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Abstract

Weakly-supervised video object segmentation (WVOS) is an
emerging video task that can track and segment the target giv-
en a simple bounding box label. However, existing WVOS
methods are still unsatisfied in either speed or accuracy, s-
ince they only use the exemplar frame to guide the predic-
tion while they neglect the reference from other frames. To
solve the problem, we propose a novel Re-Aggregation based
framework, which uses feature matching to efficiently find the
target and capture the temporal dependencies from multiple
frames to guide the segmentation. Based on a two-stage struc-
ture, our framework builds an information-symmetric match-
ing process to achieve robust aggregation. In each stage,
we design a Query-Memory Aggregation (QMA) module to
gather features from the past frames and make bidirection-
al aggregation to adaptively weight the aggregated features,
which relieves the latent misguidance in unidirectional ag-
gregation. To exploit the information from different aggrega-
tion stages, we propose a novel coarse-fine constraint by us-
ing the Cascaded Refinement Module (CRM) to combine the
predictions from different stages and further boost the per-
formance. Experimental results on three benchmarks show
that our method achieves the state-of-the-art performance in
WVOS (e.g., an overall score of 84.7% on the DAVIS 2016
validation set).

Introduction

Video object segmentation (VOS) aims to track and give the
pixel-wise identification of specific objects in a video se-
quence, which has many application scenarios like content-
based interaction, video editing, video conference, and so
on. With the prevalence of large-scale video-based datasets
(Perazzi et al. 2016; Pont-Tuset et al. 2017; Xu et al. 2018),
it has been a mainstream to solve the VOS using deep neural
networks.

Most works in VOS can be divided into semi-supervised
methods (Wang et al. 2019; Oh et al. 2019), unsuper-
vised methods(Lu et al. 2019; Ventura et al. 2019) and
weakly-supervised methods(Wang et al. 2019; Voigtlaen-
der, Luiten, and Leibe 2019). As shown in Fig. 1, semi-
supervised methods can generate accurate segmentation re-
sults given a concrete mask label in the exemplar frame.
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Figure 1: Visual comparison between semi-supervised, un-
supervised and weakly-supervised VOS. The first row is the
exemplar frame and corresponding target labels. The second
row shows the query frame and corresponding segmentation
results. Only the weakly-supervised VOS can tackle multi-
ple targets with the simple labels.

However, the acquisition of the pixel-wise segmentation la-
bel is time-consuming and may be impractical in many cas-
es. Unsupervised methods do not need any prior label and
can make tracking and segmentation for the salient objec-
t, but they usually need to decide a main target in a video,
leading to suboptimal accuracy and the restricted use in the
cases with multiple targets.

In view of the limitations in both semi-supervised and
unsupervised solutions, recent researchers tend to solve the
VOS task in a weakly-supervised manner, which gives an
easily obtained bounding box label as prior. In this way,
users can conveniently mark the objects they want and the
number of objects is not limited. SiamMask (Wang et al.
2019) uses the feature matching in a light-weighted network
to make real-time tracking and segmentation. Though fast
enough, its performance is not satisfactory as it only us-
es the exemplar frame as guidance. BoltVOS (Voigtlaen-
der, Luiten, and Leibe 2019) designs a two-stage framework
where the first stage tracks the bounding box and the second
stage makes segmentation. Due to the utilization of condi-
tional R-CNN (Ren et al. 2015) and extra segmentation net-
work, this method achieves high accuracy while runs at a
low speed.

Inspired by the recent temporal aggregation mechanism
in video tasks, we use an aggregation based framework to
take care of both efficiency and accuracy. The temporal ag-
gregation usually calculates a pixel-wise similarity matrix



to match the query frame and past frames, then the features
from the past frames can be efficiently aggregated accord-
ing to the matching result. When applying such process in
the weakly-supervised video object segmentation (WVOS)
task, however, there exist the problem of asymmetric in-
formation, i.e., the target information is known in the past
frames but not provided in the query frame, which may
cause wrong matching to the unexpected instances or the
background noise. To solve this problem, we propose a two-
stage Re-Aggregation framework to align the information
from the query frame and past frames (i.e., memory frames).
Our framework gives the target prior to the query frame af-
ter the first stage, so that the query and memory features
can form semantic-consistent pairs in the second stage to
achieve more robust feature aggregation. As the aggregation
based on the similarity matrix is a unidirectional process and
lacks the mutual revalidation between the query frame and
past frames, we expand the traditional aggregation and use
a Bidirectional Channel Aggregation to bilaterally select the
more discriminative channels and enhance the aggregated
feature. To generate accurate predictions from the aggregat-
ed feature, we design a Cascade Refinement Module to com-
bine and restrain the raw predictions and further improve the
segmentation results. Experiments on three datasets demon-
strate that our method achieves the state-of-the-art result-
s among the weakly-supervised methods and is competi-
tive with some semi-supervised methods while only using
a bounding box prior.
Our main contributions are as follows:

e We propose a fast and accurate Query-Memory Re-
Aggregation (QMRA) framework for the WVOS task,
which achieves the state-of-the-art performance.

e We use two-stage feature aggregation to solve the infor-
mation asymmetry in the aggregation process and conduct
bidirectional aggregation in each stage to better gather the
target-specific features from multiple frames.

e A Cascaded Refinement Module (CRM) is proposed to
contact and constrain the information in different aggre-
gation stages and optimize the final results.

Related Work
Temporal Feature Aggregation

Feature aggregation aims at combining the different-source
features and taking the full advantage of information among
them for better feature representation. In video tasks, the
temporal feature aggregation is powerful to gather multi-
frame information and make robust guidance.

TCENet (He et al. 2020) exploits temporal context in-
formation by the temporal aggregation for video object de-
tection. AU-GACN (Xie et al. 2020) leverages the self-
attention graph pooling to select useful information for ex-
pression recognition. In the visual tracking task, siamese-
based approaches (Bertinetto et al. 2016; Sio et al. 2020)
calculate the cross-correlation between the template and the
search image to catch the target. For the unsupervised video
object segmentation, COSNet (Lu et al. 2019) incorpo-
rates a global co-attention mechanism to get information
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from multiple reference frames. Among the semi-supervised
video object segmentation methods, STMN (Oh et al. 2019)
uses a Memory Read block to first calculate a pixel-wise
similarity matrix between the query and memory frames and
then aggregate the target features from the memory frames.
As the memory frames contain the target information, the
aggregated features thus can be target-aware.

There exist two potential problems when applying the
aggregation process to the WVOS task: (1) The memory
frames contain the target information while the query frame
does not, which leads to information asymmetry during the
calculate of the similarity matrix. (2) The aggregation is only
made from the memory to the query, which is unidirection-
al and lacks the mutual perception and validation. To rem-
edy these issues, we propose a two-stage Re-Aggregation
framework to provide the target prior to the query frame and
build a semantic-symmetric aggregation process. Moreover,
we design a Query-Memory Aggregation module to achieve
the bi-directional selection of the features between the query
and memory.

Video Object Segmentation

The video object segmentation task can be applied in semi-
supervised, unsupervised, and weakly-supervised forms,
which are applicable in different scenarios. Semi-supervised
VOS (SVOS) gives the target’s initial segmentation label,
which is a strong prior to understand the target. SVOS meth-
ods (Johnander et al. 2019; Wang et al. 2019; Oh et al. 2019;
Seong, Hyun, and Kim 2020) can achieve excellent perfor-
mance, but the need of the complex pixel-wise label limit-
s their practical uses. Unsupervised VOS (UVOS) requires
to predict the object masks automatically without any label.
Lacking prior information, methods of this subject (Gu et al.
2020; Wang et al. 2019; Lu et al. 2019; Yang et al. 2019) usu-
ally need to judge a main object for prediction. Due to the
non-label characteristic, it is not suitable to use the UVOS
methods in the multi-object scenario.

Weakly-supervised VOS (WVOS), which provides a
rough label (i.e., a bounding box label in this paper) in-
stead of a pixel-wise segmentation label, can be seen as
an intermediate option between the SVOS and the UVOS.
The WVOS methods are easy-to-use compared to the SVOS
methods and are capable of segmenting multiple objects
compared to the UVOS methods. Only a few works have
been done for the WVOS. SiamMask (Wang et al. 2019)
crops the object region using the box-level label and gets
the cross-correlated features between the cropped region and
the query image through siamese networks. It achieves real-
time speed at the cost of suboptimal performance. BoltVOS
(Voigtlaender, Luiten, and Leibe 2019) splits the WVOS task
into two sub-tasks: the box-level tracking, and the segmen-
tation of the bounding box. The use of Conditional R-CNN
(Ren et al. 2015) in its framework results in a good perfor-
mance and slow processing speed. These two methods can
not make a good balance between speed and accuracy. In this
paper, however, we explore a Re-Aggregation based frame-
work, which is both fast and strong and can be trained in an
end-to-end way.



Proposed Method

The definition of the WVOS in this paper is: given a video

sequence T = {I;}* ., Iy is the exemplar frame where the
target bounding box label By is provided, we are required

to predict the targets’ segmentation results S = {St}ivzo. In
our framework, we extra predict the target bounding boxes

B = {Bt}i\[: , at each frame except I. For the k-th frame I,
to be predicted (i.e., the query frame), we further define the
memory frames I,,, which consist of Iy, I, and several
extra frames which are sampled between them at a regular
interval, i.e., L,, = {Io, I;, ..., Ini, ..., Ix—1}, and define the
corresponding memory bounding boxes B,,, (ground-truth
box in I and predicted boxes in the other memory frames).
We use the memory frames I,,, and memory bounding boxes
B,,, to help predict the k-th segmentation result S.

The overall framework is shown in Fig. 2. We conduct the
two-stage Re-Aggregation to generate the bounding box and
segmentation result of the target sequentially. For each stage,
the QMA module is used to gather robust target features. The
CRM is applied to contact and refine the predictions from
different stages.

Re-Aggregation Framework

The aggregation-based method aims to utilize the rich infor-
mation in memory frames and give robust guidance to the
prediction in the query frame. However, there is a problem of
information asymmetry during such an aggregation process.
That is, the features from the memory frames contain both
the visual information from the images and the target infor-
mation given by the labels and previous predictions, while
the query frame does not know about the target. As a result,
the pixel-wise matching between the query and memory is
easy to be misled by the error target or the similar back-
ground, causing inferior aggregation results. In this paper,
we propose a novel Re-Aggregation framework to tackle the
information asymmetry problem by providing the target pri-
or to the query frame and align the different-source features.

The Re-Aggregation framework consists of two aggrega-
tion stages. For the sake of meaning, here we redefine the
query frame as I;. The first stage takes the query frame I,
the memory frames I,,,, and the memory bounding box maps
B,,, as input, calculating a similarity matrix A to aggregate
the pixel-wise features and predict a rough target mask M,
in the query frame:

Ay =FLF, = [fu(Ln, B £, (1) )
My = p1(A1,Fn, Fy) )

here f,,, is the memory encoder which takes 4-channel in-
put (concatenated RGB frame and bounding box map) and
generates the memory feature F,,,, f, is the query encoder
which takes the 3-channel image as input and generates the
query feature F,. ¢ denotes the function of the feature ag-
gregation and the decoder network. As can be seen in E-
g. 1, the feature encoding procedure is asymmetric between
the query and memory frames in the first stage, thus can not
generate a robust similarity matrix A; to guide accurate pre-
dictions. However, we can treat the result of A/, as a rough
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Figure 2: Query-Memory Re-Aggregation Framework. The
first aggregation stage generates a bounding box map for the
target in the query frame. The second aggregation stage con-
siders the bounding box prior and predicts a concrete seg-
mentation mask.
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target indicator. In the second stage, M, is used as a basic
prior to provide the position and scale information of the
potential target and generate a more detailed segmentation
result Sg:

Ay =FLF) = [0, B  f1 (I M,)  (3)

Sq = QOQ(A.Q,Fm,F;) (4)

here M, is concatenated with the query image I, and input
to another query encoder f; to generate the new query fea-
ture F'y. We can see from Eq. 3 that both the query and mem-
ory frames are encoded with the target information, then
the cross-correlation between F,, and F; is information-
symmetric to generate a more robust similarity matrix As.
If we further constrain that f7 = f,,, then it forms a
siamese encoder structure between the query and the mem-
ory frames:

Ay = [fm(ImaBM)]Tfm(quMq) &)

In this way, the query and memory features are generat-
ed from the consistent input form and the same encode op-
eration, making them semantically aligned for the feature
matching and aggregation. What’s more, the prior masks
provided in both query and memory frames can make the ag-
gregation process pay more attention to the latent target ar-
eas from the beginning. Our extensive experiments demon-
strate the effectiveness of the Re-Aggregation framework
and its superiority over one-stage aggregation. It is worth
noting that the predicted target mask M, in Eq. 1 can be var-
ious forms to initially indicate the target. For the WVOS, we
set M, as the target bounding box map (i.e., M, = B),
as shown in Fig. 2. This naturally forms a track-segment
pipeline, with the first stage aggregation to track the object
and the second stage to give the pixel-level segmentation.

Considering the efficiency, the encoding process of the
query frame in the second stage is designed to play two roles,
not only provides the query feature for aggregation but al-
so generates the memory feature for the following frames.
That is, the encoded feature ¥ = f,,,(I,, M) is added to
the memory features and guides the predictions in the next
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Figure 3: Our Query-Memory Aggregation (QMA) module.
The Memory Read block gathers features from the mem-
ory frames. The Bidirectional Channel Aggregation com-
bines the aggregated memory feature and the query feature
to achieve mutual perception for the target.

frame. In that case, the memory features are constantly re-
plenished and we save them in storage so that the memory
frames do not need to be encoded repeatedly, which greatly
accelerates our method.

Query-Memory Aggregation
The guidance from the past frames plays a key role in ob-
taining target-specific information. Previous works of the
WVOS (Wang et al. 2019; Voigtlaender, Luiten, and Leibe
2019) only utilize the information given in the exemplar
frame, easy to cause the performance drop when the large
deformation and displacement appear. In order to take ful-
1 advantage of the video sequence, we propose a Query-
Memory Aggregation (QMA) module to utilize information
from multiple frames and highlight the target-related fea-
tures in an efficient and robust way, as shown in Fig. 3.

Suppose there are T' memory frames, following (Oh et al.
2019), we use the 1 x 1 convolution layers to transform the
memory features into memory key K € RT>HxWx128
and memory value V™ € RT>*HxWx512 and transform the
query feature into query key K9 € R¥*Wx128 and query
value V¢ € REXWX512 Here 128 and 512 are the number
of channels; H and W are respectively the height and width
of the feature maps.

In our QMA module, we first use a Memory Read block
(Oh et al. 2019) to gather the pixel-wise memory features:

V=g KY(K™)TvV" (©6)

where S*[K?(K™)T] is a HW x THW similarity matrix
between each location of the query and memory features
and S”[-] denotes the row-wise softmax used to normalize
the similarity matrix. Under our Re-Aggregation design, the
similarity matrix is generated from asymmetric information
in the first aggregation stage. While in the second stage, d-
ifferent from (Oh et al. 2019), the query bounding box is
provided and the similarity matrix is calculated according
to features with aligned semantics. Thus the feature aggre-
gation process considers both visual and target information,
which is more discriminative.

The Memory Read module aggregates the pixel-wise se-
mantics from the memory features according to the degrees
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Figure 4: The Cascaded Refinement Module (CRM) used
after the raw predictions. F. and F? are the aggregated fea-
tures at different stages.

of similarity. However, Memory Read is a unidirectional ag-
gregation (z.e. from memory to query) and lacks the bilat-
eral validation. The bidirectional attention mechanism (Lu
et al. 2019; Liu et al. 2019) is demonstrated to help two
modules enhance each other and the channel-wise attention
(Hu, Shen, and Sun 2018; Min et al. 2020) can adaptive-
ly improve the feature representation. In our QMA module,
we further conduct a Bidirectional Channel Aggregation (B-
CA) to achieve the mutual perception between the query and
memory features, which can be formulated as follows:

Wg = fmg (VI, V") )
Wm = fqm (Vq> V;n) (8)
F,={w; - V4w, -V} 9)

where w, and w,, are the weight vectors, - means channel-
wise multiplication and {-, -} means concatenation. w, and
wy, combine the query and memory features to adaptively
generate a weight for each feature channel. The details are
shown in Fig. 3. Global Average Pooling (GAP) is applied
on V' and V9 to get two feature vectors of length 512.
The feature vectors are concatenated and passed through a
linear unit which consists of two fully-connected layers with
a bottleneck. The output of the linear unit is normalized by a
sigmoid function and divided into two weight vectors. Then
we use the jointly predicted vectors to re-weight V¢ and V"
in the channel direction and concatenate the results to form
the aggregated feature F,.

In the second stage of our framework, both V¢ and V]
contain the target information from the bounding boxes and
the bidirectional channel-wise aggregation can help to select
the co-occurrence target features and inhibit the influence of
the background noise. Experimental results prove that such
a design can help the network gather the multi-frame target
information and boost the performance.

Cascaded Refinement and Prediction

In our framework, the raw predictions of target bounding
box B, and segmentation mask .S, are generated separately
in different stages, which means they lack the mutual contact
and constraint to each other. To link the predicted bounding
box and segmentation results, we design a Cascaded Refine-
ment Module (CRM), as shown in Fig. 4. Inspired by (Cho



et al. 2020), a CoordConv (Liu et al. 2018) layer is first used
to combine the aggregated feature F, with the coordinate in-
formation. In the CoordConv layer, two coordinate channels
are created. The ¢ coordinate channel is a matrix with its first
row filled with O’s, its second row with 1°s, its third row with
2’s, etc. The j coordinate channel is similar but in the col-
umn direction. A linear scaling for both ¢ and j coordinate
channels is applied to make the values fall in the range [-1,
1]. Then we sequentially merge the aggregated feature with
the 7, j coordinate channels, and the predicted B, and .S,
through the channel-wise concatenation and 1 x 1 convolu-
tion layers. The new aggregated feature is input to a decoder
and predicts the refined segmentation mask .Sy In this way,
the new aggregated feature contains the coordinate informa-
tion which can help the network be more location-aware.
Besides, the two-stage predictions can make a supplement
to generate a more consistent segmentation.

To generate each prediction (B, Sy, S) from the aggre-
gated features, we simply use the decoder network follows
(Wug Oh et al. 2018). The loss function of the whole frame-
work is:

L=Z(Bq,Bl)-i-l(Sq,Sl)+l(Sg,Sl) (10)

where ! is a combination of the dice loss and the cross-
entropy loss, and the weight of dice loss is set to 0.1 by
experience. B; and S are the corresponding labels.

Experiments

In this section, we evaluate the proposed method and com-
pare it to state-of-the-art methods from two aspects: perfor-
mance and running speed.

Implementation Details

We take a two-stage training procedure based on static da-
ta and video data, respectively. For the pre-training on stat-
ic data, we generate pairs of simulative video frames from
the salient object segmentation datasets, ¢.e., DUTS (Wang
et al. 2017), HKU-IS (Li and Yu 2015), MSRA (Cheng
et al. 2014), and SOC (Fan et al. 2018). Every image-mask
pair in the raw static datasets is augmented into three pairs
using thin-plate splines transformations, rotations, and ran-
dom cropping to obtain the diversity. After the pre-training
on the static data, we continue to train the network using
the training set of YouTube-VOS (Xu et al. 2018), which is
a real-world VOS dataset. We randomly sample three tem-
porally ordered frames in a video and the maximum frame
interval is 5. During both training processes, we set three
image-label pairs as a group. The first two pairs are used as
the memory frames with their bounding box labels, and the
last pair is set as the query frame to be predicted. For the
encoders in our framework, both the query encoder f, and
the memory encoder f,, use the ResNet50 (He et al. 2016)
till the 4-th stage as the backbone, but f,,, adds extra filters
in the input layer so that it can take 4 channels (RGB frame
and a bounding box map) as input. We train our network us-
ing the Adam algorithm with a fixed learning rate of le-5 on
four GTX 1080Ti GPUs, and the batch size is 16.

During the inference, only the initial bounding box la-
bel is given and the prediction is made in a propagation-like
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(21 7w | Fm  F | FPS
PCSA N |772 878|774 84.4 | 110.0
AGS N | 797 91.1 | 774 858 -
COSNet N [ 805 940 | 794 90.4 -
AD-Net N | 81.7 - 80.5 - -
MATNet N | 824 945 | 80.7 90.2 -
FEELVOS S| 81.1 905|822 86.6 2.2
RGMP S | 81,5 91.7 | 82.0 90.8 2.2
A-GAME S | 82.0 - 82.2 - 14.3
SAT S | 82.6 - 83.6 - 39.0
RANet S |85 972|854 949 | 303
STMN S | 88.7 - 89.9 - 6.3
KMN S | 89.5 - 91.5 - 8.3
SiamMask B | 717 868 | 67.8 79.8 | 33.6
BoltVOS B | 78.1 - 81.2 - 1.4
QMRA (Ours) | B | 84.7 96.7 | 87.1 956 | 12.1

Table 1: Comparison with recent state-of-the-art methods on
DAVIS 2016 validation set.

| YouTube-VOS DAVIS17
g FPS J&F  FPS
RVOS [N ]337 - | - -
RGMP S 1538 3.8 66.7 3.6
FEELVOS S - - 69.1 2.0
A-GAME S | 66.1 - 70.0 -
TVOS S | 67.8 370 72.3 37.0
FRTM S | 721 21.9 767 219
STMN S | 794 - 81.7 -
KMN S | 814 - 82.8 -
SiamMask B | 528 167 543 1677
BoltVOS B | 65.7 0.7 71.9 0.7
LWL B | 702 3.0° 70.6 3.0°
QMRA (Ours) | B | 67.6 6.4 71.9 6.3

Table 2: Comparison with recent state-of-the-art methods
on YouTube-VOS validation set and DAVIS 2017 validation
set. * means the value is extrapolated from DAVIS 2016.

way. When multiple targets exist, we predict each target in-
dividually and use a softmax function to determine the most
likely category each pixel belongs to. Our method is evalu-
ated on a computer with a single V100 GPU.

Datasets and Metrics for Evaluation

We conduct experiments on three public datasets: the single-
object DAVIS 2016 (Perazzi et al. 2016) dataset and the
multi-object DAVIS 2017 (Pont-Tuset et al. 2017) and
YouTube-VOS (Xu et al. 2018) datasets. Region similari-
ty metric J and boundary accuracy metric F are used as
the performance measures. Frame-per-second (FPS) during
inference is the measure for running speed.

DAVIS 2016 contains 50 videos, which are divided into a
training set (30videos) and a validation set (20 videos). The
exemplar frame in this dataset always appears in the first
frame of a video.



Network DAVIS 2016 | YouTube-VOS
Variants Im TIr NA Ju
Re-Aggregation Framework
Istage 814 922 | 674 537
2stage-NoAlign | 82.8 94.8 | 69.2 55.3
2stage-NoSiam | 82.4 92.0 | 69.5 55.7
2stage (ours) 842 956 | 70.3 56.7
Query-Memory Aggregation Module
w/o QMA 722 81.5 | 53.7 322
w/o BCA 81.8 93.0 | 69.7 553
w/ QMA (ours) | 84.2 95.6 | 70.3 56.7
Cascaded Refinement Module
w/o CRM 822 914 | 69.8 55.5
CRM w/o CL 82.8 942 | 703 55.7
w/ CRM (ours) | 84.2 95.6 | 70.3 56.7
Other Variations

w/o EF 82.5 932 | 69.7 55.5
w/ EF (ours) 842 956 | 703 56.7
ours+COCO 84.7 96.7 | 71.2 58.1

Table 3: Overall ablation studies on key parts of our frame-
work.

DAVIS 2017 is an extended dataset of DAVIS 2016,
which has 60 videos for training and 30 videos for validation
with multiple targets per video. For both DAVIS datasets, the
mean and recall of 7 and F are calculated, denoted as 7,,,,
Jr» Fm, and F,., respectively. J & F is the average score of
JIm and F,.

YouTube-VOS is a large-scale dataset consists of 3471
training videos and 474 validation videos. In this dataset,
the measures of J and F are separately calculated for the
seen (Js, Fs) and unseen (7, F,) object classes during the
training, and the overall score G is the average of J and F.

Comparison with State-of-the-Art Methods

In this part, we make the overall comparisons between the
UVOS, SVOS, and WVOS methods to show their differ-
ences. The UVOS methods include PCSA (Gu et al. 2020),
AGS (Wang et al. 2019), COSNet (Lu et al. 2019), AD-Net
(Yang et al. 2019), MATNet (Zhou et al. 2020) and RVOS
(Ventura et al. 2019). The SVOS methods include FEELVOS
(Voigtlaender et al. 2019), RGMP (Wug Oh et al. 2018), A-
GAME (Johnander et al. 2019), SAT (Chen et al. 2020),
RANet (Wang et al. 2019), STMN (Oh et al. 2019), KMN
(Seong, Hyun, and Kim 2020), TVOS (Zhang et al. 2020),
FRTM (Robinson et al. 2020). Specific for the WVOS, we
compare the performance of our method with other three
state-of-the-art methods which also use the bounding box as
aprior: SiamMask (Wang et al. 2019), BoltVOS (Voigtlaen-
der, Luiten, and Leibe 2019) and LWL (Bhat et al. 2020).
SiamMask can run at real-time speed due to a light-weighted
framework but it can not well handle the large displacemen-
t. BoltVOS utilizes the RCNN and DeepLabv3+ modules to
achieve robust predictions in the multi-object scenario but
also lead to slow processing speed. LWL builds a few-shot
learner based on the exemplar frame and applies steepest de-
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Figure 5: Visualization of the feature maps before and after
the Bidirectional Channel Aggregation (BCA). The numbers
on the arrows indicate the weights for channels.
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scent iterations to find an approximate solution. It requires
multiple iterations in each frame, which limits its practi-
cal efficiency. The quantitative results are shown in Table
1 and Table 2, where N, S, and B denote the use of no label,
segmentation label, and bounding box label in the exemplar
frame, respectively.

Single Object. Table 1 shows the evaluation results of the
single-object case on the DAVIS 2016 validation set. Our
method performs comparable to some recent SVOS meth-
ods. Among the WVOS methods, SiamMask (Wang et al.
2019) runs at 33 FPS, but the recall is relatively low (86.8%
on J,) because it only uses the guidance of the exemplar
frame. BoltVOS (Voigtlaender, Luiten, and Leibe 2019)
achieves better performance than SiamMask, but it costs too
much processing time. In terms of speed, our method is s-
lower than SiamMask but much faster than BoltVOS be-
cause we apply the more efficient aggregation-based guid-
ance. For the performance evaluation, our method surpasses
SiamMask by 13.0% and BoltVOS by 6.6% on 7,,,. Besides,
we achieve 7, of 96.7% and F,. of 95.6%, which shows that
our method is powerful to catch the object.

Multiple Objects. Evaluation results for the multi-object
cases on the YouTube-VOS validation set and DAVIS 2017
validation set are reported in Table 2. The only UVOS
method under this scenario is RVOS (Ventura et al. 2019),
which only achieves an overall score of 33.7% in the
YouTube-VOS validation set. This demonstrates that the U-
VOS methods are not suitable for the multi-object task. The
proposed QMRA also achieves competitive performance a-
gainst some SVOS methods. Among the WVOS method-
s, our method outperforms SiamMask (Wang et al. 2019)
by 14.8% and BoltVOS (Voigtlaender, Luiten, and Leibe
2019) by 1.9% in the YouTube-VOS validation set. The per-
formance of our method is inferior to the most recent LWL
(Bhat et al. 2020) in this dataset, but our running speed is
double of it. In the DAVIS 2017 validation set, our method
surpasses SiamMask and LWL, sharing a best performance
with BoltVOS. Note that our method runs about 8 times
faster than BoltVOS in the same V100 GPU, demonstrating
its superior efficiency.

Ablation Studies and Analysis

Studies on Re-Aggregation framework. Our Re-
Aggregation framework aims at providing the target prior
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Figure 6: Qualitative results of our method on DAVIS 2016 (1st and 2nd rows) and YouTube-VOS (3rd and 4th rows). The first
column shows the exemplar frames where the bounding box labels are marked.

to the query and forming the semantic-symmetric feature
aggregation. Experiments are conducted in the first part
of Table 3. 1stage means we only use one-stage feature
aggregation to predict the segmentation. 2stage-NoAlign
denotes that we do not keep a consistent input form (RGB
frame and bounding box map) between the query and
memory in the second stage, but predict the segmentation
maps in both stages instead. 2stage-NoSiam indicates that
we use an individual encoder f; instead of f,, to encode I,
and M, in Eqn. 3. Our two-stage Re-Aggregation design
is prominently superior to the one-stage framework (incre-
ments of 2.9% and 3.0% on J and J,, respectively). The
performance drops of 2stage-NoAlign and 2stage-NoSiam
comparing to 2stage (Ours) prove that the consistent input
form and the use of the siamese encoder are both important
to build the semantic-symmetric feature aggregation.

Studies on Query-Memory Aggregation Module. The ef-
fect of Query-Memory Aggregation (QMA) is reported in
the second part of Table 3. w/o QMA means the network
simply concatenates the query feature and memory features
without using an aggregation module. Applying the Memo-
ry Read module individually (w/o BCA) makes an improve-
ment of 9.6% on metric J,,,, which shows that the similarity
measure is strong guidance for feature aggregation. Adding
BCA (from w/o BCA to w/ QMA) further brings a signifi-
cant improvement on 7, (from 81.8% to 84.2%). Notably,
BCA increases Js by 0.6% while increases J,, by 1.4%, in-
dicating that BCA can enhance the generalization of the net-
work and make it more robust for unseen categories. Fig. 5
visualizes the feature maps before and after the use of B-
CA. It can be seen that BCA tends to suppress the channels
with high responses on the error target or the background
and keep the channels having distinguishing target features.

Studies on Cascaded Refinement Module. We apply a
Cascaded Refinement Module (CRM) to contact and refine
the two-stage predictions. Using the CRM without the Co-
ordConv layer (CRM w/o CL) boosts the metric 7, by 2.8%.
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This result indicates that the extra refinement process can
tie the predictions at different stages and increase the recall.
Adding the CoordConv layer (CRM (ours)) narrows the gap
between J, and 7, and brings an improvement of 1.4% on
Jr, which shows that the provided coordinate information
helps to catch the target and improve the robustness.
Studies on Other Variations. The extra memory frames are
sampled between the exemplar frame and the previous frame
and the sampling interval is set to 10, 10, and 5 for the e-
valuation of DAVIS 2016, DAVIS 2017, and YouTube-VOS
datasets, respectively. The use of extra memory frames (w/
EF) can boost the 7, by 2.4%, which indicates that the in-
troduction of more frames is helpful to learn about the target
information. Adding COCO (Lin et al. 2014) dataset into
pre-training further boosts the performance, especially for
the unseen categories (1.4% on 7).

Qualitative Results. The qualitative results of our method
are shown in Fig. 6. The proposed QMRA can catch the fast-
moving target (1st row), discriminate similar instances (2nd
row), and handle the cases where the targets close to each
other (3rd row). However, some failure segmentations stil-
1 exist around the boundaries of adjacent targets (4th row)
when the given box-level labels have too much overlap.

Conclusion

In this work, we propose a fast and accurate QMRA frame-
work, promoting the task of weakly-supervised VOS to-
wards practical use. With a two-stage structure, our method
tackles the problem of asymmetric information between the
query and memory frames during the feature aggregation.
To gather robust target features, we expand the Memory
Read block and use a channel-wise aggregation to make the
bidirectional feature selection between the query and mem-
ory features. The proposed Cascade Refinement Module can
contact and restrain the raw predictions and further boost the
performance. Moving forward, we are going to develop our
Re-Aggregation method to other related tasks.
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