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Abstract
A common assumption in multimodal learning is the com-
pleteness of training data, i.e., full modalities are available
in all training examples. Although there exists research en-
deavor in developing novel methods to tackle the incomplete-
ness of testing data, e.g., modalities are partially missing in
testing examples, few of them can handle incomplete train-
ing modalities. The problem becomes even more challenging
if considering the case of severely missing, e.g., ninety per-
cent of training examples may have incomplete modalities.
For the first time in the literature, this paper formally studies
multimodal learning with missing modality in terms of flexi-
bility (missing modalities in training, testing, or both) and ef-
ficiency (most training data have incomplete modality). Tech-
nically, we propose a new method named SMIL that leverages
Bayesian meta-learning in uniformly achieving both objec-
tives. To validate our idea, we conduct a series of experiments
on three popular benchmarks: MM-IMDb, CMU-MOSI, and
avMNIST. The results prove the state-of-the-art performance
of SMIL over existing methods and generative baselines in-
cluding autoencoders and generative adversarial networks.

Introduction
Multimodal learning attracts intensive research interest
because of broad applications such as intelligent tu-
toring (Petrovica, Anohina-Naumeca, and Ekenel 2017),
robotics (Noda et al. 2014), and healthcare (Frantzidis et al.
2010). Generally speaking, existing research efforts mainly
focus on how to fuse multimodal data effectively (Liu et al.
2018; Zadeh et al. 2017a) and how to learn a good represen-
tation for each modality (Tian, Krishnan, and Isola 2020).

A common assumption underlying multimodal learning
is the completeness of modality as illustrated in Figure 1.
Existing methods (Ngiam et al. 2011; Zadeh et al. 2017b;
Hou et al. 2019) often assume full and paired modalities are
available in both training and testing data. However, such an
assumption may not always hold in real world due to privacy
concerns or budget limitations. For example, in social net-
work, we may not be able to access full-modality data since
users would apply various privacy and security constraints.
In autonomous driving, we may collect many imaginary data
but not as so for 3D point cloud because LiDARs are much
less affordable than cameras.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Train: Full modality (paired).
Test: Full modality (paired). 

(b) Train: Full modality (paired).
Test: Missing modality.

(c) Train: Full modality (unpaired).
Test: Full modality (paired). 

(d) Train: Missing modality.
Test: Missing modality.
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Figure 1: Multimodal learning configurations. (a) Train and
test with full and paired modality (Ngiam et al. 2011);
(b) Testing with missing modality (Tsai et al. 2019); (c)
Training with unpaired modality (Shi et al. 2020); (d) We
study the most challenging configurations of severely miss-
ing modality in training, testing, or both.

Although there exist a bunch of research efforts (Tsai et al.
2019; Pham et al. 2019) in developing novel methods to
tackle the incompleteness of testing data, few of them can
handle incomplete training modalities. An interesting yet
challenging research question then arises: Can we learn a
multimodal model from an incomplete dataset while its per-
formance should as close as possible to the one that learns
from a full-modality dataset?

In this paper, we systematically study this problem
by proposing multimodal learning with severely missing
modality (SMIL). We consider an even more challenging
setting that the missing ratio can be as much as 90%. More
specifically, we design two objectives for SMIL: flexibility
and efficiency. The former requires our model to uniformly
tackle three different missing patterns in training, testing, or
both. The latter enforces our model to effectively learn from
incomplete modality as fast as possible.

To jointly achieve both objectives, we leverage Bayesian
meta-learning framework in designing a new method. The
key idea is to perturb the latent feature space so that em-
beddings of single modality can approximate ones of full
modality. We highlight that our method is better than typi-
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cal generative designs, such as Autoencoder (AE) (Tran et al.
2017), Variational Autoencoder (VAE) (Kingma and Welling
2013), or Generative Adversarial Network (GAN) (Good-
fellow et al. 2014), since they often require a significant
amount of full-modality data to learn from, which is usu-
ally not available in severely missing modality learning. To
summarize, our contribution is three-fold:

• To the best of our knowledge, we are the first work to
systematically study the problem of multimodal learning
with severely missing modality.

• We propose a Bayesian meta-learning based solution to
uniformly achieve the goals of flexibility (missing modali-
ties in training, testing, or both) and efficiency (most train-
ing data have incomplete modality).

• Extensive experiments on MM-IMDb, CMU-MOSI, and
avMNIST validate the state-of-the-art performance of
SMIL over generative baselines including AE and GAN.

Related Work
Multimodal learning. Multimodal learning utilizes com-
plementary information contained in multimodal data to im-
prove the performance of various computer vision tasks. One
important direction in this area is multimodal fusion, which
focuses on effective fusion of multimodal data. Early fu-
sion is a common method which fuses different modalities
by feature concatenation, and it has been widely adopted in
previous studies (Wang et al. 2017; Poria et al. 2016). In-
stead of concatenating features, Zadeh et al. (Zadeh et al.
2017b) proposed a product operation to allow more interac-
tions among different modalities during the fusion process.
Liu et al. (Liu et al. 2018) utilized modality-specific factors
to achieve efficient low-rank fusion.

Recently, there have been a wide range of research inter-
ests in handling missing modalities for multimodal learn-
ing, such as testing-time modality missing (Tsai et al. 2019)
and learning with data from unpaired modalities (Shi et al.
2020). In this paper, we tackle a more challenging and
novel multimodal-learning setting where both training and
testing data contain samples that have missing modalities.
Generative approaches, such as auto-encoders (Tran et al.
2017; Lee et al. 2019), GANs (Goodfellow et al. 2014), and
VAEs (Kingma and Welling 2013), offer a straightforward
solution to handle this setting, but these methods are neithor
flexible nor efficient as SMIL.

Meta-regularization. Meta-learning algorithms focus on
designing models that are able to learn new knowledge and
adapt to novel environments quickly with only a few train-
ing samples. Previous methods studied meta-learning from
the perspective of metric learning (Koch 2015; Vinyals et al.
2016; Sung et al. 2018; Snell, Swersky, and Zemel 2017)
or probabilistic modeling (Fe-Fei et al. 2003; Lawrence
and Platt 2004). Recent advances in optimization-based
approaches have evoked more interests in meta-learning.
MAML (Finn, Abbeel, and Levine 2017) is a general op-
timization algorithm designed for few-shot learning and re-
inforcement learning. It is compatible with models that learn
through gradient descent. Nichol et al. (Nichol, Achiam,

and Schulman 2018) further improved the computation effi-
ciency of MAML. Other works adapted MAML for domain
generalization (Li et al. 2018; Qiao, Zhao, and Peng 2020)
and knowledge distillation (Zhao et al. 2020). In this work,
we extend MAML by learning two auxiliary networks for
missing modality reconstruction and feature regularization.

Conventional handcrafted regularization techniques (Ho-
erl and Kennard 1970; Tibshirani 1996) regularize model
parameters to avoid overfitting and increase interpretabil-
ity. Balaji et al. (Balaji, Sankaranarayanan, and Chellappa
2018) modeled the regularization function as an additional
network learned through meta-learning to regularize model
parameters. Li et al. (Li et al. 2019) followed the same
idea of (Balaji, Sankaranarayanan, and Chellappa 2018) but
learned an additional network to regularize latent features.
Lee et al. (Lee et al. 2020b) proposed a more general algo-
rithm for latent feature regularization. Other than perturbing
features, we propose to learn the regularization function fol-
lowing (Lee et al. 2020b) but regularize the feature to reduce
discrepancy between the reconstructed and true modality.

Multimodal generative models. Generative models for
multimodal learning fall into two categories: cross-modal
generation and joint-model generation. Cross-modal gen-
eration methods, such as conditional VAE (CVAE) (Sohn,
Lee, and Yan 2015) and conditional multimodal auto-
encoder (Pandey and Dukkipati 2017), learn a conditional
generative model over all modalities. On the other hand,
joint-model generation approaches learn the joint distribu-
tion of multimodal data. Multimodal variational autoencoder
(MVAE) (Wu and Goodman 2018) models the joint pos-
terior as a product-of-expert (PoE). Multimodal VAE (JM-
VAE) (Suzuki, Nakayama, and Matsuo 2016) learns a shared
representation with a joint encoder. With only a few modifi-
cations to the original algorithms, we show that multimodal
generative models serve as strong baselines for learning with
severely missing modalities proposed in this paper.

Proposed Method
We are interested in multimodal learning with severely miss-
ing modality, e.g., 90% of the training samples contain in-
complete modalities. In this paper, without loss of general-
ity, we consider a multimodal dataset containing two modal-
ities. Formally, we let D = {Df ,Dm} denote a multi-
modal dataset; Df = {x1

i ,x
2
i , yi}i is a modality-complete

dataset, where x1
i and x2

i represent two different modal-
ities of i-th sample and yi is the corresponding class la-
bel; Dm = {x1

j , yj}j is a modality-incomplete dataset,
where one modality is missing. Our target is to leverage both
modality-complete and modality-incomplete data for model
training. We propose to address this problem from two per-
spectives: 1) Flexibility: how to uniformly handle missing
modality in training, testing, or both? 2) Efficiency: how to
improve training efficiency when major data suffers from
missing modality?

Flexibility. We aim to achieve a unified model that can
handle missing modality in training, testing, or both. Our
idea is to employ a feature reconstruction network to achieve
this goal. Instead of following the conventional data recon-
struction approaches (Lee et al. 2019; Tran et al. 2017),
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(a) Training with severely missing modality (b) Testing with single modality (c) Testing with full modality
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Figure 2: SMIL can uniformly learn from severely missing modality and test with either single or full modality. The recon-
struction network φc outputs a posterior distribution, from which we sample weight ω to reconstruct the missing modality using
modality priors. The regularization network φr also outputs a posterior distribution, from which we sample regularizer r to
perturb latent features for smooth embedding. The collaboration (φc and φr) guarantees flexible and efficient learning.

the feature reconstruction network will leverage the avail-
able modality to generate an approximation of the missing-
modality feature in a highly efficient way. This will gener-
ate complete data in the latent feature space and facilitate
the flexibility in two aspects. On the one hand, our model
can excavate the full potential of hybrid data by using both
modality-complete and -incomplete data for joint training.
On the other hand, when testing, by turning on or off the fea-
ture reconstruction network, our model can tackle modality-
incomplete or -complete inputs in a unified manner.

Efficiency. We intend to train a model on the modal-
ity severely missing dataset to achieve comparable perfor-
mance as the model trained on a full-modality dataset. How-
ever, the severely missing modality setting poses signifi-
cant learning challenges to the feature reconstruction net-
work. The network would be highly bias-prone due to the
scarcity of modality-complete data, yielding degraded and
low-quality feature generations. Directly train a model with
degraded and low-quality features will hinder the efficiency
of the training process. We propose a feature regulariza-
tion approach to address this issue. The idea is to lever-
age a Bayesian neural network to assess the data uncertainty
by performing feature perturbations. The uncertainty assess-
ment is used as feature regularization to overcome model
and data bias. Compared with previous deterministic regu-
larization approaches (Balaji, Sankaranarayanan, and Chel-
lappa 2018; Zhao et al. 2020), the proposed uncertainty-
guided feature regularization will significantly improve the
capacity of the multimodal model for robust generalization
behaviors in tackling severely incomplete data.

A meta-learning framework. To effectively organize
model training, we integrate the main network fθ param-
eterized by θ, the reconstruction network fφc parameter-
ized by φc, and the regularization network fφr

parameter-
ized by φr in a modified Model-Agnostic Meta-Learning
(MAML) (Finn, Abbeel, and Levine 2017) framework. An
overview of our learning framework is shown in Figure 2. In
the following sections, we describe the implementation of
the feature reconstruction and regularization network.

Missing Modality Reconstruction
We introduce the feature reconstruction network to approxi-
mate the missing modality. For a modality-incomplete sam-
ple, the missing modality is reconstructed conditioned on the
available modality. Given the observed modality x1, in order
to obtain the reconstruction x̂2 of the missing modality, we
optimize the following objective for the reconstruction net-
work:

φ∗c=argmin
φc

Ep(x̂1,x2)(−log p(x̂2|x1;φc)). (1)

However, under severely missing modality, it is non-trivial
to train a reconstruction network from limited modality-
complete samples. Inspired by (Kuo et al. 2019), we ap-
proximate the missing modality using a weighted sum of
modality priors learned from the modality-complete dataset.
In this case, the reconstruction network are trained to predict
weights of the priors instead of directly generating the miss-
ing modality. We achieve this by learning a set of modal-
ity priors M which can be clustered among all modality-
complete samples using K-means (MacQueen 1967) or
PCA (Pearson 1901).

Specifically, let ω represent the weights assigned to each
modality prior. We model ω as a multivariate Gaussian with
fixed means and changeable variances asN (I,σ). The vari-
ances are predicted by the feature reconstruction network
σ = fφc

(x1). Given the weights ω, we can reconstruct the
missing modality x̂2 by calculating the weighted sum of the
modality priors. Then, the reconstructed missing modality
can be achieved by:

x̂2 = 〈ω,M〉 ,where ω ∼ N (I,σ). (2)

We note that modeling ω as multivariate random variables
introduces randomness and uncertainty to the reconstruction
process, which has been proved to be beneficial in learning
sophisticated distributions (Lee et al. 2020b).

Uncertainty-Guided Feature Regularization
We propose to regularize the latent features by a feature reg-
ularization network. In each layer, the regularization net-
work takes the features of the previous layer as input and
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applies regularization to the features of the current layer.
Let r denote the generated regularization and hl be the la-
tent feature of the l-th layer. Instead of generating a de-
terministic regularization r = fφr

(hl−1), we assume that
r follows a multivariate Gaussian distribution N (µ,σ),
where the means and variances are calculated using (µ,σ)
= fφr

(hl−1). Then, we can compute the regularized feature
by the following equation:

hl := hl ◦ Softplus(r), where r ∼ N (µ,σ), (3)

where ◦ is a predefined operation (either addition or multi-
plication) for feature regularization. In our experiments, we
observe that directly applying regularization to latent fea-
tures will prevent the feature regularization network from
convergence. Hence, we adopt Softplus (Dugas et al. 2000)
activation to weaken the regularization.

A Bayesian Meta-Learning Framework
We leverage a Bayesian Meta-Learning framework to jointly
optimizing all the networks. Specifically, we meta-train the
main network fθ on Dm with the help of reconstruction fφc

network and regularization fφr
network. Then, we meta-test

the updated main network fθ∗ on Df . Finally, we meta-
update network parameters {θ,φc,φr} by gradient descent.

For simplicity, we let ψ = {φc,φr} denote the combina-
tion of the parameters of the reconstruction and regulariza-
tion network. Our framework aims to optimize the following
objective function:

min
θ,ψ
L(Df ;θ∗,ψ),

where θ∗=θ − α∇θL(Dm;ψ).
(4)

For the above function, L denotes the empirical loss such as
cross entropy, and α is the inner-loop step size.

We use X and Y to represent all training samples and their
corresponding labels, respectively. Let z = {ω, r} be the
collection of the generated weights and regularization. Then,
inspired by (Finn, Xu, and Levine 2018; Gordon et al. 2019;
Lee et al. 2020a), we define the generative process as opti-
mizing the likelihood in a meta-learning framework:

p(Y, z|X;θ) = p(z)
N∏
i=1

p(yi|x1
i ,x

2
i , z;θ)

M∏
j=1

p(yj |x1
j , z;θ).

(5)
The goal of Bayesian Meta-Learning is to maximize the

conditional likelihood: log p(Y|X; θ). However, solving it
involves the true posterior p(z|X), which is intractable. In-
stead, we approximate the true posterior distribution by
an amortized distribution q(z|X;ψ) (Finn, Xu, and Levine
2018; Gordon et al. 2019; Lee et al. 2020a). The resulting
form of approximated lower bound for our meta-learning
framework can be defined as:

Lθ,ψ = Eq(z|X;θ,ψ)[log p(Y|X, z;θ)]−
KL[q(z|X;ψ)‖p(z|X)]. (6)

We maximize this lower bound by Monte-Carlo (MC) sam-
pling. After combining all these together, we obtain the full

Algorithm 1: Bayesian Meta-Learning Framework.

Input: Multimodal dataset D = {Df , Dm}; # of
iterations K; inner learning rate α; outer
learning rate β.

1 while not converged do
2 Sample {x1

j , yj} ∼ Dm; {x1
i ,x

2
i , yi} ∼ Df

3 θ0 ← θ
4 Meta-train:
5 for k = 0 to K − 1 do
6 Sample z̃j ∼ p(zj |x1

j ;ψ,θk)

7 θk+1 ← θk − α∇θk [−log p(yj |x1
j , z̃j ;θk)]

8 end
9 θ∗ ← θK

10 Meta-test & Meta-update:
11 θ ← θ − β∇θ[−log p(yi|x1

i ,x
2
i , z̃i;θ

∗)]
12 ψ ← ψ − β∇ψ[−log p(yi|x1

i ,x
2
i , z̃i;θ

∗)]
13 end

training objective of the proposed meta-learning framework
for θ and ψ which is defined as:

min
θ,ψ

1

L

L∑
l=1

−log p(yj |x1
j ,x

2
j , zl;θ) + KL[q(z|X;ψ)‖p(z|X)]

with zl ∼ q(z|X;ψ),
(7)

where L is the number of MC sampling. We show our de-
tailed algorithm in Algorithm 1.

Experiments
In this section, we analyze the results of the proposed algo-
rithm for multimodal learning with severely missing modal-
ity on three datasets from two perspectives: efficiency under
severely missing modality (Section 4.2) and flexibility to var-
ious modality missing pattern (Section 4.3).1

Experiment Setting
Datasets. Totally three datasets are used in the experiment:
• The Multimodal IMDb (MM-IMDb) (Arevalo et al. 2017)

contains two modalities: image and text. We conduct ex-
periments on this dataset to predict a movie genre using
image or text modality, which is a multi-label classifica-
tion task as multiple genres could be assigned to a sin-
gle movie. The dataset includes 25, 956 movies and 23
classes. We follow the training and validation splits pro-
vided in the previous work (Vielzeuf et al. 2018).

• CMU Multimodal Opinion Sentiment Intensity (CMU-
MOSI) (Zadeh et al. 2016) consists of 2, 199 opinion
video clips from YouTube movie reviews. Each clip con-
tains three modalities: the image modality includes the
visual gesture, the text modality includes the transcribed
speech, and the audio modality includes the automatic au-
dio. We use the feature extraction model from Liu et al.
1Our code is available at https://github.com/mengmenm/SMIL
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Method Accuracy (%) ↑ F1 Score ↑
10% 20% 100% 10% 20% 100%

Lower-Bound – – 44.8 – – 27.7
Upper-Bound – – 71.0 – – 70.5
MVAE – – 58.5 – – 58.1

AE 56.4 60.4 – 54.4 59.0 –
GAN 56.5 60.6 – 54.6 59.1 –

SMIL 60.7 63.3 – 58.0 62.5 –

Table 1: Binary classification accuracy (%) and F1 Score
for different methods under three text modality ratios (10%,
20%, and 100%) on the CMU-MOSI dataset.

(2018) for each modality. We conduct experiments on this
dataset to predict the sentiment class of the clips, which
is a binary classification task as the sentiment of video
clips can be either negative or positive. There are 1, 284
segments in the training set, 229 in the validation set, and
686 in the test set. In the experiment section, we only use
the image and text modality.

• Audiovision-MNIST (avMNIST) (Vielzeuf et al. 2018)
consists of an independent image and audio modalities.
The images, which are digits from 0 to 9, are collected
from the MNIST dataset (LeCun et al. 1998) with a
size of 28 × 28, and the audio modality is collected
from Free Spoken Digits Dataset 2 containing raw 1, 500
audios. We use the mel-frequency cepstral coefficients
(MFCCs) (Tzanetakis and Cook 2002) as the represen-
tation of audio modality. Each raw audio is processed by
MFCCs to get a sample with a size of 20 × 20 × 1. The
dataset contains 1, 500 samples for both image and audio
modalities. We randomly select 70% data for training and
use the rest for validation.
Evaluation metrics. For MM-IMDb dataset, we follow

previous works (Arevalo et al. 2017; Vielzeuf et al. 2018)
by adopting the F1 Samples and F1 Micro to evaluate multi-
label classification. For CMU-MOSI, we follow Liu et al.
(2018) to compute the binary classification accuracy and F1
Score. For avMNIST dataset, we compute accuracy to mea-
sure the performance.

Baseline methods. We compare the proposed approach
with the following baseline methods:
• Lower-Bound is a model trained using single modality of

the data, i.e., 100% image, 100% text, etc. It serves as the
lower bound for our method.

• Upper-Bound is a model trained leveraging all modalities
of the data, i.e., 100% images and 100% text, etc. We re-
gard it as the upper bound.

• AE (Autoencoder) (Lee et al. 2019) is a deep model
used for efficient data encoding. We can use AE to pre-
process the original dataset to tackle the severely miss-
ing modality problem. We now describe the procedure
for preprocessing. First, we sample a dataset contain-
ing only modality-complete samples from the original
2https://github.com/Jakobovski/free-spoken-digit-dataset

Method F1 Samples ↑ F1 Micro ↑
10% 20% 100% 10% 20% 100%

Lower-Bound – – 47.6 – – 48.2
Upper-Bound – – 61.7 – – 62.0
MVAE – – 48.4 – – 48.6

AE 44.5 50.9 – 44.8 50.7 –
GAN 45.0 51.1 – 44.6 51.0 –

SMIL 49.2 54.1 – 49.5 54.6 –

Table 2: Multi-label classification scores (F1 Samples and
F1 Micro) for different methods under three text modality
ratios (10%, 20%, and 100%) on the MM-IMDb dataset.

dataset. Then, we assume one modality is missing and
train AE to reconstruct the missing modality. Finally, we
impute the missing modality of modality-incomplete data
using the trained AE. After finishing the imputation, the
dataset is now available for multimodal learning.

• GAN (Generative adversarial network) is a deep gener-
ative model composed of a generator and a discrimina-
tor. We leverage GAN to tackle our problem following
the same procedure as described in AE.

• MVAE (Wu and Goodman 2018) is proposed for mul-
timodal generative task. We adopt the widely used lin-
ear evaluation protocol to adapt MVAE for classification.
Specifically, we first train MVAE using all the modali-
ties. We then keep the learned MVAE frozen to train a
randomly initialized linear classifier using the latent rep-
resentation generated by the encoder of MVAE.

Efficiency with Severely Missing Modality
Conclusion: Our method demonstrates consistent efficiency,
across different datasets, when training data contains a dif-
ferent ratios of modality missing.

Setting of missing modality. We evaluate the efficiency
of our algorithm on two datasets: MM-IMDb and CMU-
MOSI. In both datasets, modalities are incomplete for some
samples. We define the text modality ratio as η = M

N , where
M is the number of samples with text modality and N is the
size of overall samples. η indicates the severity of modal-
ity missing. The smaller of η, the severer the modality is
missing. For both datasets, we assume image modality to be
complete, and the text modality to be incomplete. We ex-
press all available data points in the form of 100% Image +
η% Text for both datasets.

Implementation details. CMU-MOSI. We follow Liu
et al. (2018) to get features for the image and text modal-
ity. We use three fully-connected (FC) layers with dimen-
sion 16 to get the embedding of image modality. One layer
LSTM (Hochreiter and Schmidhuber 1997) extracts the em-
bedding for text modality. The concatenated feature of two
modalities is then fed to FC layers for classification. For
training process, we use Adam (Kingma and Ba 2014) op-
timizer with a batch size of 32 and train the networks for
5, 000 iterations with a learning rate of 10−4 for both inner-
loop and outer-loop of meta-learning. MM-IMDB. For im-
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Figure 3: F1 Samples score of each movie genre on the MM-
IMDb dataset for the lower-bound baseline (blue) and SMIL
(red). The number of image samples for each movie genre is
indicated by the green line.

age and text modalities, we adopt the feature extraction mod-
els from Arevalo et al. (2017). We feed the feature from
each modality to a FC layer to align their output dimen-
sion. On top of it, we fuse the feature together and send it
to FC layers to conduct multi-label classification. We ap-
ply Adam optimizer with a batch size of 128. We train the
models for 10, 000 iteration with a learning rate of 10−4 for
inner-loop and 10−3 fro outer-loop. Besides, we follow pre-
vious work (Vielzeuf et al. 2018) to add a weight of 2.0 on
the positive label to balance the precision and recall since
the labels are unbalanced.

Different ratios of modality missing. The results on
CMU-MOSI are shown in Table 1. As can be seen, our ap-
proach significantly outperforms all baselines among all ra-
tios of modality missing, which showcases the efficiency of
our approach in the missing modality problem. The results
also show that the severer the missing modality is, the more
efficient our approach is. More specifically, when η is 20%,
our approach outperforms AE and GAN around 5.0%, while
the improvements increase to 7.6% and 7.4%, respectively,
when η decreases to 10%. Moreover, our improvements are
also consistent on MM-IMDb, as shown in Table 2. The im-
provement increases as the modality ratio decreasing. From
Table 2, we see that our approach performs better than all
baseline method under different text ratio. Our method out-
performs Lower-Bound and MVAE by a large margin, and
quite close to Upper-Bound.

We further show the effect of multimodal learning for dif-
ferent classes of MM-IMDb when η = 20% in Figure 3.
First, our method (shown as red bars) can largely improve
the model performance even on the tailed genres, such as
Sport and Film-Noir, while the model trained only using im-
ages (shown as blue bars) can hardly predict the classes with
less training samples. Second, an interesting phenomenon in
Figure 3 is that text modality will slightly decrease the per-
formance of movie genres like Family and Animation. The
possible reason is that there is a large overlap between gen-
res of family and animations. As a result, text modality may
enforce the model to learn the shared knowledge between
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Figure 4: Classification accuracy (%) on avMNIST with two
missing patterns. Left: training with 100% Image + η% Au-
dio and testing with Image Only. Right: training with 100%
Image + η% Audio and testing with Image + Audio.

these two genres, which reduces the discrepancy and de-
crease the accuracy.

Visualization of embedding space. We visualize the em-
bedding space of three genres in MM-IMDb in Figure 5,
and observed that our approach can effectively disentangle
the latent embedding of the three genres, while the model
learned only from image modality cannot. Besides, Our
method is efficient when modality is severely missing. Form
Figure 5, we see that our model trained using only 10% text
modality is comparable to a model trained using 100% text
modality.

Justification of symbol ‘-’ used in Table 1, 2. We use
the ‘-’ symbol for two reasons. First, not applicable. Lower-
Bound only requires image modality for training, so it is not
applicable to report a Lower-Bound result trained using both
image and text. Second, not necessary. For example, in table
1, MVAE trained without missing modality (100% image +
100% text) achieves acc = 58.5%. In comparison, our model
trained with severely missing modality (100% image + 10%
text) achieves acc = 60.7%. So it is not necessary to train
MVAE under severely missing modality.

Flexibility with Different Missing Patterns
Conclusion: Our method shows flexibility in handling var-
ious missing patterns: (1) full or missing modality at train-
ing; and (2) full or missing modality at test time.

Implementation details. Our network contains two
modality-specific feature extractors and a few FC layers. We
use LeNet-5 to extract features for image modality, and a
modified LeNet-5 to extract audio features. Extracted fea-
tures are then fused through concatenation and sent into FC
layers to perform classification. For the training process, we
use Adam optimizer with a batch size of 64 and train the
networks for 15, 000 iterations with a learning rate of 10−3
for both inner- and outer- loop of meta-learning.

Setting of missing pattern. For the avMNIST dataset, the
missing modality problem only happens to audio modality.
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Method F1 Samples ↑ F1 Micro ↑
10% 20% 10% 20%

SMIL w/o K-means 0.482 0.535 0.485 0.530

SMIL w/o Regularization 0.469 0.521 0.472 0.530

SMIL w/ Fixed Gaussian 0.475 0.495 0.479 0.502
SMIL w/ Deterministic 0.474 0.527 0.477 0.533

SMIL (Full) 0.492 0.541 0.495 0.546

Table 3: Ablation study on the effect of modality reconstruc-
tion, feature regularization, and Bayesian inference on MM-
IMDb under two text modality ratios (10% and 20%).

We are interested in two different missing patterns: (1) train-
ing with 100% Image + η% Audio and testing with Image
Only; (2) training with 100% Image + 20% Audio and test-
ing with Image + Audio. In this section, we show that our
approach can flexibly handle these two missing patterns.

Missing pattern 1: testing with image only. Figure 4
(left) shows the classification accuracy under different au-
dio ratio. We see that our approach can successfully han-
dle testing with image modality only, but baseline methods
such as AE and GAN fail in this scenario. As can be seen,
when η = 20%, SMIL is 6.7% higher than the generative-
based method, and 3.3% higher the Lower-Bound. We ar-
gue that the failure of baseline methods is mainly due to the
bias of the reconstructed missing modality. In single modal-
ity testing, the method is required to generate the miss-
ing modality conditioned on the available modality. The
baseline method does not consider the bias of the recon-
structed missing modality. In contrast, our method can lever-
age learned meta-knowledge to generate an unbiased miss-
ing modality. Besides, in situations where audio modality is
missing severely (i.e., η = 5%), The classification accuracy
of our method is 1.10% higher than the lower bound. The
improvement demonstrates clear advantages of our model
under severely missing modality.

Missing pattern 2: testing with image and audio. Fig-
ure 4 (right) shows the result of our approach dealing with
full modality testing. We observe that our method still per-
forms the best. It outperforms the Lower-Bound by 4.3%
and the generative-based method (AE and GAN) by 2.1%.
Moreover, under different missing patterns, SMIL is con-
sistently better than AE and GAN. When switching testing
patterns from two modalities to a single modality, AE and
GAN have a 5.6% performance drop, while SMIL only has
a 1.0% performance drop.

Ablation Study
We conduct the ablation analysis on the MM-IMDb dataset
to evaluate the effectiveness of the missing modality recon-
struction, feature regularization, and Bayesian Inference. We
show the results in Table 3.

Effectiveness of missing modality reconstruction. In
Section , we use reconstruction network to generate weights
for missing modality reconstruction. Here we denote the
method that uses the reconstruction network to directly gen-

(a)100%Image
(Lower-Bound)

(b)100%Image + 20%Text 
(SMIL)

(c)100%Image + 100%Text 
(Upper-Bound)

         
     
       

Film-NoirSport Western

Figure 5: t-SNE visualization for embeddings of the lower-
bound baseline (a), SMIL (b), and upper-bound baseline (c)
on the MM-IMDb dataset. Three movie genres, including
Sport, Film-Noir, and Western are visualized.

erate the feature of missing modality as SMIL w/o K-means,
which has worse performance and proves the necessity of
K-Means for reconstruction.

Effectiveness of feature regularization. In Section , we
introduce feature regularization. Here we denote the method
without feature regularization as SMIL w/o Regularization.
The performance of SMIL w/o Regularization is inferior to
SMIL (Full), which verifies conducting multimodal learning
on D without regularization leads to a sub-optimal model.
The superior performance of the regularized model is essen-
tial to the explicit objective of reducing discrepancy.

Effectiveness of Bayesian inference. In Section , we in-
troduce the Bayesian Meta-Learning Framework. In this sec-
tion, we compare it with two variants. SMIL w/ Fixed Gaus-
sian: We fix the distribution of feature regularization to a
Gaussian distribution, which isN (0, I); SMIL w/ Determin-
istic: The missing modality construction and feature regu-
larization is deterministic so the sampling in Eqn. 7 is re-
moved. These two variants are inferior to Bayesian infer-
ence.The results show the superiority of Bayesian Meta-
Learning framework.

Conclusion

In this paper, we address a challenging and novel problem
in multimodal learning: multimodal learning with severely
missing modality. We further propose a novel learning strat-
egy based on the meta-learning framework. This framework
tackles two important perspectives: missing modality recon-
struction (flexibility) and feature regularization (efficiency).
We apply the Bayesian meta-learning framework to infer the
posterior of them and propose a variational inference frame-
work to estimate the posterior.

In the experiments, we show that our model outperforms
the generative method significantly on three multimodal
datasets. Further analysis on the results shows that involv-
ing modality reconstruction and feature regularization can
effectively handle the missing modality problem and flex-
ible to various missing patterns. We believe that our work
makes a meaningful step towards the real-world application
of multimodal learning where partial modalities are missing
or hard to collect.
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