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Abstract

Pedestrian path prediction is an essential topic in computer vi-
sion and video understanding. Having insight into the move-
ment of pedestrians is crucial for ensuring safe operation in
a variety of applications including autonomous vehicles, so-
cial robots, and environmental monitoring. Current works in
this area utilize complex generative or recurrent methods to
capture many possible futures. However, despite the inher-
ent real-time nature of predicting future paths, little work
has been done to explore accurate and computationally ef-
ficient approaches for this task. To this end, we propose a
convolutional approach for real-time pedestrian path predic-
tion, CARPe. It utilizes a variation of Graph Isomorphism
Networks in combination with an agile convolutional neural
network design to form a fast and accurate path prediction
approach. Notable results in both inference speed and pre-
diction accuracy are achieved, improving FPS considerably
in comparison to current state-of-the-art methods while de-
livering competitive accuracy on well-known path prediction
datasets.

Introduction
Enabling algorithms with the ability to predict future tra-
jectories of pedestrians has received increasing attention in
recent years (Rudenko et al. 2019). Such work is well war-
ranted, with applications in societally impactful technolo-
gies like self-driving cars, social robotics, and environmental
monitoring systems. However, this task has many challeng-
ing properties: 1) When choosing their future steps, pedestri-
ans typically have an intrinsic goal from which they plan ac-
cordingly. Capturing this intent from outside observation re-
quires a fundamental understanding of human movement. 2)
Person-to-person social interactions often influence the fu-
ture path of a pedestrian, for example, when avoiding colli-
sions or traveling in groups. Therefore, modeling this social
effect is imperative for robust path prediction. 3) Predicting
the future is inherently time-sensitive, as the information is
only useful for decision making if obtained quickly. There-
fore, meeting real-time processing constraints is essential for
the safety and usefulness of a path prediction algorithm.

Pioneering works have attempted to incorporate social ef-
fects in pedestrian trajectory prediction (Helbing and Molnár
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Figure 1: A high-level illustration of our proposed method,
CARPe. Past pedestrian positions from t1 to the current time
step tβ are fed into the model. This information is propa-
gated through a graph and convolutional neural network in
an end-to-end fashion, producing future predicted trajecto-
ries for the next T time steps. In the depicted output, we
show potential examples of intrinsic non-linearities (green),
as well as social effects resulting from collision avoidance
(yellow) and traveling groups (cyan and red).

1995; Pellegrini et al. 2009a; Yamaguchi et al. 2011). These
approaches relied mainly on hand-crafted rules, and were
often limited in scale and function. More recent works have
focused on developing data-driven approaches to tackle the
path prediction problem. Social LSTM (Alahi et al. 2016)
formed a pooling mechanism with recurrent neural networks
(RNNs) to provide social context to the prediction. Since
then, many approaches have added the use of Generative Ad-
versarial Networks (GANs) (Goodfellow et al. 2014) within
such frameworks, aiming to model the distribution of possi-
ble future trajectories (Gupta et al. 2018; Li 2019; Sadeghian
et al. 2019). Most recently, the work of Kosaraju et al.
(Kosaraju et al. 2019) utilized a graph neural network to
model the social situation in addition to an RNN-based GAN
architecture. However, the existing approaches often have
two major shortcomings. First, they rely on very complex
models with many parameters, which makes the real-time
execution on embedded devices nearly impossible. Second
and more importantly, they use multiple runs over video
frames that inherently violate the real-time nature of path
prediction and limit applicability to real-world problems.

To address the challenges of real-time path prediction, this
paper proposes CARPe Posterum. CARPe is a data-driven
approach which effectively captures both intrinsic and so-
cial non-linearities of human trajectories, within real-time
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constraints. Figure 1 shows the high-level mechanism of
CARPe. Our method mainly consists of two networks, a
graph neural network and a convolutional neural network,
knitted together in an end-to-end fashion with efficiency in
mind. CARPe harnesses the strong and proven discrimina-
tive power of recently proposed Graph Isomorphism Net-
works (Xu et al. 2019) to gather social context, and an inten-
tionally designed CNN architecture for effective path predic-
tion. Our contributions are as follows:

• A novel path prediction method, which captures both non-
linear intrinsic and social effects.

• An agile end-to-end network architecture capable of real-
time inference on low-power GPU and CPU devices.

Overall, notable results in both inference speed and pre-
diction accuracy are achieved, improving FPS by at least 8x
in comparison to current state-of-the-art methods while still
producing competitive accuracy results on well-known path
prediction datasets.

Related Work
Pedestrian Path Prediction
Early works in pedestrian path prediction focused on the
development of Gaussian processes and energy models to
understand human behavior and movement (Helbing and
Molnár 1995; Pellegrini et al. 2009a; Tay and Laugier 2008;
Pellegrini, Ess, and Van Gool 2010; Yamaguchi et al. 2011).
However, these methods often require many predefined rules
for pedestrian interactions, and are limited to predicting a
short time into the future. The classic work for activity fore-
casting (Kitani et al. 2012) approaches this task from a dif-
ferent angle. Instead of predicting specific locations of a tra-
jectory, this method applies inverse control theory to deter-
mine the actions/motions of persons in a scene and form po-
tential paths from such information. However, this method
relies on static environments, and does not consider the dy-
namic social aspects of the environment.

Recurrent architectures are common options for recent
works in path prediction, given their theoretical ability to
capture an infinite history of inputs (Hochreiter and Schmid-
huber 1997; Graves 2013). (Alahi et al. 2016; Manh and
Alaghband 2018; Zhang et al. 2019; Xu, Piao, and Gao
2018), utilize Long Short-Term Memory (LSTM) based
RNNs at the forefront of their approaches to understand and
predict human trajectories. Liang et al. (Liang et al. 2019)
propose an LSTM-based joint trajectory and activity pre-
diction system that incorporates scene segmentation maps,
pedestrian visual features, and person keypoints to better
inform both tasks. However, in practice, the infinite his-
tory capabilities of RNNs are largely absent and the forced
sequential operation within the RNN limits its paralleliza-
tion potential in modern hardware (Bai, Kolter, and Koltun
2018). This challenges the effectiveness of RNNs versus
purely convolutional networks in sequence modeling tasks,
and makes such RNN approaches not ideal for deployable
real-time inference.

Many recent works have focused on incorporating gener-
ative models for the path prediction problem. In (Gupta et al.

2018), Gupta et al. built on the work of (Alahi et al. 2016)
by integrating a social pooling mechanism into an LSTM-
based GAN network. (Sadeghian et al. 2019) takes this work
further, combining scene-level visual features with attention
modules for physical and social relations. (Li 2019) aims
specifically to capture the latent decision, or intrinsic ele-
ments, of pedestrian movements in a generative fashion with
statistical sub-networks. In the graph domain, (Ivanovic and
Pavone 2019) forms a spatial-temporal graph architecture
with a combination of Conditional Variational Autoencoders
(CVAEs) (Sohn, Lee, and Yan 2015) as a generative model
and LSTM units for the temporal dimension. Most recently,
Kosaraju et al. form an RNN-based generative approach that
includes the use of Bicycle-GANs (Zhu et al. 2017) and
Graph Attention Networks (GAT) (Veličković et al. 2018).
These generative approaches typically rely on the ability to
repeatedly inference the model and generate many samples
per pedestrian, which neglects the inherent real-time con-
strains of practical path prediction.

In contrast to these works, our method relies neither on re-
current nor generative architectures. We use a convolutional
approach for hardware-friendliness and deterministic real-
time inference. For social context, we formulate a Graph
Neural Network (GNN) based on recent theoretical work
in GNNs (Xu et al. 2019) to maximize its discriminative
power. In this way, we tackle both intrinsic and social ef-
fects of pedestrian path prediction while achieving real-time
inference capabilities on low-power devices.

Graph Neural Networks
Graph Neural Networks (GNNs) have seen great progress
in recent years. Naturally, GNNs aim to take advantage of
the powerful learning ability of neural networks for non-
Euclidean data. Data representations for molecular models
or social media interactions are naturally inclined to graph
representations, and therefore require a unique neural net-
work definition. Typically, each node in the graph holds
a feature, which is operated on across the graph structure.
Such operations are utilized for a variety of objectives such
as forming new node features, performing node classifi-
cation, or completing graph-level classification (Wu et al.
2021).

GNNs are implemented with two major approaches, spec-
tral and spatial (Wu et al. 2021). Spectral methods, such
as (Kipf and Welling 2016; Defferrard, Bresson, and Van-
dergheynst 2016), utilize mathematical formulations rooted
in graph signal processing to perform a graph Fourier Trans-
form and subsequent convolution. However, these methods
rely on the Laplacian eigenbasis, which is dependent on the
graph structure. This property hinders the viability of spec-
tral methods when dynamic graph structures are preferred.

Spatial methods. e.g. (Hamilton, Ying, and Leskovec
2017; Veličković et al. 2018; Xu et al. 2019), do not require
such assumptions, as they operate on each node relative to
its neighbors, allowing for dynamic graph structures. Typi-
cally, for a given node, the features of its neighbors are ag-
gregated, and then combined with the current node feature.
The aggregate and combine operations differ in the various
spatial GNN formulations. This process can be repeated to
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form more abstract node representations, as well as increase
the reach of a given node in a sparsely-connected graph.
GraphSAGE (Hamilton, Ying, and Leskovec 2017) pro-
posed an inductive learning framework with max-pooling
aggregation across node features. Graph Attention Networks
(GAT) (Veličković et al. 2018) perform the aggregation
and combine steps together using a weighted sum approach
with attention. However, these GNN formulations have been
largely based on empirical evidence, without a supporting
theoretical foundation for optimal behavior. In their recent
work (Xu et al. 2019), Xu et al. investigate the theoreti-
cal properties of GNNs to determine optimal discrimina-
tive power based on the Weisfeiler-Lehman (WL) graph iso-
morphism test (Weisfeiler and Lehman 1968). They present
a new GNN formulation, termed Graph Isomorphism Net-
works (GIN), that are provably among the most expressive
GNN variants. In this work, we use the GIN operators as a
basis for our graph network and reformulate for use in path
prediction.

Preliminary: Graph Isomorphism Networks
For graph convolutional operations, the typical aim is to an-
alyze a graph structure and the features of its nodes, pro-
ducing meaningful representations in an embedding space
across different graphs. Ideally, for a GNN to be maximally
discriminative, two separate nodes should only map to the
same location in the embedding space if all aspects of node
and neighborhood are identical. These aspects include both
the node features and neighborhood structure. Therefore, we
expect to gather a unique feature embedding in all other
cases. Testing for discriminative power in a GNN can be
analogously drawn to the task of graph isomorphism tests,
or distinguishing whether two graphs are topologically iden-
tical.

A well-known test for determining such properties is the
WL isomorphism test, as it has been found to effectively
classify a broad class of graphs (Weisfeiler and Lehman
1968). Therefore, Xu et al. (Xu et al. 2019) use the WL iso-
morphism test as a theoretical guide in determining the dis-
criminative power of GNNs. In their work, the authors find
that a GNN is as powerful as the WL isomorphism test if its
aggregation (and graph level readout operation, as used in
node classification) is injective. Therefore, the authors de-
fine a joint aggregation/combination operator as shown in
Equation 1.

h′i = φ

(
(1 + ε) · hi +

∑
j∈N(i)

hj

)
(1)

Here, node features hj are from nodes in the neigh-
borhood N(i). hi is the feature for node i, ε is a train-
able parameter, φ indicates an Multilayer Perception (MLP),
and h′i is the updated node feature. In this work, we em-
ploy the findings of (Xu et al. 2019) and this joint aggre-
gation/combination operator to formulate a graph for the
pedestrian path prediction, as will be detailed in a later sec-
tion.

CARPe Posterum: Method
The task of pedestrian path prediction is to predict the posi-
tion of a pedestrian for T time steps in the future given the
past β observed positions of the pedestrian. The goal is to ac-
complish this task as accurately as possible, while maintain-
ing real-time inference capabilities. Two major factors that
contribute to the future trajectory of a pedestrian are the in-
trinsic location goal of that pedestrian and the social context
of the environment. We therefore aim to develop a model to
capture these factors using the observed trajectories of all P
pedestrians in the scene at a given time step.

For the remainder of this paper, we will distinguish these
various elements as follows: Past pedestrian trajectories take
the form of absolute coordinates A and relative coordinates
R, defined as Ai = {(xti, yti) |t = 1, · · · , β} and Ri ={(
xti − x1i , yti − y1i

)
|t = 1, · · · , β

}
, ∀i ∈ {1, 2, · · · , P}.

The future trajectories Ŷ of the pedestrians are predicted,
and outputted as Ŷi = {(xti, yti) |t = β + 1, · · · , T}, ∀i ∈
{1, 2, · · · , P}. These predictions are compared with the
ground truth future trajectories Y for evaluation.

CARPe Posterum: Model Overview
Overall, CARPe’s model consists of two main segments: 1)
the Graph Module and 2) the Prediction Module. Figure 2
visualizes the full data mechanisms and module internals of
CARPe. The role of the graph module is to produce features
for each observed pedestrian that incorporate a broader so-
cial context across the scene. These features, along with the
original observed trajectories of the pedestrians are both uti-
lized by the prediction module to produce the future trajec-
tories for each pedestrian. In this task, all trajectories for all
pedestrians in the scene are inferred simultaneously, taking
P pedestrian features as input and outputting P future tra-
jectories in a single pass. We will explain each module and
their functional details in the following sections.

CARPe Posterum: Graph Module
Graph Formulation. A graph G = (V,E) is constructed,
where V and E are the sets of nodes and edges respectively.
All P pedestrians in the scene are represented as nodes in
V = {V0, V1, · · · , VP }. Each pedestrian in the graph has a
corresponding node feature hi held within the graph struc-
ture. The GNN performs joint aggregation and combination
operations on G to produce an output set of node features
h′ = {h′0, h′1, · · · , h′P }.

To form the input node feature, Ai and Ri are concate-
nated for a given pedestrian, and inferenced through a single
fully-connected layer ρ. The absolute coordinates define the
global position of the pedestrian, while the relative features
act as a normalized form of input to better understand the
pedestrian’s past movement pattern.

Graph Operation. Upon obtaining the node features, the
graph is constructed as previously described. In order to
maintain global context, the graph is fully connected. This
allows the network to learn the relevant information needed,
rather than predefining with handcrafted rules how relational
connections should be made. To collect information across
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Figure 2: An overview of the full model architecture and data mechanisms for CARPe. Listed dimensions are in the form
row × column × channel. Observed positions for β time steps are formed into trajectories for each of the P pedestrians
present in the scene. Embedded absolute and relative trajectories are inputted into the graph module to gather social context
features. The Prediction Module CNN then utilizes these features along with the relative coordinates of each pedestrian to
produce informed future trajectory predictions. In streaming applications, the algorithm receives detected coordinates as a
stream of input, and maintains a buffer of the past and present coordinates for β time steps. Therefore, in a sliding-window
fashion over time, the algorithm predicts the future path for the next T time steps.

the graph, we define an aggregation and combination op-
eration. The joint operation is represented in Equation 2,
based on the GIN operation described in the preliminary. In
(Xu et al. 2019), Xu et al. only employ one MLP in their
base operation. However, we reason that abstracting the rep-
resentation of the target node and the social context sepa-
rately before combining will enable a deeper understanding
and integration of neighboring nodes in context. Therefore,
CARPe’s graph operator performs an MLP operation on the
summed neighborhood features and the node features with
two separate MLPs φ0 and φ1. The MLP architectures are
of two layers each for φ0 and φ1 in order to satisfy the uni-
versal approximation theorem (Hornik et al. 1989; Hornik
1991) and the recommendations for GIN operations as de-
fined in (Xu et al. 2019).

h′i = φ0

(
α · hi

)
+ φ1

( ∑
j∈N(i)

hj

)
(2)

This process is illustrated in the top portion of Figure 2,
where α = 1 + ε from Equation 1. Only a single graph
operation is completed across the graph. This is done for
two reasons. First, because the graph is fully connected, all

pedestrians are accounted for in a single operation. Second,
in aiming for real-time feasibility, limiting the number of
operations allows our method to efficiently operate at scale.
The output node features h′i ∀i ∈ {1, 2, · · · , P} are subse-
quently employed in the Prediction Module.

CARPe Posterum: Prediction Module
Typically, Recurrent Neural Networks (RNNs) are em-
ployed as the basis for state-of-the-art path prediction meth-
ods. Given the theoretical ability of RNNs to capture infor-
mation along infinitely many time steps, such architectures
have been frequently chosen for sequence-based problems,
particularly the LSTM variant. However, recent works in the
sequence modeling domain (Bai, Kolter, and Koltun 2018;
Elbayad, Besacier, and Verbeek 2018; Gehring et al. 2017)
have found convolutional architectures to be advantageous
over RNNs in many ways. Convolutional approaches to se-
quence modeling often form conceptually simpler networks,
have more stable gradients and allow for greater paralleliza-
tion, while producing comparable or improved accuracies
on sequence data. Additionally, CNNs are well established
for effectively capturing correlations in the spatial domain
(Goodfellow, Bengio, and Courville 2016). The task of path
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prediction presents itself as both a spatially and temporally
sensitive task, receiving and predicting (xti, y

t
i) coordinate

values across time. Therefore, we find that utilizing a convo-
lutional architecture rather than an RNN may be more effec-
tive for the path prediction problem, while offering desirable
hardware-friendly characteristics for real-time inference.

To this end, we form our Prediction Module with a sim-
ple CNN design to maximize spatial and temporal under-
standing, taking full advantage of the convolutional archi-
tecture approach. In our model, we first provide as input
Si ∈ Rβ×2×2, formed from the relative feature for a pedes-
trian Ri ∈ R2β and their corresponding output node feature
h′i ∈ R2β concatenated together. In Si, the (xti, y

t
i) coordi-

nate pairs are mapped with temporal order in the rows. We
therefore map both the spatial coordinate information and
temporal context into the 2D domain, where the CNN can
advantageously correlate. This input structure provides the
ability to naturally analyze the observed trajectory at var-
ious time granularites, adjusting filter size and stride, in a
hardware-friendly fashion. In RNNs, such analysis would be
impractical and computationally inefficient, requiring multi-
ple LSTMs per pedestrian. To provide additional social con-
text to the input of the Prediction Module, the output node
feature h′i is placed as the second channel in Si ∈ Rβ×2×2.

The layers of the network are designed to capture changes
in velocity and position with a bottom-up approach. First,
a 2x2 filter is convolved across the input, as illustrated in
Figure 2. By convolving across just two time steps for each
kernel, we emphasis model awareness of the high frequency
movement and velocity changes over the observed period.
As the feature progresses through the network, 2x1 filters
are employed to find lower frequency trends, gathering the
context of the trajectory across more time steps in the sub-
sequent compressed representations. After the third network
layer, CARPe produces a tensor in R

β
8×1×2T that obtains

a holistic understanding of the observed trajectory. A subse-
quent β8 x1 convolution transforms this feature into the pre-
dicted trajectory.

Experiments
Evaluation Methodology
We evaluate our model on two widely used datasets in the
path prediction domain, ETH (Pellegrini et al. 2009b) and
UCY (Lerner, Chrysanthou, and Lischinski 2007). The ETH
dataset is split into two portions (ETH, HOTEL), and UCY
is split into three portions (UNIV, ZARA1, ZARA2). All
portions are from distinct scenes other than ZARA1 and
ZARA2, which are the same scene at different times. These
datasets consist of a variety of pedestrian navigation situa-
tions, including many non-linear behaviors and social inter-
actions. We utilize the same data and evaluation procedures
as in (Gupta et al. 2018), and commonly used in path pre-
diction works (Alahi et al. 2016; Kosaraju et al. 2019; Liang
et al. 2019; Sadeghian et al. 2019). Therefore, a leave-one-
out approach is applied for training and testing among the
five scenarios. The data is collected as real-world coordi-
nates in meters, with observations taken for 8 time steps (3.2
seconds) and predictions made for the next 12 time steps

(4.8 seconds). Two metrics are utilized for quantitative eval-
uation on the ETH/UCY datasets:

• Average Displacement Error (ADE) - The average L2 dis-
tance between the ground truth (x, y) positions Y and pre-
dicted Ŷ for all T predicted time steps over all P pedes-
trians.

ADE =

∑P
i=1

∑T
t=1

∥∥∥Y ti − Ŷ ti ∥∥∥
2

P ∗ T
(3)

• Final Displacement Error (FDE) - The average L2 dis-
tance between the ground truth (x, y) positions Y and pre-
dicted Ŷ for only the final time step T over all P pedes-
trians.

FDE =

∑P
i=1

∥∥∥Y Ti − Ŷ Ti ∥∥∥
2

P
(4)

All inference timing analyses are run with a frame batch
size of one to accurately measure latency and throughput for
a realistic streaming input scenario. Note that all pedestri-
ans in a scene at time t are processed simultaneously, and
therefore each singular frame input still inherently requires
a pedestrian batch of P trajectories.

Implementation Details
For the dimensions mentioned in Figure 2, β = 8 and T =
12, in accordance to the evaluation methodology. The MLPs
φ0 and φ1 contain two hidden layers with input dimensions
of 8β and 4β. The embedding layer ρ has an input dimen-
sion of 4β and upscales by 2. We implemented the model in
PyTorch1 and trained it on an Nvidia Titan V GPU. An open-
source PyTorch extension library for graph convolution (Fey
and Lenssen 2019) was used as the basis for implementing
the Graph Module. The model was trained end-to-end with
a frame batch size of 64 for 80 epochs. We use the Adam
(Kingma and Ba 2014) optimizer with a learning rate of 0.01
and a gradient clip of 5. A mean squared error loss was used
for training.

Quantitative Results
Comparison Approaches: We compare our model to
common baseline methods and current state-of-the-art ap-
proaches in path prediction. Baseline methods include Lin-
ear, a simple linear regressor, and Social LSTM (Alahi
et al. 2016) (S-LSTM), a classic method utilizing LSTMs
and social pooling. Social GAN (Gupta et al. 2018) adds
generative models to the Social LSTM approach. SGAN-
P and SGAN indicate the variants with and without the
social pooling module as reported in (Gupta et al. 2018).
Sophie (Sadeghian et al. 2019) employs an LSTM-based
GAN module with social and physical attention. Social Bi-
GAT (Kosaraju et al. 2019) (S-BiGAT) incorporates LSTMs,
Bicycle-GANs (Zhu et al. 2017) and physical attention, with
GAT (Veličković et al. 2018) networks to model social el-
ements. Trajectron (Ivanovic and Pavone 2019) forms a
spatial-temporal graph with a combination of a generative

1https://github.com/TeCSAR-UNCC/CARPe Posterum
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model (CVAEs) and LSTM units. The zbest configuration as
described in (Ivanovic and Pavone 2019) is used for compar-
isons. Next (Liang et al. 2019) is a state-of-the-art approach
that employs visual pedestrian features and scene segmenta-
tion maps for an LSTM-based prediction module with focal
attention to make informed trajectory predictions.

Accuracy Analysis: ADE and FDE results are reported
in Table 1. It is common for generative approaches in this
domain to predict 20 possible trajectories for each pedes-
trian, and use the closest prediction to ground truth in evalu-
ation. However, since we are considering evaluation within a
real-time context, an analysis of the single trajectory predic-
tion results is much more applicable. Therefore, we compare
with the K=1 results for all approaches, where K is the num-
ber of predictions per pedestrian.

As seen in Table 1, CARPe performs very well against all
other methods. In ADE, CARPe achieves within 0.02 me-
ters of the best state-of-the-art approach Next on average. In
FDE, our approach outperforms all other methods. The Pre-
diction Module design to emphasize understanding of ve-
locity change across both the coordinate and social context
features allows our method to adjust the final prediction po-
sitions accordingly.

Similar to S-BiGAT, CARPe employs a GNN for gath-
ering insight into the social context. S-BiGAT uses GAT
operations in its graph, which operate with simple single-
layer operations on node features. However, as mathemat-
ically shown in (Xu et al. 2019), such single-layer oper-
ations are insufficient for robust graph learning. Instead,
CARPe employs a GIN-based formulation with MLP op-
erations to maximize the discriminative power of its graph
module. This design choice in GNN gives CARPe a com-
petitive edge over S-BiGAT, as revealed in the average ADE
and FDE results of Table 1.

Qualitative Results: Figure 3 illustrates the function of
CARPe with qualitative examples. The first row of Figure
3 shows cases of solely intrinsic nonlinearities. In these ex-
amples, the pedestrian takes indirect paths with changes in
direction and/or speed. In the failure case (b.2), the observed
path seems to foreshadow a change in speed alone, but the
ground truth indicates that the pedestrian will soon change
direction drastically. This abrupt adjustment is not antici-
pated by CARPe. However, with some additional informa-
tion a few time steps later, CARPe is able to understand
the non-linear behavior and anticipate the future positions
of the pedestrian as shown in (a.2). Example (a.1) further
illustrates how CARPe captures an understanding of speed
and direction variations to predict the pedestrian’s naviga-
tion intent. The second row of Figure 3 provides samples
encompassing intrinsic and social nonlinearities. Example
(a.4) shows a situation where the depicted pedestrian alters
their trajectory in response to their neighbor’s movement as
they travel together. Sample (a.3) shows a complex crowd
scenario, where CARPe is able to determine a likely path
through the crowd and achieve a correct prediction.

The failure case illustrated in (b.2) contains many pedes-
trians moving individually and in groups. The observed tra-
jectory of the individual traveler is varied in directional in-

(a) Successful examples

(b) Failure examples

Figure 3: Red indicates the observed trajectory, blue is the
predicted trajectory, and green is the ground truth. Images
are referenced in to the text as (a.1) to (a.4) and (b.1) to (b.2)
from top-left to bottom right.

tent, and the traveler is nearing collision with a group of
pedestrians moving left to right. It is difficult to predict a
deterministic route under this intense uncertainty, and there-
fore CARPe takes the safe bet and assumes a path consistent
with the social norm (moving left to right with the group).
However, the person decides to travel in front of the group
and progress upward across the pathway. In situations like
this, we note that having visual features of the pedestrians
could provide insight into their body position and intended
direction. Such modeling would potentially assist in predic-
tion for such scenarios which can be a worthwhile direction
for future work.

Real-time Analysis: Path prediction is inherently a time-
sensitive task. A crucial characteristic of a path prediction
algorithm is its ability to perform real-time inference, par-
ticularly on low-power embedded devices. Every fraction of
a second is crucial for improving the safety of deployable
technologies like self-driving cars and social robots. There-
fore, we analyze CARPe in comparison to current state-of-
the-art approaches for such characteristics. In Table 2, we
first compare the FPS of CARPe on an Nvidia P100 GPU as
a baseline. CARPe far surpasses the performance of all other
methods, by at least 38x across the board.

CARPe achieves such improvements for two reasons.
First, CARPe is designed with real-time inference in mind,
eliminating extraneous operations and focused on optimiz-
ing the computation expense to accuracy ratio.
Second, CARPe employs a convolutional rather than recur-
rent architecture. All other methods base their approach on
LSTM cells, which limit their hardware utilization capabil-
ities. Instead, CARPe is able to take full advantage of the
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Dataset Linear S-LSTM SGAN-P SGAN Trajectron Sophie Next S-BiGAT CARPe

ETH 1.33 / 2.94 1.09 / 2.35 – 1.13 / 2.21 1.13 / 2.44 – 0.88 / 1.98 – 0.80 / 1.48
HOTEL 0.39 / 0.72 0.79 / 1.76 – 1.01 / 2.18 0.37 / 0.74 – 0.36 / 0.74 – 0.52 / 1.00
UNIV 0.82 / 1.59 0.67 / 1.40 – 0.60 / 1.28 0.62 / 1.31 – 0.62 / 1.32 – 0.61 / 1.23
ZARA1 0.62 / 1.21 0.47 / 1.00 – 0.42 / 0.91 0.63 / 1.29 – 0.42 / 0.90 – 0.42 / 0.84
ZARA2 0.77 / 1.48 0.56 / 1.17 – 0.52 / 1.11 0.53 / 1.08 – 0.34 / 0.75 – 0.34 / 0.69
AVG 0.79 / 1.59 0.72 / 1.54 0.85 / 1.76* 0.74 / 1.54 0.66 / 1.40 0.71 / 1.46* 0.52 / 1.14 0.61 / 1.33* 0.54 / 1.05

Table 1: ADE and FDE results for all five scenarios in the ETH (Pellegrini et al. 2009b) and UCY (Lerner, Chrysanthou, and
Lischinski 2007) datasets. Results followed by * are the K=1 accuracies as reported in the analyzes of (Kosaraju et al. 2019).

Device S-LSTM SGAN-P SGAN Traj Next CARPe

P100 0.38 6.67 20.00 1.04 19.46 762.14

Table 2: FPS comparison on the Nvidia P100 GPU. Numbers
are report as an average per frame across both ETH and UCY
datasets.

Approach MFLOPs Parameters FPS (GPU) FPS (CPU)

Next 53.08 3.95M 5.61 5.50

CARPe 1.44 0.10M 95.87 48.11

Table 3: Detailed comparison with Next (Liang et al. 2019).
FPS numbers are reported on the Nvidia Jetson Nano em-
bedded device for both GPU and single core CPU. The Nano
has a 128-core Maxwell GPU and ARM A57 CPU with a
power consumption of approximately 10 Watts in our tests.

parallel computing capacities of modern hardware, and is
thereby well suited for real-world deployment.

In (Ivanovic and Pavone 2019), Trajectron is shown be
be significantly faster than SGAN-P when generating 200
samples. However, with N=1, we found that Trajectron (Traj
in Table 2) is slower SGAN-P. The inferenced model of
SGAN-P is faster than that of Trajectron, but must be in-
ferened repeatedly to produce each sample, quickly scaling
the inference time. Trajectron can include additional sam-
ples more efficiently; however, the required initial inference
of the model is substantially slower due to its graph structure
of many recurrent modules.

Sophie and S-BiGAT do not have their models or latency
numbers publicly available, and therefore we do not re-
port their FPS performance. However, it can be noted that
both Sophie and S-BiGAT add additional layers of complex-
ity to the SGAN approach. These include the addition of
scene-level feature extraction directly on the image using the
computationally heavy VGG-19 (Simonyan and Zisserman
2014) network, as well as additional scene and social atten-
tion mechanisms. Therefore, we can conclude that not only
will these approaches experience similar computational dif-
ficulties as the other RNN-based architectures, they will also
incur additional latencies due to the use of large scene fea-
ture extractors and attention networks.

In Table 3, we thoroughly compare real-time performance

of CARPe against the best state-of-the-art approach Next.
First, we analyze the number of floating point operations
(FLOPs) and parameters for each approach. CARPe is sub-
stantially more efficient, reducing the number of FLOPs and
parameters by more than 97%. We also consider the FPS
performance on a low-power embedded device, the Nvidia
Jetson Nano. For both GPU and single core CPU inference,
CARPe provides an over 17x and 8x speedup respectively in
comparison to Next.

Because of its RNN-based design, Next is not able to ef-
fectively utilize the parallel capabilities of modern hardware,
as evident by its almost equal CPU and GPU FPS numbers.
In all reported numbers in Tables 2 and 3, we only con-
sider the trajectory generator portion of the Next approach.
However, this trajectory generator relies on additional scene
segmentation features and visual pedestrian features, both
of which require large networks for extraction (Xception
(Chollet 2016) and ResNet-101 (He et al. 2015) based ar-
chitectures). On the other hand, CARPe successfully em-
ploys the GPU architecture, while maintaining fast inference
on the CPU. Specifically, with CPU execution, the effect
on final inference time for the GNN and CNN is 15% and
85% respectively. On the GPU, the GNN and CNN split is
55% and 45% respectively. The CNN requires more overall
operations, and therefore is responsible for the majority of
the CPU time. However, the convolutional operations of the
CNN map more efficiently to the GPU hardware than the ag-
gregate/combine operations of the GNN. Therefore, the ef-
fect on inference time between the GNN and CNN becomes
relatively close on the GPU.

Conclusions
We proposed CARPe, a convolutional approach for real-
time pedestrian path prediction. Distinct from prior work,
CARPe is able to produce accurate future trajectory predic-
tions within real-time constraints. CARPe is an agile CNN
that operates across the temporal context of observations
in the spatial domain, maximizing both feature correlation
and parallel hardware utilization. We also employed a dis-
criminative graph neural network based on GIN operators to
gather social context features, providing additional insight
into the predictive model. CARPe captures non-linear intrin-
sic and social effects, achieving competitive accuracy results
in comparison with the current SotA methods while enabling
8x to 38x improvements in FPS.
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