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Abstract

Focusing on text-to-image (T2I) generation, we propose Text
and Image Mutual-Translation Adversarial Networks (TIME),
a lightweight but effective model that jointly learns a T2I gen-
erator G and an image captioning discriminator D under the
Generative Adversarial Network framework. While previous
methods tackle the T2I problem as a uni-directional task and
use pre-trained language models to enforce the image–text
consistency, TIME requires neither extra modules nor pre-
training. We show that the performance of G can be boosted
substantially by training it jointly with D as a language model.
Specifically, we adopt Transformers to model the cross-modal
connections between the image features and word embeddings,
and design an annealing conditional hinge loss that dynam-
ically balances the adversarial learning. In our experiments,
TIME achieves state-of-the-art (SOTA) performance on the
CUB dataset (Inception Score of 4.91 and Fréchet Inception
Distance of 14.3 on CUB), and shows promising performance
on MS-COCO dataset on image captioning and downstream
vision-language tasks.

Introduction
There are two main aspects to consider when approaching the
text-to-image (T2I) task: the image generation quality and the
image–text semantic consistency. The T2I task is commonly
modeled by a conditional Generative Adversarial Network
(cGAN) (Mirza and Osindero 2014; Goodfellow et al. 2014),
where a Generator (G) is trained to generate images given the
texts describing the contents, and a Discriminator (D) learns
to determine the authenticity of the images, conditioned on
the semantics defined by the given texts.

To address the first aspect, Zhang et al. (2017) introduced
StackGAN by letting G generate images at multiple resolu-
tions, and adopted multiple Ds to jointly refine G from coarse
to fine levels. StackGAN invokes a pre-trained Recurrent-
Neural-Network (RNN) (Hochreiter and Schmidhuber 1997;
Mikolov et al. 2010) to provide text conditioning for the
image generation. To approach the second aspect, Xu et al.
(2018) take StackGAN as the base model and propose At-
tnGAN, which incorporates word embeddings into the gen-
eration and consistency-checking processes. A pre-trained
Deep-Attentional-Multimodal-Similarity-Model (DAMSM)

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is introduced, which better aligns the image features and
word embeddings via an attention mechanism.

While the T2I performance continues to advance (Qiao
et al. 2019; Zhu et al. 2019; Cai et al. 2019; Li et al. 2019a;
Yin et al. 2019; Hinz, Heinrich, and Wermter 2019), the
follow-up methods all share two common traits. First, they
all adopt the same stacked structure of G that requires mul-
tiple Ds. Second, they all rely on the pre-trained DAMSM
from AttnGAN to maintain the image–text consistency. How-
ever, these methods fail to take advantage of recent advances
in both the GAN and NLP literature (Karras et al. 2017;
Karras, Laine, and Aila 2019; Vaswani et al. 2017; Devlin
et al. 2018; Radford et al. 2019). The rapidly progressing re-
search in these two fields provides the opportunity to explore
a substantial departure from previous work on text-to-image
modeling. In particular, as StackGAN and follow-up works
all depend on 1. a pre-trained text encoder for word and
sentence embeddings, 2. an additional image encoder to as-
certain image–text consistency, two important questions arise.
First, can we skip the pre-training step and elegantly train
the text encoder as part of D? Second, can we abandon the
extra CNN (in the DAMSM module which extracts image
features) and use D as the image encoder? If the answers are
affirmative, two further questions can be explored. When D
and the text encoder are jointly trained to match the visual
and text features, can we obtain an image captioning model
from them? Furthermore, since D is trained to extract text-
relevant image features, will it benefit G in generating more
semantically consistent images?

With these questions in mind, we present the Text and
Image Mutual-translation adversarial nEtwork (TIME). To
the best of our knowledge, this is the first work that jointly
handles both text-to-image and image captioning in a single
model using the GAN framework. Our contributions can be
summarized as follows:

1. We propose an efficient model, Text and Image Mutual-
Translation Adversarial Networks (TIME), for T2I tasks
trained in an end-to-end fashion, without any need for
pre-trained models or complex training strategies.

2. We introduce two techniques: 2-D positional encoding for
a better attention operation and annealing hinge loss to
dynamically balance the learning paces of G and D.

3. We show that sentence-level text features are no longer
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Figure 1: Text-to-image results of TIME on the CUB dataset, where D works as a stand-alone image-captioning model.

needed for the T2I task, which leads to a more controllable
T2I generation that is hard to achieve in previous models.

4. Extensive experiments show that our proposed TIME
achieves superior results on text-to-image tasks and promis-
ing results on image captioning. Fig. 1-(c) showcases the
superior synthetic image quality from TIME, while Fig. 1-
(e) demonstrates TIME’s image captioning capability.

Related Work and Background
Recent years have witnessed substantial progress in the text-
to-image task (Mansimov et al. 2015; Nguyen et al. 2017;
Reed et al. 2017, 2016; Zhang et al. 2017; Xu et al. 2018; Han,
Guerrero, and Pavlovic 2019) owing largely to the success
of deep generative models (Goodfellow et al. 2014; Kingma
and Welling 2013; Van den Oord et al. 2016). Reed et al.
first demonstrated the superior ability of conditional GANs
to synthesize plausible images from text descriptions. Stack-
GAN and AttnGAN then took the generation quality to the
next level, which subsequent works built on (Qiao et al. 2019;
Zhu et al. 2019; Cai et al. 2019; Li et al. 2019a; Yin et al.
2019; Hinz, Heinrich, and Wermter 2019; Li et al. 2019b) .
Specifically, MirrorGAN (Qiao et al. 2019) incorporates a
pre-trained text re-description RNN to better align the images
with the given texts, DMGAN (Zhu et al. 2019) integrates a
dynamic memory module on G, ControlGAN (Li et al. 2019a)
employs a channel-wise attention in G, and SDGAN (Yin
et al. 2019) includes a contrastive loss to strengthen the
image–text correlation. In the following, we describe the
key components of StackGAN and AttnGAN.

StackGAN as the Image Generation Backbone. Stack-
GAN adopts a coarse-to-fine structure that has shown sub-
stantial success on the T2I task. In practice, the generator
G takes three steps to produce a 256 × 256 image, where
three discriminators (D) are required to train G. However, a
notable reason for seeking an alternative architecture is that
the multi-D design is memory-demanding and has a high
computational burden during training. If the image resolution
increases, the respective higher-resolution Ds can raise the
cost particularly dramatically.

Dependence on Pre-trained modules. While the overall
framework for T2I models resembles a conditional GAN
(cGAN), multiple modules have to be pre-trained in previous
works. In particular, AttnGAN requires a DAMSM, which
includes an Inception-v3 model (Szegedy et al. 2016) that is
first pre-trained on ImageNet (Deng et al. 2009), and then
used to pre-train an RNN text encoder. MirrorGAN further
proposes the STREAM model, which is also an additional
CNN+RNN structure pre-trained for image captioning.

Such pre-training has several drawbacks, including, first,
the additional pre-trained CNN for image feature extraction
introduces a significant amount of weights, which can be
avoided as we shall later show. Second, using pre-trained
modules leads to extra hyper-parameters that require dataset-
specific tuning. For instance, in AttnGAN, the weight for
the DAMSM loss can range from 0.2 to 100 across different
datasets. Last but not least, empirical studies (Qiao et al. 2019;
Zhang et al. 2017) show that the pre-trained NLP components
do not converge if jointly trained with the cGAN.

The Image-Text Attention Mechanism. The attention
mechanism employed in AttnGAN can be interpreted
as a simplified version of the Transformer (Vaswani
et al. 2017), where the three-dimensional image features
(height×width×channel) in the CNN are flattened into a
two-dimensional sequence (seq-length×channel where seq-
length=height×width). This process is demonstrated in
Fig. 3-(a), where an image-context feature fit is derived via
an attention operation on the reshaped image feature and the
sequence of word embeddings. The resulting image-context
features are then concatenated to the image features to gener-
ate the images. We will show that a full-fledged version of the
Transformer can further improve the performance without a
substantial additional computational burden.

The Motivation of Mutual Translation
One may ask that since training the text-to-image model al-
ready achieves fruitful results with a pre-trained NLP model,
is it necessary to explore the joint-training method? We can
answer this question from several aspects.
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Figure 2: Model overview of TIME. The upper panel shows a high-level summary of our architecture while the lower panel
illustrates the details of the individual modules.

First, a suitable pre-trained NLP model is not always avail-
able for a given image dataset. In cases where the given texts
do not have a pre-trained NLP model, one can save the sep-
arate pre-training time and learn a model that translates in
both directions with TIME. In case a pre-trained NLP model
is available, it is still not guaranteed that the fixed word em-
beddings are the best for training the image generator. Tuning
the hyper-parameters (such as weights of loss objectives from
the pre-trained NLP model) for the pre-training methods can
be very costly and may not be optimal.

Second, under the GAN framework, balancing the joint
training between the Discriminator D and Generator G is
vital. G is unlikely to converge if trained with a fixed D. In
the text-to-image task, the pre-trained NLP model serves as a
part of D that provides authenticity signals to G. Using a pre-
trained NLP model is equivalent to fixing a part of D, which
undermines the performance of the whole training schema
as a GAN. Instead, the joint training in TIME does not have
such restrictions. The NLP parts in TIME are learned together
with G and dynamically adjust the word embeddings for the
training objective, leading to better image synthesis quality.

Finally, mutual translation itself can be a crucial pre-
training method, which is also studied in recent work (Huang
et al. 2018; Li et al. 2020). As we show in the paper, the NLP
models learned in TIME obtain promising performance on
downstream vision–language tasks. In other words, mutual
translation between image and text itself has the potential to
be a powerful pre-training method.

Methodology
In this section, we present our proposed approach. The upper
panel in Fig. 2 shows the overall structure of TIME, consist-
ing of a Text-to-Image Generator G and an Image-to-Text
(captioning) Discriminator D. We treat a text encoder Enc
and a text decoder Dec as parts of D. G’s Text-Conditioned
Image Transformer accepts a series of word embeddings
from Enc and produces an image-context representation for
G to generate a corresponding image. D is trained on three
kinds of input pairs, consisting of captions T real alongside:
(a) matched real images Imatch, (b) randomly mismatched
real images Imis, and (c) generated images Ifake from G.

Model Structures
Text-Conditioned Image Transformer While prior stud-
ies (Zhang et al. 2018; Xu et al. 2018) show the benefit of an
attention mechanism for the image generative task, none of
them dive deeper towards the more comprehensive “multi-
head and multi-layer" Transformer design (Vaswani et al.
2017). To explore a better baseline for the T2I task, we re-
design the attention in AttnGAN with the Text-Conditioned
Image Transformer (TCIT) as illustrated in Fig. 2-(a). In
Fig. 3, we illustrate three main differences between TCIT
and the form of attention widely used in previous T2I models
such as AttnGAN. All attention modules take two inputs,
the image feature representation fi and the word embedding
sequence ft, while yielding one output: the revised image
representation fit according to the word embeddings ft.

2084



Figure 3: Differences between the attention of AttnGAN and TCIT.

First, Fig. 3-(a) shows the attention module from AttnGAN,
where the projected key (K) from ft is used for both match-
ing with query (Q) from fi and calculating fit. Instead, TCIT
has two separate linear layers to project ft as illustrated in
Fig. 3-(b). The intuition is, as K focuses on matching with fi,
the other projection value V can better be optimized towards
refining fi for a better fit. Second, TCIT adopts a multi-head
structure as shown in Fig. 3-(c). Unlike in AttnGAN where
only one attention map is applied, the Transformer replicates
the attention module, thus adding more flexibility for each
image region to account for multiple words. Third, TCIT
stacks the attention layers in a residual structure as in cer-
tain NLP models (Devlin et al. 2018; Radford et al. 2019)
as illustrated in Fig. 3-(d), for better performance by pro-
visioning multiple attention layers and recurrently revising
the learned features. In contrast, previous GAN models (At-
tnGAN, SAGAN) adopt attention only in a one-layer fashion.

Image-Captioning Discriminator We treat the text en-
coder Enc and text decoder Dec as a part of our D. Specifi-
cally, Enc is a Transformer that maps the word indices into
the embeddings while adding contextual information to them.
To train Dec to actively generate text descriptions of an im-
age, an attention mask is applied on the input of Enc, such
that each word can only attend to the words preceding it in a
sentence. Dec is a Transformer decoder that performs image
captioning by predicting the next word’s probability from the
masked word embeddings and the image features.

Image-Captioning Transformer Symmetric to TCIT, the
inverse operation, in which ft is revised by fi, is leveraged
for image captioning in Dec, as shown in Fig. 2-(b). Such a
design has been widely used in recent captioning works. In
TIME, we show that a simple 4-layer 4-head Transformer is
sufficient to obtain high-quality captions and facilitate the
consistency checking in the T2I task.

2-D Positional Encoding for Image Features
When we reshape the image features fi for the attention oper-
ation, there is no way for the Transformer to discern spatial
information from the flattened features. To take advantage of
coordinate signals, we propose 2-D positional encoding as

Figure 4: Visualization of 2-D positional embedding.

a counter-part to the 1-D positional encoding in the Trans-
former (Vaswani et al. 2017). The encoding at each position
has the same dimensionality as the channel size c of fi, and is
directly added to the reshaped image feature fᵀ

i ∈ Rd×c. The
first half of dimensions encode the y-axis positions and the
second half encode the x-axis, with sinusoidal functions of
different frequencies. Such 2-D encoding ensures that closer
visual features have a more similar representation compared
to features that are spatially more remote from each other.
An example 32 × 32 feature-map from a trained TIME is
visualized in Fig. 4, where we visualize three feature chan-
nels as an RGB image. In practice, we apply 2-D positional
encoding on the image features for both TCIT and Dec in D.
Please refer to the online appendix for further details.

Objectives
Discriminator Objectives Formally, we denote the three
kinds of outputs from D as: Df(), the image feature at
8 × 8 resolution; Du(), the unconditional image real/fake
score; and Dc(), the conditional image real/fake score. There-
fore, the predicted next word distribution from Dec is:
Pk = Dec(Enc(T real

1:k−1), Df(Imatch)). Finally, the objec-
tives for D,Enc, and Dec to jointly minimize are:

Lcaption =−
l∑

k=1

log(Pk(T
real
k , Df(Imatch))); (1)

Luncond =− E[log(Du(Imatch))]

− E[log(1−Du(Ifake))]; (2)
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Figure 5: Samples generated during the training of TIME.
Note that the visual features emerge in very early iterations.

along with Lcond, which we shall discuss next.

Annealing Image–Text Matching Loss During training,
we find that G can learn a good semantic visual translation at
very early iterations. As shown in Fig. 5, while the convention
is to train the model for 600 epochs on the CUB dataset, we
observe that the semantic features of T real begin to emerge
on Ifake as early as after 20 epochs. Thus, we argue that it
is not ideal to penalize Ifake by the conditional loss on D in
a static manner. Since Ifake is already very consistent to the
given T real, if we let D consider an already well-matched
input as inconsistent, this may confuse D and in turn hurt the
consistency-checking performance. Therefore, we employ
a hinge loss (Lim and Ye 2017; Tran, Ranganath, and Blei
2017) and dynamically anneal the penalty on Ifake according
to how confidently D predicts the matched real pairs:

spivot = detach(E[Dc(Imatch, Enc(T real))]); (3)

Lcond = E[min(0, 1−Dc(Imatch, Enc(T real)))]

+ E[min(0, 1 +Dc(Imismatch, Enc(T real)))]

+ E[min(0,−spivot × p+Dc(Ifake, Enc(T real)))]. (4)

Here, detach(.) denotes that the gradient is not computed for
the enclosed function, and p = iepoch/nepochs (current epoch
divided by total number) is the annealing factor. The hinge
loss ensures that D yields a lower score on Ifake compared to
Imatch, while the annealing term p ensures that D penalizes
Ifake sufficiently in early epochs.

Generator Objectives On the other side, G considers ran-
dom noise z and word embeddings from Enc as inputs, and
is trained to generate images that can fool D into giving high
scores on authenticity and semantic consistency with the text.
Moreover, G is also encouraged to make D reconstruct the
same sentences as provided as input. Thus, the objectives for
G to minimize are:

Lcaption−g = −
l∑

k=1

log(Pk(T
real
k , Df(G(z, Enc(T real)))));

(5)

Luncond−g = −E[log(Du(G(z, Enc(T real))))]; (6)

Lcond−g = −E[Dc(G(z, Enc(T real)), Enc(T real))]. (7)

Experiments
In this section, we evaluate the proposed model from both
the text-to-image and image-captioning directions, and an-
alyze each module’s effectiveness individually. Moreover,

we highlight the desirable property of TIME being a more
controllable generator compared to other T2I models.

Experiments are conducted on two datasets: CUB (Welin-
der et al. 2010) and MS-COCO (Lin et al. 2014). We follow
the same convention as in previous T2I works to split the
training/testing set. We benchmark the image quality by the
Inception Score (IS) (Salimans et al. 2016) and Fréchet In-
ception Distance (FID) (Heusel et al. 2017), and measure the
image–text consistency by R-precision (Xu et al. 2018) and
SOA-C (Hinz, Heinrich, and Wermter 2019).

Attention Mechanisms We conduct experiments to ex-
plore the best attention settings for the T2I task from the
mechanisms discussed in Section .

Inception Score ↑ R-precision ↑
AttnGAN 4.36± 0.03 67.82± 4.43
Tf-h1-l1 4.38± 0.06 66.96± 5.21
Tf-h4-l1 4.42± 0.06 68.58± 4.39
Tf-h4-l2 4.48± 0.03 69.72± 4.23
Tf-h4-l4 4.33± 0.02 67.42± 4.31
Tf-h8-l4 4.28± 0.03 62.32± 4.25

Table 1: Comparison of different attention settings on CUB.

Table 1 lists the settings we tested, where all the models
are configured the same based on AttnGAN, except for the at-
tention mechanisms used in G. In particular, column 1 shows
the baseline performance that employs the basic attention
operation, described in Fig. 3-(a), from AttnGAN. The fol-
lowing columns show the results of using the Transformer
illustrated in Fig. 3-(d) with different numbers of heads and
layers (e.g., Tf-h4-l2 denotes a Transformer with 4 heads
and 2 layers). The results suggest that a Transformer with a
more comprehensive attention yields better results than the
baseline. However, when increasing the number of layers and
heads beyond a threshold, a clear performance degradation
emerges on the CUB dataset. More discussion and corre-
sponding results on MS-COCO can be found in the online
appendix.

Controllable G without Sentence-Embedding Most pre-
vious T2I models rely on a sentence-level embedding fs as a
vital conditioning factor for G (Zhang et al. 2017; Xu et al.
2018; Qiao et al. 2019; Zhu et al. 2019; Li et al. 2019a).
Specifically, fs is concatenated with noise z as the input for
G, and is leveraged to compute the conditional authenticity
of the images in D. Sentence embeddings are preferred over
word embeddings, as the latter lack contextual meaning and
semantic concepts are often expressed in multiple words.

However, since fs is a part of the input alongside z, any
slight changes in fs can lead to major visual changes in the
resulting images, even when z is fixed. This is undesirable
when we like the shape of a generated image but want to
slightly revise it by altering the text description. Examples
are given in Fig. 6-(a), where changing just a single word
leads to unpredictably large changes in the image. In contrast,
since we adopt the Transformer as the text encoder, which
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Figure 6: Images from TIME with fixed z and varied sentences

yields word embeddings already reflecting the context, fs is
no longer needed in TIME. Via our Transformer text encoder,
the same word in different sentences or at different positions
will have different embeddings. As a result, the word repre-
sentations suffice to capture pertinent semantic information,
and we can abandon the sentence embedding.

In Fig. 6-(b) and (c), TIME shows a more controllable
generation when changing the captions while fixing z. TIME
provides a new perspective that naturally enables fine-grained
manipulation of synthetic images via their text descriptions.

Ablation Study We consider our aggregated architecture
with the setting from Table 3 row 5 and the AttnGAN ob-
jectives as the baseline, and perform an ablation study in
Table 2. First, we remove the image captioning text decoder
Dec to show its positive impact. Then, we add Dec back and
show that dropping the sentence-level embedding does not
hurt the performance. Adding 2-D positional encoding brings
improvements in both image–text consistency and the overall
image quality. Lastly, the proposed hinge loss Lhinge (eq. 4)
releases D from a potentially conflicting signal, resulting in
the most substantial boost in image quality.

Inception Score ↑ R-precision ↑
Baseline 4.64± 0.03 70.72± 1.43
B - img captioning 4.58± 0.02 69.72± 1.43
B - Sentence emb 4.64± 0.06 68.96± 2.21
B + 2D-Pos Encode 4.72± 0.06 71.58± 2.39
B + Hinged loss 4.91± 0.03 71.57± 1.23

Table 2: Ablation Study of TIME on CUB dataset

To emphasize the contribution of the proposed image–text
hinge loss Lhinge, we evaluate it in more detail with different
annealing schedules, including: stop training on Lhinge after
400 epochs (early-stop), start training on Lhinge after 100
epochs (late-begin), and annealing Lhinge with a constant fac-
tor 1. Fig. 7 records the model performance along the training
iterations. Firstly, it shows the effectiveness of the proposed
Lhinge with all anneal schedules. Moreover, early-stop leads
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Figure 7: Performance comparison on different annealing
schedules of the hinged image-text consistency loss.

to a direct performance downgrade in later iterations, while
late-begin performs the worst in early iterations. Annealing
with a constant factor yields a similar performance as the
dynamic annealing in early iterations, but falls back later
when the models converge.

Language Model Performance Apart from a strong T2I
performance, TIME also yields D as a well-performing stand-
alone image captioning model.

model Captioning
BLEU-4

Image
Retri

Text
Retri

Bert (with 24 TF) 0.389 69.3 82.2
UNITER (with 24 TF) 0.395 76.7 87.0
OSCAR (with 24 TF) 0.405 80.8 91.1
TIME (with 8 TF) 0.361 72.1 78.2

Table 3: Results on downstream Vision-Language tasks from
TIME on COCO, compared with SOTA models.

Table 3 shows the comparison between TIME and more
complex NLP models, reflecting the practicality and power
of TIME on the more general Vision–Language (VL) tasks.
Note that we compete with BERT (Dai et al. 2019; Pan et al.

2087



Figure 8: Learned word embeddings on CUB, and qualitative results on MS-COCO

StackGAN AttnGAN ControlGAN MirrorGAN DMGAN TIME Real-Image

CUB Inception Score ↑ 3.82± 0.06 4.36± 0.03 4.51± 0.06 4.56± 0.05 4.71± 0.02 4.91± 0.03 5.04
FID ↓ N/A 23.98 N/A N/A 16.09 14.3 0
R-precision ↑ 10.37± 5.88 67.82± 4.43 69.33± 3.21 69.58± 4.39 72.31± 0.91 71.57± 1.2 N/A

COCO Inception Score ↑ 8.45± 0.03 25.89± 0.47 24.06± 0.6 26.47± 0.4 30.49± 0.5 27.85± 0.7 36.5
FID ↓ N/A 35.49 N/A N/A 32.64 33.72 0
R-precision ↑ N/A 83.53± 0.43 82.43± 2.21 84.21± 0.39 91.87± 0.28 89.57± 0.9 N/A
SOA-C ↑ N/A 25.88 25.64 27.52 33.44 32.78 74.97

Table 4: Text-to-Image performance comparison between TIME and other models.

2020), UNITER (Chen et al. 2019), and OSCAR (Li et al.
2020), which all are large-scale models with 24 Transformer
(TF) blocks, and pre-trained on multiple VL tasks.

In contrast, TIME is only trained on the studied text–image
mutual translation task, with a smaller model size (only 8
TF blocks) and without any pre-training. It gains close per-
formance to the SOTA models, which reveals a promising
area for future research towards mutual-translation in a single
framework. Fig. 8 shows the qualitative results from TIME
on language tasks. In Fig. 8-(a), words with similar meanings
reside close to each other. “Large" ends up close to “red", as
the latter often applies to large birds, while “small" is close
to “brown" and “grey", which often apply to small birds.

Comparison on T2I with State-of-the-Arts We next
compare TIME with several SOTA text-to-image models.
Qualitative results of TIME can be found in Figs. 1, 6, and
8. On CUB, TIME yields a more consistent image synthesis
quality, while AttnGAN is more likely to generate failure
samples. On MS-COCO, where the images are much more
diverse and complex, TIME is still able to generate the es-
sential contents that is consistent with the given text. The
overall performance of TIME proves its effectiveness, given
that it also provides image captioning besides T2I, and does
not rely on any pre-trained modules.

As shown in Table 4, TIME demonstrates competitive per-
formance on MS-COCO and CUB datasets with the new
state-of-the-art IS and FID. Unlike the other models that re-
quire a well pre-trained language module and an Inception-v3
image encoder, TIME itself is sufficient to learn the cross-
modal relationships between image and language. Regarding
the image–text consistency performance, TIME is also among

the top performers on both datasets. Specifically, we do not
tune the model structure to get an optimal performance on
MS-COCO. As our text decoder in D performs image cap-
tioning with an image feature-map of size 8× 8, such a size
choice may not be able to capture small objects in images
from MS-COCO. In contrast, 8×8 is a suitable size to capture
features of bird parts for images from the CUB dataset.

Importantly, TIME is considerably different from At-
tnGAN (no pre-training, no extra CNN/RNN modules, no
stacked structure, no sentence embedding), while other mod-
els based on AttnGAN have orthogonal contributions to
TIME. Such technique contributions (e.g., DMGAN, SD-
GAN, OP-GAN) could also be incorporated into TIME, lead-
ing to likely performance boosts, though we consider such
experiments beyond the scope of this paper.

Conclusion
In this paper, we propose the Text and Image Mutual-
translation adversarial nEtwork (TIME), a unified framework
trained with an adversarial schema that accomplishes both
the text-to-image and image-captioning tasks. Via TIME, we
provide affirmative answers to the four questions we raised in
Section 1. While previous works in the T2I field require pre-
training several supportive modules, TIME achieves the new
state-of-the-art T2I performance without pre-training. The
joint process of learning both a text-to-image and an image-
captioning model fully harnesses the power of GANs (since
in related works, D is typically abandoned after training G),
yielding a promising Vision–Language performance using D.
TIME bridges the gap between the visual and language do-
mains, unveiling the immense potential of mutual translations
between the two modalities within a single model.
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