
Temporal Segmentation of Fine-grained Semantic Action:
A Motion-Centered Figure Skating Dataset

Shenglan Liu1, Aibin zhang1,*, Yunheng Li1,*,
Jian Zhou1, Li Xu2, Zhuben Dong1, Renhao Zhang1

1 Dalian University of Technology, Dalian, Liaoning, 116024 China
2 Alibaba Group

liusl@dlut.edu.cn, renwei.xl@alibaba-inc.com

Abstract

Temporal Action Segmentation (TAS) has achieved great suc-
cess in many fields such as exercise rehabilitation, movie
editing, etc. Currently, task-driven TAS is a central topic
in human action analysis. However, motion-centered TAS,
as an important topic, is little researched due to unavail-
able datasets. In order to explore more models and prac-
tical applications of motion-centered TAS, we introduce a
Motion-Centered Figure Skating (MCFS) dataset in this pa-
per. Compared with existing temporal action segmentation
datasets, the MCFS dataset is fine-grained semantic, special-
ized and motion-centered. Besides, RGB-based and Skeleton-
based features are provided in the MCFS dataset. Experi-
mental results show that existing state-of-the-art methods are
difficult to achieve excellent segmentation results (includ-
ing accuracy, edit and F1 score) in the MCFS dataset. This
indicates that MCFS is a challenging dataset for motion-
centered TAS. The latest dataset can be downloaded at
https://shenglanliu.github.io/mcfs-dataset/.

Introduction
Temporal action segmentation (TAS) has been widely used
in sports competitions (Urban and Russell 2003), exer-
cise rehabilitation (Lin and Kulić 2013), movie editing
(Magliano and Zacks 2011) and other fields. Technically,
TAS has been extended to many new topics, such as video
action localization (Lee, Uh, and Byun 2020) and mo-
ment retrieval (Zhang et al. 2019) etc. In recent years,
TAS has made remarkable progress on task-based video, es-
pecially in designing new temporal convolution networks
(TCN) (e.g. Encoder-Decoder TCN (ED-TCN) (Lea et al.
2017), Multi-Stage Temporal Convolutional Network (MS-
TCN) (Farha and Gall 2019) and Self-Supervised Temporal
Domain Adaptation (SSTDA) (Chen et al. 2020a)) which
achieve higher performance on cooking task datasets (e.g.
GTEA (Fathi, Ren, and Rehg 2011), 50Salads (Stein and
Mckenna 2013) and Breakfast (Kuehne, Arslan, and Serre
2014), etc.).

However, it can be found that the existing datasets have
three limitations for TAS research, which can be mainly
summarized as follows.
*Equal contribution.
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Coarse-grained semantics. The coarse-grained TAS is
relatively easy for the existing models. However, it is dif-
ficult to meet the related applications of fine-grained seman-
tics (Sun et al. 2015; Piergiovanni and Ryoo 2018) which is
more challenging for frame-level action classification.

Spatial characteristics. In most TAS datasets, scene, tool
and object (even more important than the action itself some-
times) play very important roles in human action recogni-
tion. However, we should pay more attention to the action
in many practical applications (Bhattacharya et al. 2020; Li
et al. 2019). Besides, the task-driven datasets cannot show
the full human body in an expected manner. Therefore, it
is difficult to extract more modal features to perform TAS
tasks.

Temporal characteristics. Generally, the action content
categories for task-driven TAS datasets are simple, and the
speed difference in distinct actions is too small. The lit-
tle speed variance is difficult to cause frame-level feature
changes, which is less challenging for TAS tasks.

The issues above limit the broader research of TAS mod-
els. In order to exploit new methods on the task of motion-
centered TAS, this paper proposed a new dataset named
MCFS. MCFS is composed of 271 single figure skating per-
formance videos. The videos are taken from the 17.3 hours
competition of the 2017-2019 World Figure Skating Cham-
pionships. Each clip is 30 frames per second, with a resolu-
tion of 1080× 720 and a length of 162s to 285s. All actions
are annotated with the semantic labels on three levels (see
Fig. 1). The camera focuses on the skater to ensure that he
(she) appears in every frame during the action. Compared
with the existing datasets, MCFS has five remarkable ad-
vantages which are listed as follows.

Multi-level fine-grained semantics. All the annotations
are carried at three levels, namely set, subset and element
in this paper. Fine-grained semantics means that similar ac-
tions may have different labels because of motion-centered
characteristics in figure skating (e.g. Lutz and Flip jumps
are similar in motion aspect, but are two different jumps.).
Such a semantic hierarchy provides a distinct structure for
comprehending coarse-grained and fine-grained operations.

Multi-modal action features. Previous datasets only of-
fer features based on RGB video content such as Flow and
I3D (Carreira and Zisserman 2017).etc., while MCFS pro-
vides extra Skeleton (Cao et al. 2017) feature which provides
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Figure 1: A video in MCFS. The labels of this video belong to the subset-level.

new opportunities and has significant to TAS methodologi-
cal research.

Motion-centered human actions. All actions are inde-
pendent of scenes and objects in MCFS dataset (i.e. most
classes of actions are dominantly biased for skaters’ pose.)

Large variance of action speed & duration. In the
MCFS, the action content is complicated, and the speed dif-
ference in distinct actions is too large. For instance, one
jumping action is completed within about 2s, by contrast,
the longest step could reach 72s. The large speed variance
always makes the large action duration variance of differ-
ent actions, which can be regarded as a great challenge to
frame-based TAS task.

Specialization. All videos in the MCFS are high-
resolution records taken from the World Figure Skating
Championships. Moreover, professional quality control is
carried out on the full sequence of video annotations to guar-
antee the correctness, reliability and consistency of annota-
tions.

According to the characteristics of MCFS, a series of
empirical studies are conducted to discover the challenges
of motion-centered TAS. Specifically, we first tested vari-
ous TAS techniques and observed the performance of these
methods is far from satisfactory in high-speed motion TAS.
In order to provide assistance for future research, we also re-
viewed some modeling options, such as input data patterns.
We found that for fine-grained TAS task, 1) motion infor-
mation 1 plays a very important role, rather than depending
on the scene and object of the video content. 2) The fine-
grained categories are more likely to be used to increase the
frame-based misjudgments (“burr” phenomenon) in clip ac-
tion decision, which might become a new challenge for the
existing TAS models. 3) The input modal of TAS model is
very important, and new modal of the input (e.g. Skeleton)
will exploit the research of TAS a new branch (e.g. GNN-
based (Scarselli et al. 2008) TAS approaches).

Taken together, the work has contributed to the study of
TAS task can be listed as the following two aspects:

(1) The MCFS dataset we collected is the first challenging
dataset for TAS task with large action speed, duration vari-

1Mainly refers to the spatial position and the time change of
action sequence. In addition, it includes certain statistical charac-
teristics of actions, such as: the variance of the action duration, and
the variance of the action speed.

ance, and complex motion-centered actions. It can be used
to provide high quality and fine-grained annotations of full
sequence, special annotations can be divided into three se-
mantic levels, namely set, subset and element.

(2) We make in-depth study on MCFS, explored optional
multi-modal features as input data of TAS model, and reveal
the major challenges of future research and potential appli-
cations for high-vary speed motion tasks.

Related Work
Methods for TAS
Unsupervised Learning Approaches. For unsupervised
TAS task, the major technique is to exploit discriminative
information by clustering of spatio-temporal features. Such
models introduce temporal consistency into the TAS meth-
ods by using LSTMs (Bhatnagar et al. 2017) or general-
ized mallows model (Sener and Yao 2018). Kukleva et al.
(Kukleva et al. 2019) utilized both frame-wise clustering
and video-wise clustering to model bag-of-words represen-
tation of each video. Besides, in order to use the contextual
event in videos fully, Garcia et al. (Garcia del Molino, Lim,
and Tan 2018) proposed an LSTM-based generative network
when solving TAS task. For dynamics TAS task, Aakur et
al. (Aakur and Sarkar 2019) proposed a self-supervised and
predictive learning framework by utilizing features of adja-
cent frames as loss function. As another efficient dynamics
TAS approach without training or clustering, MWS only in-
volves curvature of action features in a neighborhood to re-
alize segmentation’s locations of a clip.

Weakly Supervised Approaches. The key idea of the
weakly supervised TAS task is to mitigate the dependence
of direct labeling by using indirect supervision manner to
achieve highly TAS performance. For order-level weakly su-
pervised TAS task, Ding et al. (Ding and Xu 2018) proposed
a temporal autoencoder to predict frame-by-frame labels,
and combined soft boundary assignment to iteratively opti-
mize the segmentation results. To further explore the tempo-
ral structure, Kuehne et al. (Kuehne, Arslan, and Serre 2014)
used “task graph” for order description and developed a hi-
erarchical model based on HMMs for task-driven TAS. For
online TAS, Richard et al. (Richard et al. 2018) used Viterbi-
based loss offer a new deep model to achieve the frame-wise
TAS goal. Recently, an order-free TAS method (Richard,
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Dataset Duration People Segments Task Classes RGB? Skeleton? Fine-grained? Year
GTEA 0.57h 4 922 CA 11

√
× × 2011

MPII 9.8h 12 5609 CA -
√ √ √

(Semantics) 2012
50Salads 5.3h 27 966 CA 19

√
× × 2013

JIGSAWS 2.6h - 1703 SA 3
√

× × 2014
Breakfast 77h 52 8456 CA 48

√
×

√
(Temporally) 2014

Ikea-FA 3.9h 32 - MS 5
√

× × 2017
EPIC-KITCHENS 55h 32 39596 CA 5

√
× × 2018

MCFS(ours) 17.3h 186 11656 FS 130
√ √ √

(Semantics) 2021

Table 1: Comparisons of attributes existing datasets. *CA: cooking activities, SA: surgical activities, AF: assembling furniture,
FS: figure skating

Kuehne, and Gall 2018) based on probabilistic model for
set-level weakly supervised TAS is proposed.

Fully Supervised Approaches. Fully supervised TAS
aims to segment the video into semantically consistent
“blocks”. A large amount of related works have explored
for supervised TAS tasks. Most supervised TAS models
adopt autoencoder architecture for preserving temporal con-
sistence between input and output. For example, Lea et al.
(Lea et al. 2017) proposed a temporal convolutional network
for TAS, which utilized dilated convolutions to improve the
process of pooling and upsampling. In (Li et al. 2020), Farha
et al. proposed a multi-stage structure combining smoothing
loss for TAS tasks, which also involved autoencoder net-
work. Lei (Lei and Todorovic 2018) developed temporal de-
formable residual network using deformable temporal con-
volutions to enhance the TAS performance. Yet these meth-
ods suffer from long training time and unsatisfactory seg-
mentation accuracy, which might be explained by the model
architecture.

TAS-related Datasets
TAS-related datasets include TAS and action localization.
Action localization aims to localize the temporal intervals
of query actions, for example FineGym (Shao et al. 2020),
while TAS intend to divide a video into independent actions
at frame-level. We focus on TAS in this paper. For the early
datasets, GTEA (Fathi, Ren, and Rehg 2011) and 50Sal-
ads (Stein and Mckenna 2013), which are based on coarse-
grained cooking tasks only, have less than 20 categories of
actions (11 and 19 categories, separately), while the surgi-
cal activity dataset of JIGSAWS (Gao et al. 2014) only con-
sists of 3 categories. The existing methods can achieve well
performance based on these datasets limited by the num-
ber of categories and video duration. Later, many datasets
have been improved in terms of video duration, action cate-
gories, body motion, and fine-grained semantics (including
temporal fine-grained units and semantic fine-grained class).
All the above improvements make the TAS-related datasets
more challenging and practical. For TAS with body motion
task, Ikea-FA (Toyer et al. 2017) and MPII (Schiele et al.
2012) datasets realize the upper (occlusive) body motion
characteristics, due to the particularity of furniture assembly
and cooking tasks. Recently, most datasets are focusing on
finer determination of action boundaries, especially for tem-

poral fine-grained action units. Breakfast (Kuehne, Arslan,
and Serre 2014) constructs an order graph and units descrip-
tion; EPIC-KITCHEN (Damen et al. 2018), which intro-
duces visual object detection to form a temporal fine-grained
action unit, is a large-scale cooking TAS dataset. Actually,
the above two tasks can be regarded as a procedure segmen-
tation task in cooking, which is proposed in the Youcook2
(Zhou, Xu, and Corso 2018) dataset. Youcook2 provides not
only a temporal location, but also descriptions of the actions
in a sentence. In addition, tool-object fine-grained seman-
tic class is offered in the MPII dataset. However, most of
the existing datasets are based on tool-objection content in
TAS-related tasks, and it is impractical to extract Skeleton
features without full-body motion. Besides, the lack of char-
acters, fine-grained semantics and categories in the existing
datasets also limits the development of the TAS task. Ta-
ble 1 shows the development of TAS-related datasets in the
past decade. These datasets, where the action segmentations
are more based on hands, tool and objects, are mainly task-
driven. These reasons hindered the development of the TAS
methods based on human motion. MCFS will make up for
the shortcomings of the existing TAS datasets, and promote
the discovery of new problems in the TAS tasks. We believe
MCFS will be a new challenging dataset for motion-centered
TAS.

The MCFS Dataset
MCFS aims to be a motion-centered dataset for TAS task,
which can better exploit new TAS models. In this section,
we introduce the challenges of category definition, data an-
notation and quality control in MCFS, seperately. Moreover,
the detailed construction process including data preparation
and annotation details are introduced. Finally, we stated that
MCFS exhibits more characteristics of statistics and physi-
cal motion, which, competitive with the existing datasets.

Key Challenges
There are a series of challenges during the data collection
procedure, due to the top-level professionalism and com-
plexity of figure skating. Firstly, as a highly professional
sport, it is impractical to define categories manually for fig-
ure skating. Fortunately, the exactitude of labeling data can
be ensured under the guide of the official technical docu-
ments of figure skating. Secondly, for the annotators, it is
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difficult to determine the category and boundary of actions,
since the action is fast and highly similar to other actions
within the same subset. To address the issue, the annotators
are trained with necessary specialized knowledge by profes-
sionals in figure skating. Besides, this work is guided by the
labels in the original video sequences (The upper left label in
Fig. 2)). Based on the above criterions, thus, the labeling and
division for our MCFS would be more convincing. However,
we still enforce a series of measures to ensure high-quality
dataset label, as described in next part.

Figure 2: Labels variation in the original video sequences.
The upper left label in the original video sequences will
change when the action changes.

Dataset Construction
Data Preparation. In MCFS, we collect 38 official videos
of 186 skaters from 2017 to 2019 World Figure Skating
Championships. The complexity of the data distribution in
the same set can be ensured with sufficient skaters. Each
video sequence is of high resolution and FPS to preserve
the integrity of actions. Besides, the duplicate video are re-
moved through manual checking. In addition, We provide
I3D, Skeleton for subsequent experiments.

Annotation Collection. In MCFS, we apply three level
semantics annotations and collect 4 sets, 22 subsets and 130
elements at each annotation level, respectively. The MCFS
structure is shown in Fig. 3. For example, the set “Spin” can
be expressed as Spin = {ChCombospin, CamelSpin, Lay-
backspin, Sitspin, ChSitSpin, ChCamelspin} with 6 subsets.
The elements in each subset will be further annotated with
defined element labels. Such a semantic hierarchy provides
a distinct structure for comprehending coarse-grained and
fine-grained operations. The following requirements should
be observed throughout the annotation process. First, it is
necessary to refer to the real-time labels, which are provided
in the original videos, to determine the start frame and the
end frame. Meanwhile, all incomplete video clips will be
removed in this process. Second, according to the element-
level action category, the official manual and categorization
structure are referred to classify them into subsets and sets.

Annotation Tool. As the segments are variant in length
and content, the workload to annotate the MCFS with a con-
ventional annotation tool will be crushing. In order to im-
prove the annotation efficiency, we develop a new tool to
preview the two frames before and after the current frame.
In addition, with this tool, the start and end frames can be
selected directly while updating the category manually.

Quality Control. We annotate all the frame-level fine-
grained action categories and temporal segmentation bound-
aries in MCFS. To assure the quality of the MCFS dataset,

Figure 3: A three level semantics annotations and collect 4
sets (e.g. Spin), 22 subsets (e.g. CamelSpin) and 130 ele-
ments (e.g. CamelSpin3) at each annotation level.

a series of control mechanisms are adopted, including: 1)
Train annotators with professional knowledge. 2) Provide
reference documents and sample videos. 3) Test the annota-
tor’s labeling level strictly before formal annotation. 4) Re-
view the annotated videos.

Statistic
The MCFS dataset consists of 271 samples captured from
38 competition videos which include more than 1.73 mil-
lion frames. All the annotations are carried at three levels,
and the number of categories at each level is 4, 22 and 130
respectively. There are 93 out of 130 elements has at least
two samples that present the natural heavy-tail distribution.
Except the “NONE” category, we annotate 2,995 effective
clips in all samples. The distribution of video duration is
shown in Fig. 4 (a). The total video length is 15.9 hours with
an average duration of 212s per video. All the videos remain
untrimmed and can be up to 300s. The distribution of seg-
ment durations is shown in Fig. 4 (b) with mean and standard
deviation of 9.4s and 8.3s, respectively. The longest segment
lasts 72s and the shortest one lasts 1s. The large range of
sample duration is a challenge to the TAS task.

Figure 4: MCFS-22 dataset duration statistics.

Dataset Properties
Motion-centered Human Actions. For most TAS
datasets, many factors such as hand, tool and object can af-
fect the results. For example, the action and scene are same
in 50Salads dataset for “cut-tomato” and “cut-cucumber”.
Discriminant information only depends on the object in
the hand. However, all samples have a relatively consistent
scene in the MCFS dataset. The discriminant of the action
category and boundary information only depends on the
human body action should be realized to meet the challenge
of modeling new TAS methods.
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Multi-modal Action Features. We extract not only Flow
and I3D features but also two Skeleton features (2D loca-
tions of 18 and 25 major body joints) based on RGB video
in the MCFS dataset. Fig. 2 shows the Skeleton features.
Skeleton features offers a new opportunity for the combi-
nation of GCN (Huang, Sugano, and Sato 2020) and TAS
methods. It may also develop a new direction for the multi-
modal of temporal human action segmentation. We hope the
MCFS dataset can promote the research of machine learning
for temporal action segmentation of human action.

Large Variance of Action Speed and Duration. For
sport datasets like MCFS, the different actions are with large
action speed and duration variance. For example, jump is
generally completed in 2-3s, but the longest sequence can
be more than 70s. We have calculated the nearest neigh-
bor variance of I3D features for 21 frames in four datasets
as shown in Fig. 5. It can be clearly seen that compared to
the other three kitchen datasets, there are dramatic changes
between different actions in the MCFS dataset. This brings
great challenges to the division of boundaries.

Figure 5: The nearest neighbor variance results of GTEA,
50Salads, Breakfast and MCFS-22 dataset.

High Similarity of Category. In the MCFS dataset, two
samples of different categories may only have few dif-
ferent frames called key frames. For example, in a sin-
gle jump, “Lutz” and “Flip” performs are basically the
same, except for the differences inside and outside the ice
skate blade. For continuous jump like “3Lutz 3Loop” and
“3Lutz 3Toeloop”, the first jump is exactly the same, while
the difference only depends on the subsequent jump. Such
subtle differences can easily make the model misjudge the
category and segmentation point of actions. Meanwhile, be-
cause similar frames may appear in different actions, multi-
semantics frames become another inevitable problem.

Experiments
In this section, experimental setup is first introduced for TAS
task. Then, we report the experimental results on benchmark
datasets (such as 50Salads, GTEA and Breakfast) and list the

baseline results of state-of-the-art TAS methods by leverag-
ing MCFS dataset. In addition, the characteristics of MCFS
is discussed based on the experimental results.

Experimental Setup
Data. MCFS is randomly split into 189 and 82 videos
for training and testing, respectively. Then, we utilize 5-
fold cross validation to assess generalization of the models.
MCFS-4, 22 and 130 share the same splits, but are anno-
tated by the different three hierarchical semantic labels (set,
subset, element), respectively, which have been introduced
in section “the MCFS Dataset”.

I3D Feature Based on RGB. For each frame, a 2048 di-
mensional feature vector of I3D, whose final feature vec-
tor for each frame is obtained by concatenating the vectors
form both RGB and flow streams which results in a 2048
dimensional vector for each frame, is pretrained on Kinetics
(Kay et al. 2017). Specifically, temporal window for I3D of
a frame consists of 20 temporal nearest neighbored frames
of current frame (altogether 21 frames). More details can be
referred to reference (Carreira and Zisserman 2017).

Skeleton Feature. On the MCFS, we use the 2D pose
estimation results from the OpenPose (Cao et al. 2017)
toolbox which outputs 18 joints and 25 joints. In addition,
these joints of Skeleton feature are normalized by dividing
two spatial direction coordinates of joints by corresponding
frame size respectively, and then centralized by the waist
joint (center joint). All our experiments utilize the Skeleton
feature of 25 joints.

Dataset F1@{10,25,50} Edit Acc
50Salads
Bi-LSTM 62.6 58.3 47.0 55.6 55.7
ED-TCN 68.0 63.9 52.6 59.8 55.7
MS-TCN 76.3 74.0 64.5 67.9 80.7
SSTDA 83.0 81.5 73.8 75.8 83.2
GTEA

Bi-LSTM 66.5 59.0 43.6 - 55.5
ED-TCN 72.2 69.3 56.0 - 64.0
MS-TCN 85.8 83.4 69.8 79.0 76.3
SSTDA 90.0 89.1 78.0 86.2 79.8

Breakfast
Bi-LSTM 33.4 21.9 13.6 35.8 56.6
ED-TCN 48.6 43.1 27.7 38.6 67.3
MS-TCN 52.6 48.1 37.9 61.7 66.3
SSTDA 75.0 69.1 55.2 73.7 70.2

Table 2: Comparison with the state-of-the-art on 50Salads,
GTEA, and the Breakfast dataset (All data obtained from
(Farha and Gall 2019) and (Chen et al. 2020a)).

Evaluation Metric. For evaluation, we report the frame-
wise accuracy (Acc), segmental edit distance and the seg-
mental F1 score at overlapping thresholds 10%, 25% and
50%, denoted by F1@{10, 25, 50} (Farha and Gall 2019).
The F1 score can penalize over-segmentation errors while
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Dataset Modality F1@{10,25,50} Edit Acc
MCFS-4
Bi-LSTM I3D 33.4 21.9 13.6 35.8 56.6
ED-TCN I3D 48.6 43.1 27.7 38.6 67.3
MS-TCN I3D 74.1 67.4 50.2 79.6 71.9
MS-TCN Skeleton 86.8 82.6 72.1 86.9 82.0
SSTDA I3D 75.8 69.9 52.5 82.1 71.4
SSTDA Skeleton 88.7 84.9 74.6 89.3 82.0

MCFS-22
Bi-LSTM I3D 14.8 5.9 1.5 13.6 54.3
ED-TCN I3D 32.3 25.7 11.6 25.6 58.8
MS-TCN I3D 49.4 44.1 29.8 52.6 62.6
MS-TCN Skeleton 74.3 69.7 59.5 74.2 75.6
SSTDA I3D 52.7 46.3 31.1 56.3 59.1
SSTDA Skeleton 76.7 72.2 61.2 77.5 75.7

MCFS-130
Bi-LSTM I3D 9.9 2.5 0.3 7.6 54.3
ED-TCN I3D 30.2 22.7 10.6 23.1 54.5
MS-TCN I3D 36.6 30.5 20.0 36.3 58.0
MS-TCN Skeleton 56.4 52.2 42.5 54.5 65.7
SSTDA I3D 42.6 37.3 24.6 44.4 55.1
SSTDA Skeleton 63.8 60.1 49.8 63.5 65.4

Table 3: Element-level action recognition results of repre-
sentative methods. Specifically, results of recognizing ele-
ment categories across all sets, within a subset, and within
an element.

it does not penalize minor temporal shifts between the pre-
dictions and ground truth. This is appropriate for TAS task
because it is important to avoid over-segmentation errors for
video summarization. As for this reason, we use the F1 score
as a measure of the quality of the prediction. The detailed de-
scription of the above evaluation metrics can be referred to
the related reference (Lea et al. 2017).

Baselines for Temporal Action Segmentation
In this subsection, we conduct the experiments utilizing I3D
feature on 50Salads, GTEA and Breakfast datasets, and list
the detailed experimental results of four TAS methods based
on both TCN (including ED-TCN (Lea et al. 2017), MS-
TCN (Farha and Gall 2019) and SSTDA (Chen et al. 2020a)
) and the LSTM (i.e. Bi-LSTM (Graves, Fernández, and
Schmidhuber 2005)) in Table 2. We show results for two
modalities (I3D and Skeleton) of MCFS, as well as for the
four TAS methods in Table 3 (We only select two state-of-
the-art models for Skeleton.). The detailed experimental re-
sults illustrate three challenging properties of MCFS as fol-
lows.

Motion-centered. Table 2 illustrates that I3D can achieve
superior performance on the benchmark datasets (50Salads,
GTEA and Breakfast). Specially, most values of metrics (in-
cluding accuracy, segmental edit distance and F1 score) of
SSTDA model are over 70% (only F1@25,50 on Break-
fast is below 70%). This is because the scene and objects,
which can be well characterized by I3D in a video se-

Figure 6: The confusion matrix results of MCFS-22 (Skele-
ton) utilizing MS-TCN.

quence, play important roles on object-based TAS datasets
such as 50Salads. For example, recognizing “cut tomato”
and “cut cheese” is free of “cut”, but is to distinguish the
different characteristics between tomato and cheese. In con-
trast, figure skating pays no attention to scene and object.
Specifically, the accuracy in Table 3 are generally much
lower than the accuracy in Table 2 when using the same
experimental setup. In addition, some categories of actions
may be confusing because of the extremely high similar-
ity of motion in MCFS. As shown in Fig. 6, “Toeloop” is
wrongly recognized as “salchow” and “Lutz 3Toeloop”. The
reason for the confusion of actions is that single-jump can
only be recognized by a few of key frames, while joint-jump
pay attention to more key frames of the two consecutive
jumps. The above results illustrate MCFS is challenging on
motion-centered TAS.

Temporal Information. In TAS task, it is very impor-
tant to capture the time dynamics. Both TCN-based and
LSTM-based methods could work well by utilizing the ex-
isting datasets (50Salads and GTEA etc.) without the com-
plex temporal characteristics. Due to the problem of large
variance of action speed and duration in MCFS, the LSTM-
based methods (Bi-LSTM) will suffer gradient disappear-
ance by a long time series inputting, while the TCN-based
methods can avoid this issue and can obtain far superior per-
formance (Table 3). Another possible reason of the above
issue is the temporal weak correlation among actions in
MCFS. Besides, the complex transition motion (non-regular
patterns in transition motions including content, duration
and location) interspersed among actions is also challenging
to determine the temporal intervals of actions for TCN-based
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Figure 7: Qualitative results for the TAS task on MCFS.

networks.

Fine-grained Semantics Label. MCFS provides three
levels of fine-grained annotations which result in confusion
of different categories by similar actions. It is possible to
cause many over-segmentation errors in label prediction be-
cause of fine-grained characteristics. MCFS-22 achieves ex-
cellent accuracy than 50Salads as shown in Table 2 and Ta-
ble 3 by utilizing ED-TCN with the same setup. However,
segmental edit distance and F1 score of MCFS-22 are much
lower than that of 50Salads and GTEA. It is a serious prob-
lem that the finer semantics label will lead the more over-
segmentation errors in MCFS. For example, the MCFS-130
performs worse than either MCFS-4 or MCFS-22 by any
compared TAS methods in Table 3.

Skeleton Features of Action
It can be seen in Fig. 7 and Table 3, both the errors of ac-
tion recognition and the errors of over-segmentation based
on I3D predictions are far more than that based on Skeleton,
which illustrates that MCFS depends on the human motion.
In addition, OpenPose can be easily used for Skeleton ex-
traction because of the whole body appearing of the skater
in the video. The two TAS methods (MS-TCN and SSTDA)
using Skeleton feature achieves better performance than that
using I3D feature. For example, in MCFS-22, the perfor-
mance of SSTDA using Skeleton are 24% and 30.1% higher
than that using I3D on F1@0.1 and F1@0.5 respectively.

Directions for Future Works
In human action classification task, GNN based models have
be developed rapidly, such as ST-GCN (Yan, Xiong, and Lin
2018), 2S-AGCN (Shi et al. 2019) and MS-G3D (Liu et al.
2020). So far as we are aware, due to the lack of Skeleton
features in the existing datasets, GNN-based approach is not
used in TAS task. MCFS could be utilized to exploit more
excellent multi-modal and Skeleton-based models by using
optic flow and Skeleton features in TAS field.

Potential Applications
The high-quality data of MCFS has offered a foundation for
various applications. Besides fine-grained action segmenta-
tion tasks, it also includes some potential applications.

Video Description. While there has been increasing inter-
est in the task (Xu et al. 2016; Wang et al. 2018) of describ-
ing video with natural language, current computer vision
algorithms are still severely limited in associated language
that they can recognize. We believe MCFS can be utilized
for Video Description because it can build the embedding
between video frames and the words.

Action Reasoning. Action reasoning (Pirsiavash, Von-
drick, and Torralba 2014) is an interesting issue. For exam-
ple, it is straightforward to conclude a 3Lutz-3Toeloop jump
if single 3Lutz jump and 3toeloop jump have been recog-
nized. This direction provides more empirical research ideas
for model design.

Video-Text Retrieval. Cross-modal retrieval between
videos and texts (Chen et al. 2020b) has attracted growing
attentions. We believe that MCFS can contribute to Video-
Text Retrieval, since all actions are annotated with the se-
mantic labels on three levels in MCFS. Besides, such hier-
archical structure enables methods has better generalization
and improves the ability to distinguish fine-grained semantic
differences.

Conclusion

In this paper, we introduce a new fine-grained dataset called
MCFS for the TAS task. Hierarchical semantic structure of
our dataset has been organized by professional knowledge.
In addition, MCFS differs from existing TAS datasets in
multiple aspects, including motion-centered human actions,
large variance of action speed and duration, multi-modal
action features and high category similarity. Based on the
above differences, a number of comparative experiments are
conducted on MCFS. The experimental results indicate it is
promising and challenging for MCFS to be used in the TAS
task. Besides, MCFS could be utilized to exploit more excel-
lent multi-modal and Skeleton-based models by using optic
flow and Skeleton features in TAS field. We will move on
to propose more state-of-the-art TAS methods. We hope that
our dataset would promote the development of action analy-
sis and related research topics.
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