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Abstract
The challenge of video grounding - localizing activities in an
untrimmed video via a natural language query - is to tackle
the semantics of vision and language consistently along the
temporal dimension. Most existing proposal-based methods
are trapped by computational cost with extensive candi-
date proposals. In this paper, we propose a novel proposal-
free framework named Contextual Pyramid Network (CP-
Net) to investigate multi-scale temporal correlation in the
video. Specifically, we propose a pyramid network to extract
2D contextual correlation maps at different temporal scales
(T ∗T , T

2
∗ T

2
, T

4
∗ T

4
), where the 2D correlation map (past→

current & current← future) is designed to model all the rela-
tions of any two moments in the video. In other words, CPNet
progressively replenishes the temporal contexts and refines
the location of queried activity by enlarging the temporal re-
ceptive fields. Finally, we implement a temporal self-attentive
regression (i.e., proposal-free regression) to predict the activ-
ity boundary from the above hierarchical context-aware 2D
correlation maps. Extensive experiments on ActivityNet Cap-
tions, Charades-STA, and TACoS datasets demonstrate that
our approach outperforms state-of-the-art methods.

Introduction
Video understanding has attracted increasing attention in the
past few years; many challenges still exist in various video-
based tasks, such as video classification (Wang et al. 2016)
and temporal activity detection (Buch et al. 2017a). How-
ever, these action related tasks are restricted to a collection
of pre-defined action classes. In real applications, people al-
ways give a query and require the model to localize the cor-
rect video segment corresponding to the query’s core textual
semantics. Therefore, the task of video grounding was (Gao
et al. 2017; Anne Hendricks et al. 2017) proposed. There is a
semantic gap between vision and language. Video grounding
is a fundamental task in the field of vision-language under-
standing (e.g., other tasks - video captioning (Zhang et al.
2020c), video question answering (Kim et al. 2020)), which
has recently rapidly developed (Zhang et al. 2019a; Mun
et al. 2020).

In the early works, video grounding was performed in
an “propose-and-rank” manner, which first generated ex-
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Query: He sits up there for a few.

(a) An example of the Video Grounding task
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(b) An illustration of Contextual Pyramid Network
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Figure 1: Illustration of an example for Video Grounding.
There are two actions (red and green regions) in the video;
which one is to be queried? To address this issue, we focus
on the fine-grained temporal correlation. We employ a con-
textual pyramid network to learn 2D temporal correlation,
inspecting different temporal scales to refine the predicted
location. In the 2D correlation matrices, we investigate two
cases of temporal clues: “past → current & current ← fu-
ture”.

tensive video segment proposals, then calculated the con-
fidence scores of these proposals with heuristic tactics, fi-
nally ranked them to select the appropriate candidate. Using
this manner, (Gao et al. 2017; Anne Hendricks et al. 2017;
Liu et al. 2018b,a; Ge et al. 2019) retrieved the entire video
with various sliding windows to cover activity instances,
calculated boundary regression and realized clip-sentence
alignment. Nevertheless, the sliding window with a fixed-
length setting is insufficient to generate rich proposals with
high IoU (Intersection over Union). Meanwhile, the sliding
strategy neglects the boundary sensitiveness. Besides, with-
out sliding windows, (Buch et al. 2017b) densely generated
multi-scale proposals with several times [1, k] of interval
segment sampling at each time step. (Chen et al. 2018; Yuan
et al. 2019; Wang, Ma, and Jiang 2020; Chen and Jiang
2019) introduced the cross-entropy regression to assign each
proposal with a confidence score. (Zhang et al. 2020a) gen-
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erated candidate proposals by learning the boundary prob-
ability curve. Despite the success of these works, the enu-
merate candidate proposals are time-consuming and compu-
tational memory consuming.

To address these problems, (He et al. 2019; Wang, Huang,
and Wang 2019; Wu et al. 2020) applied reinforcement
learning for video grounding. The key idea is to design an
agent to observe the video sequence, then learn a decision-
making paradigm to regress the activity location. Recently,
proposal-free based methods are proposed for video ground-
ing and have achieved comparable progress due to the merit
of model training efficiency. (Yuan, Mei, and Zhu 2019) was
the first proposal-free method for video grounding, which
employed a co-attention regression to predict the starting
and ending times directly. (Ghosh et al. 2019; Rodriguez
et al. 2020) investigated multi-modal fusion with various at-
tention mechanisms. (Mun et al. 2020) inspected a local-to-
global multi-modal interaction to locate the activity. These
works are devoted to multi-modal modeling (i.e., fusion
or interaction), whereas the fine-grained temporal clues in
videos have not been explored with enough attention.

As shown in Figure 1, the video contains easily confused
semantic units (e.g., multiple actions - sit up there for a few
and go down the slide - occurring at different time stamps
in the sequence). Observing salient frames, actions “sit up”
and “go down” are vaguely to differentiate the boundaries.
We attempt to address the location issue from the tempo-
ral clues. Different from score matching between candidate
proposals and the query, we prefer the location regression
optimization based on fine-grained temporal correlation be-
tween any two moments in the videos under the query (e.g.,
the true action ‘sit up”). As shown in Figure 2, we first learn
the multi-modal feature encoding of video and query; then
we believe that fine-grained temporal semantics benefit the
activity boundary location, we leverage a hierarchical pyra-
mid to realize multi-scale temporal interaction (2D tempo-
ral correlation maps). In the pyramid, residual learning is
applied to augment the temporal contexts between different
temporal scales. Besides, a core component of the pyramid
is the context-aware module (CAM) unit, which calculates
the forward and backward temporal validation (from the past
and the future to the current time step), i.e., the fine-grained
2D correlation modeling. With the help of comprehensively
hierarchical temporal clues, our method localizes activity
with accurate boundaries. The contributions are summarized
as follows:

• We present a novel proposal-free based framework named
Contextual Pyramid Network (CPNet) for video ground-
ing, which effectively captures multi-scale temporal cor-
relation maps to recalibrate the temporal range of queried
activity.

• Except for the context-aware hierarchy in CPNet, the
CAM operation enhances discriminative activity regions
through the fine-grained 2D correlation modeling (i.e.,
past→ current & current← future), and the temporal self-
attentive regression performs effectively for proposal-free
video grounding without any candidate proposals.

• Extensive experiments are conducted on three benchmark

datasets and demonstrate the effectiveness of the pro-
posed CPNet. Ablation studies and qualitative visualiza-
tions also verify each component of CPNet.

Related Work
Video grounding originates from temporal activity localiza-
tion (Shou, Wang, and Chang 2016). The classical temporal
activity localization task (Shou, Wang, and Chang 2016) tar-
gets to locate the starting and ending time of actions (i.e.,
action detection) and identify the action labels (i.e., action
classification) in an untrimmed video. By contrast, the video
grounding task (Gao et al. 2017) retrieves the required ac-
tion in videos, but has to understand the textual semantics in
query first and identify the required action. Previous works
of action location preferred temporal sliding windows to
cover candidate proposals (proposal-based methods) (Wang
et al. 2011; Wang and Schmid 2013) and end-to-end deep
learning frameworks (Simonyan and Zisserman 2014; Shou,
Wang, and Chang 2016; Tran et al. 2015; Lin, Zhao, and
Shou 2017). Related works of video grounding can be di-
vided into two parts: proposal-based (candidate deep pro-
posal generation) and proposal-free (end-to-end deep learn-
ing) methods.
Proposal-based methods. Early works (Gao et al. 2017;
Anne Hendricks et al. 2017) addressed this task as a multi-
modal matching problem, which performed in an “propose-
and-rank” manner. They adopted sliding windows to extract
candidate proposals and measured the distance (i.e., match-
ing score) between the candidates and query (Ge et al. 2019;
Liu et al. 2018b); the proposal with the highest score was se-
lected as the prediction result. Based on this manner, candi-
date proposals-based works are rapidly developed, e.g., (Ge
et al. 2019; Chen et al. 2018; Xu et al. 2019; Yuan et al.
2019; Wang, Ma, and Jiang 2020; Chen et al. 2020a; Zhang
et al. 2020a; Zeng et al. 2020). Besides, a 2D temporal map
describing all the proposal solutions is proposed and embed-
ded into the deep learning framework (Zhang et al. 2020b).
Proposal-free methods. To alleviate the extensive compu-
tation of enumerated candidates in the above mentioned
proposal-based methods, researchers applied reinforcement
learning to predict activity boundaries in the end-to-end
proposal-free manner (He et al. 2019; Wu et al. 2020).
In these works, various agents regulated the temporal
boundaries progressively based on its learning policy. (He
et al. 2019) proposed the first reinforcement learning-
based framework for video grounding; (Wu et al. 2020)
and (Wang, Huang, and Wang 2019) respectively proposed a
tree-structured policy and a semantic policy based reinforce-
ment framework.

Apart from reinforcement learning, several proposal-free
regression methods in an end-to-end manner have been
proposed. (Ghosh et al. 2019) encoded video and text
modalities into a joint representation and directly predicted
the starting and ending times. (Yuan, Mei, and Zhu 2019)
and (Rodriguez et al. 2020) utilized different query-video
attentions to fuse multi-modal features. (Mun et al. 2020)
further exploited both local and global contexts by bi-modal
interaction. In this paper, we devote to the joint cross-
modal representation learning with proposal-free regression
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Figure 2: Overview of proposed Contextual Pyramid Network (CPNet) for video grounding. First, we solve Query-Video
co-attention in a multi-modal encoding (embedding) stage. Subsequently, we investigate explicitly temporal context (past →
current & current← future) to refine the awareness of activity boundary. The contextual pyramid is used to explore and integrate
multi-scale 2D temporal correlations. Finally, the integrated contextual-aware feature is fed to a self-attentive regression module
to predict the starting and ending times of the required activity.

optimization for video grounding. And the main contri-
bution is that we propose a contextual pyramid network
with proposal-free regression, which investigates more fine-
grained temporal correlations for video grounding.

Proposed Method
In this paper, we solve video grounding as an activity bound-
ary regression problem. Given an untrimmed video V and a
textual query Q, the goal of video grounding is to identify a
video segment with exact starting and ending times (ts, te),
which semantically corresponds to the query. Specifically,
let visual features be V = {v1, . . . , vT } ∈ Rdv×T and tex-
tual features be Q = {w1, . . . , wL} ∈ Rdw×L, where T
and L are the respective length of video and query; we aim
to learn a model F to locate the exact starting and ending
times of the queried activity in the video.

< ts, te >= F(V ,Q,Θ), (1)

where Θ is a collection of parameters of the model F .
The pipeline of the proposed CPNet model is illustrated

in Figure 2, which consists of three key components: feature
encoding, contextual pyramid, and temporal self-attentive
regression. Firstly, the feature encoding phase is responsible
for encoding the features of video and query; it performs a
multi-modal embedding. Subsequently, the contextual pyra-
mid is employed to exploit valuable temporal clues, i.e., to
refine the activity region by learning multi-scale 2D-dim
temporal correlation matrices (T ∗T , T2 ∗

T
2 , T4 ∗

T
4 ). At last,

a self-attentive regression is utilized to predict the activity
boundary. To summarize, CPNet progressively replenishes
the 2D temporal correlation (past → current & current ←
future) using the contextual pyramid network in hierarchy
(T ∗T , T2 ∗

T
2 , T4 ∗

T
4 ), which refines the accuracy of activity

localization.

Feature Encoding
For cross-modal feature encoding, we adopt a simplified
QANet (Seo et al. 2017) as a backbone to encode visual
features of V and textual features of Q, where the param-
eters of QANet encoder are shared for both visual and tex-
tual encoding. The Feature Encoder module in Figure 2
mainly consists of positional encoding (PE), a stacked con-
volution block, multi-head self-attention, and layer normal-
ization. Firstly, on the positional encoding (Vaswani et al.
2017) layer, the position information is added to the orig-
inal features. After that, four depthwise separable convo-
lution layers (Chollet 2017) in a stacked block are imple-
mented for local context modelling; and then multi-head
self-attention (Seo et al. 2017) is employed to build the long-
range dependence in each feature sequence. Then, we obtain
new visual features V̂ = {v̂1, . . . , v̂T } ∈ Rd×T and textual
features Q̂ = {ŵ1, . . . , ŵL} ∈ Rd×L with the same dimen-
sion d.

Based on new features V̂ and Q̂, we propose a Query-
Video co-attention mechanism by integrating Q̂, V̂ , and
Q̂� V̂ to generate a similarity matrix S:

S = Ws[Q̂, V̂ , Q̂� V̂ ] ∈ RT×L. (2)

Each element si,j in S represents the relationship of visual
feature v̂i with word ŵj . We conduct the softmax function
on each row of S, and obtain attention map Sq which indi-
cates the relevance of each word ŵ to all the visual features
V̂ . Similarly, we conduct softmax on each column of S,
and obtain attention map Sv which indicates the relevance
of each visual feature v̂ to all the words Q̂.

As the task is to locate temporal boundary in the video,
we map all the visual and textual clues to the visual dimen-
sion. We explore the intra-relation of video itself CV→V and
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the relationship between query and video CQ→V . Here are
CV→V = Sq ·SvT · V̂ T and CQ→V = Sq · Q̂. Up to now, we
concatenate all the related visual clues as follows:
H =Wh[V̂ ;CQ→V ;V̂ � CQ→V ;V̂ � CV→V ]∈R4d×T

=Wh
[
V̂ ; Sq ·Q̂; V̂ �

(
Sq ·Q̂

)
; V̂ �

(
Sq ·SvT ·V̂ T

)]
(3)

where Wh is a learnable parameter, [; ] is concatenate op-
eration, T denotes the transpose operations and � is the
element-wise multiplication. After that, we further use a
fully connected layer to reduce the dimension of H to di-
mension d×T and implement the Feature Encoder module
again, i.e., Ĥ = Feature Encoder(FC(H)) ∈ Rd×T .

Contextual Pyramid
As temporal context clues in a video are crucial, we propose
a contextual pyramid to mine rich temporal contexts through
fine-grained hierarchical correlation at different 2D tempo-
ral scales (T ∗ T , T2 ∗

T
2 , T4 ∗

T
4 ). Motivated by non-local

operation (Wang et al. 2018) to capture the global tempo-
ral dependencies, we focus on the temporal correlation of
any two-time steps in each 2D temporal matrix. Generally, a
normal non-local operation of positions ti and tj is given as:

yti =
1

C(x)

∑
∀j

f
(
xti ,xtj

)
g
(
xtj
)
, (4)

where x ∈ Rd×T is an input feature sequence, and y ∈
Rd×T is the output feature sequence, C(·) is a normalization
function and g(·) is a feature embedding layer.

In this work, for video grounding, we model a new calcu-
lation of 1

C(x)
∑
∀j f

(
xti ,xtj

)
in Eq. 4. We transform it into

a normalized correlation matrix M . As shown in Figure 2,
the element mi,j in M correlates the influence of feature
xti on feature xtj . We split the correlation matrix M to two
parts: upper triangular matrix MU which represents the in-
fluence of past → current and lower triangular matrix ML

which represents the influence of current← future.
To calculate matrix M , we firstly design the pairwise cor-

relation functionf(·) as:

f(xti ,xtj ) = θ(xti)
Tφ(xtj ) ∈ RT×T , (5)

where θ(xti) = Wθxti and φ(xtj ) = Wφxtj refer to fea-
ture embedding by respective two fully-connected layers;
Wθ,Wφ ∈ Rd×d are learnable parameters. Then we con-
duct softmax on each row of f(x,x) to generate a normal-
ized correlation matrix M :

M = softmaxrow

(
f(x,x)

)
∈ RT×T , (6)

To jointly consider the influences of both past and fu-
ture to current, we explore a combination of MU and ML.
Thus, the normal non-local operation (Eq. 4) is transformed
into the following formula:

x′ = MU ⊗ g(x) + ML ⊗ g(x) ∈ Rd×T , (7)
where ⊗ denotes the matrix multiplication and g(·) is a
fully-connected layer. We further employ a convolution op-
eration and residual connection on x and x′ as follows:

x∗ = Conv3(x′) + x ∈ Rd×T . (8)

Until now, we elaborate a single context-aware layer in
the proposed contextual pyramid. We define the whole cal-
culation of x∗ as x∗ = CAM(x). As shown in Figure 2, in
the 3-layer pyramid, we build a collection of {Ĥ0, Ĥ1, Ĥ2}
in a bottom-up pathway (Eq. 9), and then perform a top-
down pathway {Ĥ∗0 , Ĥ∗1 , Ĥ∗2} (Eq. 10), where Ĥi, Ĥ∗i ∈
Rd×

T

2i , i ∈ {0, 1, 2}. Each context-aware feature Ĥ∗i−1 is
added to the feature of its adjacent layer Ĥ∗i .{

Ĥ0 = CAM(Ĥ)

Ĥi = CAM(DownSampling(Ĥi−1))
(9)

{
Ĥ∗2 = Conv1(Ĥ2)

Ĥ∗i−1 = Ĥi−1 + UpSampling(Ĥ∗i )
(10)

Finally, we upsize Ĥ∗1 and Ĥ∗2 to the same size as Ĥ∗0 and
concatenate them together and feed into a fully-connected
layer. To the end, we get the final context feature Z ∈ Rd×T .

Temporal Self-attentive Regression
Different from classical self-attention (Vaswani et al. 2017),
we propose a temporal self-attention pooling to attend dis-
criminative features for boundary regression, which is for-
mulated as follows:

az = softmax(WT (tanh(WzZ+b1))+b2) ∈ RT , (11)

where WT ∈ R1× d
2 and Wz ∈ R d

2×d are learnable param-
eters of two fully-connected layers, and b1,b2 ∈ RT are the
biases. Here, az is a to-be-learned attention solution. After
that, we summarize all the features of Z to an intergraded
vector Z ′:

Z ′ =
T∑
t=0

aztZt ∈ Rd, (12)

where t denotes the time stamp.
Finally, a two-layer MLP with sigmoid activation is fur-

ther used to predict the starting time ts and ending time te:

ts, te = MLP(Z ′) ∈ [0, 1], (13)

Loss Optimization
To optimize the proposed model, we adopt a multi-task loss
L including self-attention pooling loss Lcls and temporal lo-
calization regression loss Lreg . The total objective function
is:

L = Lcls + Lreg. (14)
where Lcls is utilized to align the self-attention pooling vec-
tor a and the location label along the temporal dimension
and Lreg is applied to evaluate the regression of starting and
ending times (ts, te). To be specific, with the self-attentive
weight az in Eq. 11, we built Lcls based on the temporal
calibration loss proposed in (Yuan et al. 2019):

Lcls = −
∑T
t=0 â

z
t log(azt )∑T
t=0 a

z
t

(15)

where âzt = 1 when t belongs to the ground-truth (location
region), otherwise âzt = 0.
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The regression loss Lreg is formulated as follows:

Lreg = R(ts, t̂s) +R(te, t̂e), (16)

where R denotes the smooth L1 loss function, t̂s and t̂e de-
note the ground-truth starting and ending times. In a nut-
shell, in our optimization solution, Lreg optimizes the spe-
cific values of (ts, te) to be close to (t̂s, t̂e), and Lcls opti-
mizes the temporal alignment of az and âz .

Experiments
Experimental Setup

Datasets. In this work, we test three benchmark datasets
for video grounding. 1) Charades-STA (Gao et al. 2017)
contains 6,672 daily life videos. The duration of the videos
is 29.76 seconds on average. Each video has around 2.4 an-
notated moments, and the average duration of the moment
is 8.2 seconds. The dataset involves 16,128 query-clip pairs
and is split into training and testing parts with 12,408 pairs
and 3,720 pairs, respectively. 2) ActivityNet-Captions (Kr-
ishna et al. 2017) consists of 20K videos, and the aver-
age duration of the videos is 2 minutes, where the videos
and queries are semantic-rich. On average, each video con-
tains 3.65 queries, and each query has an average of 13.48
words. Limited to the unreleased “test” set, in this paper, we
adopt the setting of “train” for training, “val 1” for valida-
tion, and “val 2” for testing in (Zhang et al. 2019b, 2020b).
Thus, the dataset is split into the training/validation/testing
sets of 37,421, 17,505, and 17,031 query-clip pairs. 3)
TACoS (Regneri et al. 2013) is a cooking activity dataset,
which consists of 127 videos with the average length of
4.79 minutes. TACoS has much more temporally annotated
video segments with queries per video. Each video has 148
queries on average. There are 10146, 4589, and 4083 query-
clip pairs for training, validation, and testing, respectively.

Evaluation Metrics. The metric “R@N, IoU@θ” (Gao
et al. 2017; Yuan, Mei, and Zhu 2019) is adopted, which
records the percentage of test samples having larger IoU
than θ in the top-N predicted segments. Since the proposed
method is proposal-free, all the results are reported at R@1.
We abbreviate it as “IoU@θ” in the following tables. Be-
sides, “mIoU” is applied to denote the average IoU for all
the test queries.

Implementation Details. We use a pre-trained C3D net-
work (Tran et al. 2015) to extract visual features of videos
in Charades-STA and ActivityNet-Captions. The C3D fea-
tures of the TACoS dataset are provided by (Gao et al. 2017).
And we also apply the I3D network (Carreira and Zisser-
man 2017) to extract visual features of Charades-STA. For
textual features, we use the GloVe word embeddings (Pen-
nington, Socher, and Manning 2014) with the dimension of
300 as word features. For the convenience of model training,
we uniformly sample segments from each video with a fixed
T = 128. The temporal action boundaries for each sentence
are normalized to be in [0, 1]. The transformed dimension
d of the feature encoding phase is set to 512. In the imple-
mentation of simplified QANet, the kernel size and the layer

Method IoU@ mIoU0.7 0.5 0.3

CPNet w/o CP 39.85 59.73 71.24 51.54
CPNet w/o CAM 39.03 59.38 71.61 51.73

CPNet 38.74 60.27 71.94 52.00

Table 1: Ablation study of context-aware feature pyramid on
the Charades-STA dataset with I3D features.

Method Venue Feature IoU@ mIoU0.7 0.5
MCN ICCV’17 C3D 8.01 17.46 –
CTRL ICCV’17 C3D 8.89 23.63 –
ACRN SIGIR’18 C3D 7.64 20.26 –
ROLE MM’18 C3D – 12.12 –
MAC WACV’19 C3D 12.20 30.48 –
QSPN AAAI’19 C3D 15.80 35.60 –
ABLR AAAI’19 C3D 9.01 24.36 –
SAP AAAI’19 C3D 13.36 27.42 –

R-W-M AAAI’19 C3D – 36.70 –
SM-RL CVPR’19 C3D 11.17 24.36 32.22

CBP AAAI’20 C3D 18.87 36.80 35.74
GDP AAAI’20 C3D 18.49 39.47 36.60

TSP-PRL AAAI’20 C3D 17.69 37.39 37.22
PMI ECCV’20 C3D 19.27 39.73 –

CPNet (Ours) – C3D 22.47 40.32 37.36
TMLGA WACV’20 I3D 33.74 52.02 –

DRN CVPR’20 I3D 31.75 53.09 –
LGI CVPR’20 I3D 35.48 59.46 51.38

CPNet (Ours) – I3D 38.74 60.27 52.00

Table 2: Performance comparison on Charades-STA dataset.

number of depthwise convolutions are set to 15 and 4, re-
spectively; the head of multi-head self-attention is set to 8.
We optimize the network by Adam optimizer (Kingma and
Ba 2015) with a batch size of 100 and set the initial learning
rate to 1× 10−4 and gradient clipping of 0.5.

Ablation Study
Here we mainly verify the effectiveness of the context-aware
feature pyramid module on the Charades-STA dataset. There
are two variants of the proposed model CPNet: (1) CP-
Net w/o CP removes the whole contextual pyramid module
in CPNet. We directly implement the feature encoding and
self-attentive regression to predict starting and ending times.
(2) CPNet w/o CAM removes the temporal context-aware
correlation (Eqs. 4 ∼ 8) in the context-aware feature pyra-
mid. As shown in Table 1, CPNet w/o CP performs a large
drop of mIoU compared with CPNet; it indicates that the
usage of the contextual pyramid benefits to replenish multi-
scale temporal clues. This merit refines the predication of
the temporal boundary of queried activity. Compare CPNet
w/o CAM with CPNet, the performance drops, especially
on “IoU@0.5”. It means that CAM further improves activity
localization by enhancing discriminative correlation of any
two moments in the videos, i.e., the fine-grained 2D correla-
tion modeling.
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Method Venue IoU@ mIoU0.7 0.5
MCN ICCV’17 – 9.58 15.83
CTRL ICCV’17 – 14.00 20.54
ACRN SIGIR’18 – 16.17 24.16
TGN SIGIR’18 11.86 27.93 29.17

QSPN AAAI’19 13.60 27.70 –
ABLR AAAI’19 – 36.79 36.99
SCDM NeurIPS’19 19.86 36.75 –

TMLGA WACV’20 19.26 33.04 –
CBP AAAI’20 17.80 35.76 36.85
GDP AAAI’20 – 39.30 39.80
PMI ECCV’20 17.83 38.28 –

CPNet (Ours) – 21.63 40.56 40.65

Table 3: Performance comparison on Activity-Captions
dataset.

Method Venue IoU@ mIoU0.5 0.3
MCN ICCV’17 5.58 – –
CTRL ICCV’17 13.30 19.32 11.98
ACRN SIGIR’18 14.62 19.52 –
ROLE MM’18 – – –
TGN SIGIR’18 20.21 25.13 17.93

CMIN SIGIR’19 18.05 24.64 –
ABLR AAAI’19 9.40 19.50 –
SAP AAAI’19 18.24 – –

SM-RL AAAI’19 15.95 20.15 –
SCDM NeurIPS’19 21.17 26.11 –
CBP AAAI’20 24.79 27.31 21.59
GDP AAAI’20 13.50 24.14 16.18

2D-TAN AAAI’20 25.32 37.29 –
DRN CVPR’20 23.17 – –

VSLNet ACL’20 24.03 29.61 24.11
CPNet (Ours) – 28.29 42.61 28.69

Table 4: Performance comparison on TACoS dataset.

Comparison with Existing State-of-the-art Models
To verify the effectiveness of the proposed method CPNet,
we compare it with the existing state-of-the-art methods
as follows: 1) Proposal-based methods: CTRL (Gao et al.
2017), MCN (Anne Hendricks et al. 2017), TGN (Chen
et al. 2018), ACRN (Liu et al. 2018a), ROLE (Liu et al.
2018b), MAC (Ge et al. 2019), SAP (Chen and Jiang
2019), QSPN (Xu et al. 2019), MAN (Zhang et al. 2019a),
CMIN (Zhang et al. 2019b), SCDM (Yuan et al. 2019),
CBP (Wang, Ma, and Jiang 2020), 2D-TAN (Zhang et al.
2020b), GDP (Chen et al. 2020a), DRN (Zeng et al. 2020),
VSLNet (Zhang et al. 2020a); 2) Proposal-free methods:
ABLR (Yuan, Mei, and Zhu 2019), TMLGA (Rodriguez
et al. 2020), Ex-CL (Ghosh et al. 2019), LGI (Mun et al.
2020), PMI (Chen et al. 2020b); 3) Reinforcement Learning
based methods: R-W-M (He et al. 2019), SM-RL (Wang,
Huang, and Wang 2019) and TSP-PRL (Wu et al. 2020).

As shown in Table 2, the proposed method CPNet

1.0

Self-attentive Regression -

0.0

5.5e-02

Self-attentive Regression -

0.0

1.0
2.5e-02

Query 2: the person puts the 
cup down.

Query 1: a person is in a 
entryway eating a sandwich.

Vid_ID: 9JZO2

GT

Pred

0.0s 15.1s

0.1s 14.0s

20.3s14.1s

13.6s 20.6s

0.0s 15.1s 20.3s14.1s

IoU: 92.05% IoU: 88.57%

GT

Pred

Figure 3: Different queries about the same video. CPNet lo-
cates respective response region with the self-attentive solu-
tion az .

Query 2

Query 1

GT

Pred

GT

Pred

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Visualization of attention maps Sq and Sv in pre-
liminary Query-Video co-attention stage. Observing queries
1 and 2, Sq always attends on verbs, whereas Sv fails to at-
tend on related temporal regions in videos but overfits high-
frequency proposals in the dataset distribution.

achieves the best performance with both C3D and I3D vi-
sual features on the Charades-STA dataset. Especially, CP-
Net achieves far superior to all the other methods with
“IoU@0.7” of 38.74 and “IoU@0.5” of 60.27 base on I3D
features. The results on the ActivityNet Captions dataset
are shown in Table 3, our model performs 21.63 and 40.56
on “IoU@0.7” and “IoU@0.5”, respectively. The TACoS
dataset is challenging since it contains dense queries and var-
ious variable-length queried activities in videos. As shown
in Table 4, our method still achieves the best performances
with the “IoU@0.5” of 28.29 and “IoU@0.3” of 42.61.
Compared with the previous best performances of 2D-
TAN (Zhang et al. 2020b), our model exhibits 11.73%
improvement on “IoU@0.5”. These results quantitatively
demonstrate the superiority of our method over existing
methods.
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Query 3: A person 

is laughing 

in front of 

the refrigerator.
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eating a sandwich.

GT

Pred

GT

PrPrPr
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0.8

1.0

T/4 T/4T/ T/

Vid_ID: 9JZO2

Figure 5: Visualization of hierarchical context-awareness in
the pyramid architecture, i.e., the 2D T ∗ T temporal cor-
relation matrix (past → current & current ← future). This
module modifies the wrong visual attention in Figure 4. For
Query 1, CPNet firstly searches “person in the entryway”
with wrong actions (“putting on clothes”) at T ∗T and T

2 ∗
T
2

scale and finally converts to “eating” at T
4 ∗

T
4 scale. For

Query 3, CPNet progressively supplements the response re-
gions, namely enlarging the temporal receptive fields of the
video grounding.

Qualitative Visualization and Analysis

To discuss intuitive explanations on how does the contextual
pyramid network takes effect for video grounding, we vi-
sualize the several exemplars in the Charades-STA dataset.
As shown in Figure 3, the video contains multiple actions,
“eating a sandwich”, “puts the cup down”, etc. Our method
correctly locates different actions for both Queries 1 and 2.
The proposed method achieves high temporal IoU values of
92.05% and 88.57%. Taking Queries 1 and 2 as examples,
we respectively display the attention maps Sq of query and
Sv of video on the preliminary feature encoding stage. As
shown in Figure 4, Sq performs well, whereas Sv not. Sv is
significantly influenced by the distribution of location labels
in the datasets. Thus, merely implementing a query-to-video
co-attention mechanism is insufficient for video grounding.

We further visualize the effect of the contextual pyramid
module. As shown in Figure 5, we display the hierarchical
context-awareness, i.e., multi-scale 2D temporal correlation
maps (T ∗T ), (T2 ∗

T
2 ), (T4 ∗

T
4 ). Even though there is wrong

visual attention in Sv , CPNet attempts to modify it. For
Query 1 in Figure 4, CPNet firstly searches “person is in
a entryway” with a wrong action (i.e., “putting on clothes”)
at (T ∗T ) and (T2 ∗

T
2 ) scales. Finally, at (T4 ∗

T
4 ) scale, CPNet

eventually attends on the queried activity “eating”. In other
words, the pyramid enlarges the temporal fields to discover
more useful or new clues. Query 3 is a completely positive
example of pyramid architecture. CPNet progressively re-
plenishes the response region at each scale. The contextual

0.0

1.0
4e-02

Query 4: person  
drinks from a glass

Vid_ID: JBFPI

Vid_ID: D04GX

Query 5: person 
eating a sandwich

GT

Pred

7.6s 13.9s

18.1s 29.6s

Human 7.6s 13.9s 21.3s 30.0s

GT

Pred

0.0s 5.7s

5.7s 11.9s

Human 0.0s 5.7s 11.5s

0.0

1.0
0.06

6.6s

Self-attentive Regression -

Self-attentive Regression -

IoU: 69.75%

IoU: 79.03%

Figure 6: Some failure cases but correct grounding on videos
(on the Charades-STA dataset). Due to coarse annotations,
these correct results are deemed negative grounding, while
CPNet properly identifies the activity boundaries.

pyramid network refines the coverage of highly responsive
locations.

Besides, there are some interesting results. Examples in
Figure 6 are evaluated as failure cases under the ground-truth
labels. However, they are judged as the correct answer by
human evaluation. For Query 4, the person in the video in-
deed drank water twice. Consistently, the temporal attention
weight az in self-attentive regression has high responses to
both two actions. The first “drink” happens in few frames,
whereas the second “drink” occurs in a larger temporal lo-
cation that achieves the temporal IoU of 69.75%. However,
limited by the nature of regression loss in this proposal-
free method, our model only predicts one activity location.
Query 5 has a similar annotation too. From the cropped
frames shown in Figure 6, we obviously observe that the
second one is more discriminative. In summary, CPNet dis-
covers more related visual contents and can correctly locate
the activity, even with coarse annotations. The qualitative re-
sults in Figures 3-6 provide sufficient evidence that the pro-
posed CPNet is capable of recalibrating the temporal range
of activity by leverage multi-scale 2D correlation maps.

Conclusion

In this paper, we propose a novel proposal-free contex-
tual pyramid network for video grounding. The contextual
pyramid network explores a hierarchical architecture based
on multi-scale 2D correlation maps with different temporal
scales T ∗ T , T2 ∗

T
2 , and T

4 ∗
T
4 . Compared with works ad-

dressing highly responsive but inexact location regions, the
proposed CPNet progressively recalibrates the queried activ-
ity’s temporal boundary by aggregating these multi-scale 2D
correlation maps. Experimental results on three benchmark
datasets show its effectiveness.
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