-based text detection
methods (Long et al. 2018; Wang et al. 2019a) to learn the
global text centerline region segmentation (or shrunk ground
truth) for individual text instances.

Optimization
Both IMA and CMA modules serve to make the network fo-
cus on the specific instance and character positions, which
can be learned theoretically by only the final recognition
part. However, in complicated scene text scenarios, it might
be difficult for the network to converge without the assis-
tance of position information. Nevertheless, we find that the
model can be easily transferred if it has been pre-trained on
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Figure 3: Illustration of the inference process. The final pre-
dictions are generated by merging all occupied grids’ results
through the character-weighted voting strategy.

the synthetic datasets with character-level supervision in ad-
vance. Therefore, the model can be optimized in two steps.

First, we can treat the learning of IMA and CMA as pure
segmentation tasks. Together with centerline region segmen-
tation, all segmentation tasks are trained using binary Dice
coefficient loss (Milletari, Navab, and Ahmadi 2016), and
the recognition tasks simply use cross-entropy loss. The
global optimization can be written as

L = λ1Lcls + λ2LI + λ3LC + Lrecog, (7)

where Lcls, LI , LC and Lrecog denote the losses generated
by the centerline segmentation, IMA, CMA and recognition,
respectively. λ1, λ2 and λ3 are weighted parameters.

Given the pre-trained weights on synthetic datasets, the
model can be simply optimized at any scene by

L = λLcls + Lrecog. (8)

Note that the pre-training step is actually a one-off task,
and the CMA and IMA will then be mainly learned to fit the
recognition task. In contrast to previous methods that need
to balance the weights of detection and recognition, the end-
to-end results of MANGO are mostly supervised by the final
recognition tasks.

Inference
In the inference stage, the network outputs a batch (S×S) of
probability matrices (L×M ). According to the predictions
of the centerline segmentation task, we can determine which
grids should be treated as valid. We first conduct a Breadth-
First-Search (BFS) to find the individual connected regions.
Many text-like textures can be filtered during this process. S-
ince each connected region may intersect with several grids,
we adopt a character-weighted voting strategy to generate
the final character strings, as shown in Figure 3.

Specifically, we calculate the occupation ratio oi,j of the
connected region iwith the grid j as the weight of each char-
acter. For the k-th character of the instance i, its character-
weighted voting result is achieved by

instance
(k)
i = argmax

 ∑
j∈(S×S)

(oi,j · xrecog[j][k])

 ,

(9)
where xrecog(j, k) ∈ RM is the predicted probability vector
of the k-th character of the j-th grid. Here, the occupation

ratio provides the confidence of each grid, and multiple out-
puts fusion could generate more reliable results. The grid
with the maximum occupation ratio will be treated as the
rough output position, which can be replaced by any form
according to the specific task.

Experiments
Datasets
We list the datasets used in this paper as follows.

Training Data. We use SynthText 800k (Gupta, Vedal-
di, and Zisserman 2016) as the pretraining dataset. Both
instance-level and character-level annotations are exploited
to pre-train the PMA module.

In the finetuning stage, we aim to obtain a general text
spotter supporting both regular and irregular scene text read-
ing. Here, we construct a general dataset used for finetuning,
which includes 150k images from the Curved SynthText (Li-
u et al. 2020), 13k images filtered from COCO-Text (Veit
et al. 2016), 7k images filtered from ICDAR-MLT (Nayef
et al. 2019) as well as all training images in ICDAR2013
(Karatzas et al. 2013), ICDAR2015 (Karatzas et al. 2015)
and Total-Text (Ch’ng and Chan 2017). Note that, here we
use only the instance-level annotations to train the network.

Testing Dataset. We evaluate our method on two stan-
dard text spotting benchmarks ICDAR2013 (Karatzas et al.
2013) (IC13) and ICDAR2015 (Karatzas et al. 2015) (IC15),
which mainly contain horizontal and perspective text, and t-
wo irregular benchmarks Total-Text (Ch’ng and Chan 2017)
and SCUT-CTW1500 (Liu et al. 2019) (CTW1500), which
contains many curved text.

We also demonstrate the generalization ability of our
method in a license plate recognition dataset, CCPD (Xu
et al. 2018).

Implementation Details
All experiments are implemented in Pytorch with 8×32 GB-
Tesla-V100 GPUs.

Network Details. The feature extractor uses ResNet-50
(He et al. 2016) and FPN (Lin et al. 2017a) to obtain fused
features from different feature map levels. Here, the (4×)
feature map with C=256 is used to perform the subsequent
training and testing tasks. L is set to 25 to cover most scene
text words. The BiLSTM module has 256 hidden units.

Training Details. All models are trained by the SGD
optimizer with batch-size=2, momentum=0.9 and weight-
decay=1 × 10−4. In the pretraining stage, the network is
trained with an initial learning ratio of 1 × 10−2 for 10 e-
pochs. The learning rate is divided by 10 every 3 epochs.
In the finetuning stage, the initial learning rate is set to
1 × 10−3. To balance the numbers of synthetic images and
real images in each batch, we maintain the sampling ratio of
1:1 for the Curved SynthText dataset versus the other realis-
tic datasets. The finetuning process lasts for 250k iterations
in which the learning rate is divided by 10 at the 120k-th
iteration and the 200k-th iteration.

We also conduct the data augmentation for all training
processes, including 1) randomly scaling the longer side
of the input images to lengths in the range [720, 1800],
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Dataset Method Input Size End-to-End Word Spotting FPSS W G S W G

IC13

He et al. † (He et al. 2018) - 91.0 89.0 86.0 93.0 92.0 87.0 -
FOTS † (Liu et al. 2018) L-920 88.8 87.1 80.8 92.7 90.7 83.5 22.0
TextNet (Sun et al. 2018) L-920 89.8 88.9 83.0 94.6 94.5 87.0 2.7
Mask TextSpotter∗ (Liao et al. 2019) S-1000 93.3 91.3 88.2 92.7 91.7 87.7 3.1
Boundary (Wang et al. 2020a) L-1280 88.2 87.7 84.1 - - - -
Text Perceptron (Qiao et al. 2020) L-1440 91.4 90.7 85.8 94.9 94.0 88.5 -
MANGO L-1080 89.7 89.3 85.3 94.0 93.4 88.4 9.8
MANGO L-1440 90.5 90.0 86.9 94.8 94.1 90.1 6.3
MANGO∗ L-1440 93.4 92.3 88.7 92.9 92.7 88.3 6.3

IC15

He et al. † (He et al. 2018) - 82.0 77.0 63.0 85.0 80.0 65.0 -
FOTS † (Liu et al. 2018) L-2240 81.1 75.9 60.8 84.7 79.3 63.3 7.5
TextNet (Sun et al. 2018) - 78.7 74.9 60.5 82.4 78.4 62.4 -
Mask TextSpotter∗ (Liao et al. 2019) S-1600 83.0 77.7 73.5 82.4 78.1 73.6 2.0
CharNet R-50 (Xing et al. 2019) - 83.1 79.2 69.1 - - - -
TextDragon (Feng et al. 2019) - 82.5 78.3 65.2 86.2 81.6 68.0 -
Unconstrained (Qin et al. 2019) S-900 83.4 79.9 68.0 - - - -
Boundary (Wang et al. 2020a) 1080×1920 79.7 75.2 64.1 - - - -
Text Perceptron (Qiao et al. 2020) L-2000 80.5 76.6 65.1 84.1 79.4 67.9 -
MANGO L-1440 80.3 77.8 66.1 84.7 81.8 69.0 6.2
MANGO L-1800 81.8 78.9 67.3 86.4 83.1 70.3 4.3
MANGO∗ L-1800 85.4 80.1 73.9 85.2 81.1 74.6 4.3

Table 1: Results on IC13 and IC15. ‘S’, ‘W’ and ‘G’ mean recognition with strong, weak and generic lexicon, respectively.
Superscript ‘*’ means that the method uses the specific lexicons from (Liao et al. 2019). Methods marked with † are not support
for irregular text. Prefix ‘L-’ and ‘S-’ separately represent that resizing input images by the longer and shorter side.

Method End-to-End FPSNone Full
Mask TextSpotter (Liao et al. 2019) 65.3 77.4 2.0
CharNet R-50 (Xing et al. 2019) 66.2 - 1.2
TextDragon (Feng et al. 2019) 48.8 74.8 -
Unconstrained (Qin et al. 2019) 67.8 - -
Boundary (Wang et al. 2020a) 65.0 76.1 -
Text Perceptron (Qiao et al. 2020) 69.7 78.3 -
ABCNet (Liu et al. 2020) 64.2 75.7 17.9
MANGO (1280) 71.7 82.6 8.9
MANGO (1600) 72.9 83.6 4.3

Table 2: Results on Total-Text. ‘Full’ indicates lexicons of
all images are combined. ‘None’ means lexicon-free. The
number in brackets is the resized longer side of input image.

2) randomly rotating the images by angles in the range
[−15◦, 15◦], and 3) applying random brightness, jitters, and
contrast to input images.

According to the density of text instances in differen-
t datasets, we set S=60 for evaluation of IC15 and S=40
for evaluations of IC13, Total-Text and CTW1500. We sim-
ply set all weight parameters as λ1=λ2=λ3=λ=1.

Testing Details. Since the input image’s size is an im-
portant essential impacting performance, we will report the
performance in different input scales, i.e., keep the original
ratio and resize the longer side of the image into a fixed val-
ue. All images are tested at a single scale.

Since current implementation only provides rough posi-
tions, we modify the end-to-end evaluation metric of (Wang,
Babenko, and Belongie 2011) by considering all detection
results with an IoU>0.1. In such case, the performance of
previous methods will even be decreased due to the decline
of precision by some low-grade proposal matching.

Method End-to-End FPSNone Full
Text Perceptron (Qiao et al. 2020) 57.0 - -
ABCNet (Liu et al. 2020) 45.2 74.1 -
MANGO (1080) 58.9 78.7 8.4

Table 3: Results on CTW1500. “Full” indicates lexicons of
all images are combined. “None” means lexicon-free. The
number in brackets is the resized longer side of input image.

Results on Text Spotting Benchmarks
Evaluation of regular text We first evaluate our method
on IC13 and IC15, following the conventional evaluation
metrics (Karatzas et al. 2015), two evaluation items (‘End-
to-End’ and ‘Word Spotting’) based on three different lexi-
cons (Strong, Weak, and Generic).

Table 1 shows the evaluation results. Compared to pre-
vious methods evaluated with conventional lexicons, our
method achieves the best results on the ‘Generic’ item (ex-
cept for the end-to-end generic result on IC15), and obtains
the competitive results on the rest evaluated items (‘Strong’
and ‘Weak’). Compared to the recent state-of-the-art, Mask
TextSpotter (Liao et al. 2019) using the specific lexicon, our
method obviously outperforms it on all evaluation items.

For the inference speed, though FOTS obtains the high-
est FPS (Frames Per Second), it fails to handle the irregu-
lar cases. Compared with those irregular-based methods, our
method achieves the highest FPS.

Evaluation of irregular text We test our method on Total-
Text, as shown in Table 2. We see that our method surpasses
the state-of-the-art by 3.2% and 5.3% in “None” and “Ful-
l” metrics. Notice that even without an explicit rectification
mechanism, our model can handle irregular text well only
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k=4

… …

Figure 4: Visualization of End-to-End recognition on IC15 and Total-Text with some cropped instances’ CMA, where S = 40.
The right parts of the images show all the positive predictions before character voting. Two numbers in the brackets (.,.)
separately mean the row and column number.

k=1 k=2 k=3 k=4 k=5

k=6 k=7 k=8 k=9 k=10

k=1 k=2 k=3 k=4

k=5 k=6 k=7 k=8

Figure 5: Visualization of the end-to-end results on SCUT-CTW1500 with the CMA maps in different character positions.

S
IC13 IC15 Total-Text

S W G FPS S W G FPS None Full FPS
20 83.2 82.5 78.7 6.58 33.8 33.0 29.1 5.12 46.9 58.5 4.49
30 88.8 88.3 85.9 6.32 69.4 67.1 57.8 4.57 69.8 80.6 4.37
40 90.5 90.0 86.9 6.25 80.4 77.3 66.8 4.43 72.9 83.6 4.28
50 90.3 89.8 86.7 6.12 81.6 78.8 67.8 4.38 73.1 83.0 4.23
60 89.9 89.3 85.7 6.07 81.8 78.9 67.3 4.27 72.2 82.9 4.21

Table 4: Evaluation results under different grid numbers.

driven by the recognition supervision. Though the inference
speed is about 1/2 of ABCNet with the test scale of 1280,
our method achieves the remarkable performance gains.

We also evaluate our method on CTW1500. There are few
works that reported the end-to-end results because it main-
ly contains the line-level text annotations. To adapt to this
situation, we retrain the detection branch on the training set
of CTW1500 to learn the line-level centerline segmentation,
and fix the weights of the backbone and other branches. Note
that the recognition will not be affected and still output the
word-level sequences. The final results will be simply con-
catenated from left to right according to the inferred con-

Supervision Type IC15 Total-Text
S W G None Full

Strong 81.8 78.9 67.3 72.9 83.6
Weak 81.8 78.3 64.0 69.7 80.6

Table 5: Results under different detection supervision types.
‘Strong’ means the original annotations, and ‘Weak’ means
rectangular bounding box annotations.

nected regions. Chinese characters are set as NOT CARE.
Results are shown in Table 3. We find that our method ob-

viously surpasses previous advances by 1.9% and 4.6% on
‘None’ and ‘Full’ metrics, respectively. Therefore, we be-
lieve that if there are enough data with only line-level anno-
tations, our model can adapt to such scenarios well.

Visualization Analysis
Figure 4 visualizes the end-to-end text spotting results on
IC15 and Total-Text. We detailedly show the prediction re-
sults of each positive grids (oi,j>0.3) before character vot-
ing. We see that our model can correctly focus on the cor-
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Method Base(100k) DB FN Rotate Tilt Weather Challenge AP
SSD300 + HC 98.3 96.6 95.9 88.4 91.5 87.3 83.8 95.2
RPnet(Xu et al. 2018) 98.5 96.9 94.3 90.8 92.5 87.9 85.1 95.5
MANGO 99.0 97.1 95.5 95.0 96.5 95.9 83.1 96.9

Table 6: End-to-End recognition precision results on CCPD.

responding position and learn the complex reading order of
character sequences for arbitrary-shaped (e.g. curved or ver-
tical) text instances. After the character voting strategy, the
word with the highest confidence will be generated.

We also demonstrate some of the results of CTW1500
with their visualized CMA, as shown in Figure 5. Note that
we only fine-tune the line-level segmentations part based on
the dataset’s position labels while fixing the remaining parts.
Here, We visualize the feature maps of CMAs by overlaying
all grids’ attention map in the same character position (k) as:

x∗char[k] =
∑
i∈S2

xchar[i][k] (10)

where x∗char[k] ∈ RL×H×W , and k = 1, 2, ..., L. As shown
in Figure 5, we see that model indeed pays attention to all
correct character positions of all text instances in the image
at the same time. At the end of each text instance, there is a
highlight region that means the ‘EOS’ position’s attention.

Ablation Studies
Ablation of grid numbers The grid number S2 is a cru-
cial parameter affecting the final results. If S is too small,
there will be too many texts occupying the same grid. Oth-
erwise, too big of S will result in more computation cost.
Here, we conduct experiments to find the feasible value of S
for different datasets.

From Table 4, we find that the best S for both IC13 and
Total-Text is 40. The value for IC15 is 60. This is because
IC15 contains more dense and small instances. In sum, the
overall performance increases along with increasing of S
and becomes stable when S≥40. Of course, FPS will de-
crease slightly along with increasing of S.

Evaluation of Coarse Position Supervision As men-
tioned above, our method can be learned well with only
rough position information. To demonstrate this, we also
conduct the experiments to transfer all localization annota-
tions as the form of rectangular bounding boxes. We simply
adopt the RPN head as the detection branch.

Table 5 shows the results on IC15 and Total-Text. Even
with the rough position supervision, MANGO only decreas-
es the performance ranging from 0% to 3%, and is compara-
ble with the state-of-the-arts. Note that, the coarse position
only serves the grid selection so that it can be simplified as
much as possible according to specific tasks’ requirement.

Challenging License Plate Recognition without
Position Annotations
To demonstrate the model’s generalization ability, we con-
duct experiments to evaluate the end-to-end license plate
recognition results on a public dataset, CCPD (Xu et al.

Figure 6: Visualization result on CCPD. Since S = 1, no
position information is involved.

2018). For fairness, we follow the same experimental set-
tings and use the initially released version of the dataset with
250k images. The CCPD-Base dataset is separated into two
equal parts: 100k samples for training and 100k samples for
testing. There are six complex testing sets (including DB,
FN, Rotate, Tilt, Weather, and Challenge) for evaluating the
algorithm’s robustness, which have 50k images in total.

Since each image in CCPD contains only one plate, our
model can be further simplified by removing the detec-
tion branch to predict the final character sequence directly.
Therefore, the grid number is reduced to S = 1, and the
maximum sequence length is set to L = 8. We directly fine-
tune the model (having been pre-trained by SynthText) on
CCPD training set with only the sequence-level annotations,
and then evaluate the final recognition accuracy on the above
seven testing datasets. The testing phase is performed on the
original image with a size of 720× 1160.

Table 6 shows the end-to-end recognition results. Al-
though the proposed method is not designed for the license
plate recognition task, it still can be easily transferred to such
scenarios. We see that the proposed model outperforms pre-
vious methods in 5 out of 7 test sets and achieves the highest
average precision. Figure 6 shows some visualization results
on the CCPD test sets. The failure samples are mainly from
the situation that images are too blurred to be recognized.

This experiment demonstrates that in many situations
with only one text instance (e.g., industrial printing recog-
nition or meter dial recognition), a good End-to-End model
can be obtained without detection annotations.

Conclusion
In this paper, we propose a novel one-staged scene text spot-
ter named MANGO. This model removes the RoI operations
and designs the position-aware attention module to coarse-
ly localize the text sequences. After that, a lightweight se-
quence decoder is applied to obtain all of the final char-
acter sequences into a batch. Experiments show that our
method achieves competitive and even state-of-the-art re-
sults on popular benchmarks.
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