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Abstract
Existing techniques to adapt semantic segmentation networks
across source and target domains within deep convolutional
neural networks (CNNs) deal with all the samples from the
two domains in a global or category-aware manner. They do
not consider an inter-class variation within the target domain
itself or estimated category, providing the limitation to en-
code the domains having a multi-modal data distribution. To
overcome this limitation, we introduce a learnable clustering
module, and a novel domain adaptation framework, called
cross-domain grouping and alignment. To cluster the sam-
ples across domains with an aim to maximize the domain
alignment without forgetting precise segmentation ability on
the source domain, we present two loss functions, in partic-
ular, for encouraging semantic consistency and orthogonal-
ity among the clusters. We also present a loss so as to solve
a class imbalance problem, which is the other limitation of
the previous methods. Our experiments show that our method
consistently boosts the adaptation performance in semantic
segmentation, outperforming the state-of-the-arts on various
domain adaptation settings.

Introduction
Semantic segmentation aims at densely assigning semantic
category label to each pixel given an image. Though the
remarkable progresses have been dominated by deep neu-
ral networks trained on large-scale labeled dataset (Chen
et al. 2017a). The segmentation model trained on the la-
beled data in source domain usually cannot generalize well
to the unseen data in target domain. For example, the model
trained on the data from one city or computer-generated
scene (Richter et al. 2016; Ros et al. 2016) may fail to yield
accurate pixel-level predictions for the scenes of another city
or real scene. The main reason lies in the different data dis-
tribution between such source and target domains, typically
known as domain discrepancy (Shimodaira 2000).

To address this issue, domain adaptive semantic segmen-
tation methods have been proposed in which they align data
distribution between the source and target domains by adopt-
ing a domain discriminator (Hoffman et al. 2016; Tsai et al.
2018). Formally, these methods aim to minimize an ad-
versarial loss (Goodfellow et al. 2014) to reduce the do-
main discrepancy at image-level (Wu et al. 2018; Hoffman
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Figure 1: Illustration of cross-domain grouping and align-
ment : Conventional methods aim to reduce the domain dis-
crepancy between source and target domains through (a)
global and (b) category-level domain alignment, without
taking into account the inter-class variation or rely solely
on the category classifier. (c) We propose to replace this cat-
egory classifier with an intermediate cross-domain grouping
module to align each group separately (best view in color).

et al. 2018; Chang et al. 2019), feature-level (Hoffman et al.
2016), and category probability-level (Zou et al. 2018; Li,
Yuan, and Vasconcelos 2019; Tsai et al. 2018) distribu-
tions without forgetting semantic segmentation ability on the
source domain. However, their accuracy is still limited when
aligning multi-modal data distribution (Arora et al. 2017),
which cannot guarantee that the target samples from differ-
ent categories are properly separated as in Fig. 1 (a).

To tackle this limitation, category-level domain adapta-
tion methods (Chen et al. 2017b; Du et al. 2019) have been
proposed for semantic segmentation in which they minimize
the class-specific domain discrepancy across the source and
target domains. Together with supervision from the source
domain, this enforces the segmentation network to learn dis-
criminative representation for different classes on both do-
mains. They utilize a category classifier trained on the source
domain to generate pseudo class labels on the target domain.
It results in inaccurate labels for domain adaptation that mis-
leads the domain alignment and accumulates errors as in Fig.
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1 (b). It also contains a class imbalance problem (Zou et al.
2018), where the network works well for majority categories
with a large number of pixels (e.g. road and building), while
not suitable for minority categories with a small number of
pixels (e.g. traffic sign).

To overcome this limitation, we present cross-domain
grouping and alignment for domain adaptive semantic seg-
mentation. As illustrated in Fig. 1 (c), the key idea of our
method is to apply an intermediate grouping module to re-
place the category classifier, allowing to align samples of
source and target domains at each group to be similar with-
out using error-prone category classifier. To make the group-
ing module help with domain adaptation, we propose sev-
eral losses in a manner that the category distribution of each
group between different domains should be consistent, while
the category distribution of different groups in the same
domain should be orthogonal. Furthermore, we present a
group-level class equivalence scheme in order to align all the
categories regardless of the number of pixels. The proposed
method is extensively evaluated through an ablation study
and comparison with state-of-the-art methods on various do-
main adaptive semantic segmentation benchmarks, includ-
ing GTA5→ Cityscapes and SYNTHIA→ Cityscapes.

Related Work
Semantic Segmentation
Numerous methods have been proposed to assign class la-
bels in pixel level for input images. Long et al. (2015) first
transformed a classification convolutional neural network
(CNN) (Krizhevsky, Sutskever, and Hinton 2012; karen Si-
monyan and Zisserman 2015; He et al. 2016) to a fully-
convolutional network (FCN) for semantic segmentation.
Following the line of FCN-based methods, several meth-
ods utilized dilated convolutions to enlarge the receptive
field (Yu and Koltun 2015) and reason about spatial rela-
tionship (Chen et al. 2017a). Recently, Zhao et al. (2017)
presented pyramid pooling module to encode the global and
local context. Although these methods yielded impressive
results in semantic segmentation, they still relied on large
datasets with dense pixel-level class labels, which is ex-
pensive and laborious. An alternative is to utilize synthetic
data (Richter et al. 2016; Ros et al. 2016) which can make
unlimited amounts of labels available. Nevertheless, syn-
thetic data still suffer from a substantially different data dis-
tribution from real data, which results in a dramatic perfor-
mance drop when applying the trained model to real scenes.

Domain Adaptive Semantic Segmentation
Due to the obvious mismatch between synthetic and real
data, unsupervised domain adaptation (UDA) is studied to
minimize the domain discrepancy by aligning the feature
distribution between source and target data. As a pioneering
work, Ganin et al. (2015) introduced the domain adversar-
ial network to transfer the feature distribution, and Tzeng et
al. (2017) proposed adversarial discriminative alignment.

For pixel-level classification, numerous approaches (Wu
et al. 2018; Hoffman et al. 2018; Chang et al. 2019) utilized

image-level adaptation methods which translate source im-
age to have the texture appearance of target image, while
preserving the structure information of the source image
for adapting cross-domain knowledge. In contrast, several
methods (Zou et al. 2018; Li, Yuan, and Vasconcelos 2019;
Li et al. 2020) adopted the iterative self-training approach
to alternatively select unlabelled target samples with higher
class probability and utilized them as a pseudo ground-truth.
The feature-level adaptation methods align the intermedi-
ate feature distribution via adversarial framework. Hoffman
et al. (2016) introduced a feature-level adaptation method
to align the intermediate feature distribution for the global
and local alignment. Tsai et al. (2018) adopted output-level
adaptation for structured output space, since it contains sim-
ilar spatial structure with semantic segmentation. However,
these methods aim to align overall data distribution without
taking into account the inter-class variation.

To solve this problem, several methods (Chen et al.
2017b; Du et al. 2019) introduced category-level adversar-
ial learning to align the data distributions independently for
each class. Similarly, other works (Tsai et al. 2019; Huang
et al. 2020) discovered patch-level adaptation methods by
using multiple modes of patch-wise output distribution to
differentiate the feature representation of patches. However,
inaccurate domain alignment occurs because these methods
rely heavily on category or patch classifiers trained in the
source domain. The most similar to our work is Wang et
al. (2020), which group the category classes into several
groups for domain adaptive semantic segmentation. While
they divide stuff and things (i.e. disconnected regions), our
cross-domain grouping module divides the categories into
multiple groups that the grouping network and segmentation
network can be trained in a joint and boosting manner.

Unsupervised Deep Clustering
A variety of approaches have applied deep clustering algo-
rithms that simultaneously discover groups in training data
and perform representation learning. Chang et al. (2017)
proposed to cast the clustering problem into pairwise clas-
sification using CNN. Caron et al. (2018) proposed a learn-
ing procedure that alternates between clustered images in the
representation space and trains a model that assigns images
to their clusters. Other approaches (Joulin, Bach, and Ponce
2012; Tao et al. 2017) localized the salient and common
objects by clustering pixels in multiple images. Similarly,
Collins et al. (2018) proposed deep feature factorization
(DFF) to group the common part segments between images
through non-negative matrix factorization (NMF) (Ding, He,
and Simon 2005) on CNN features. This paper follows such
a strategy to group semantic consistent data representation
across the source and target domains.

Proposed Method
Problem Statement and Overview
Let us denote the source and target images as IS , IT , where
only the source data is annotated with per-pixel semantic
categories as YS . We seek to train a semantic segmenta-
tion network G, which outputs pixel-wise class probabil-
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Figure 2: Overview of our method. Images from the source and target domains are passed through segmentation networkG. We
decompose the data distribution of source and target domains into a set of K sub-spaces with cross-domain grouping network
C. Then discriminator D distinguishes whether the data distribution for each sub-space is from the source or target domain.

ity PS , PT on both source and target domains reliably, with
height h, width w, and the number of classes cls, respec-
tively. Our goal is to train the segmentation network that
yields to align probability distribution of the source and tar-
get domains PS and PT so that the network G can correctly
predict the pixel-level labels even for the target data IT , fol-
lowing recent study (Tsai et al. 2018) of adaptation in the
output probability space, which shows better performance
than adaptation in the intermediate feature space.

Conventionally two types of domain adaptation ap-
proaches have been proposed: global domain adaptation and
category-level domain adaptation. The former aims to align
the global domain differences, while the latter aims to min-
imize class specific domain discrepancy for each category.
However, global domain adaptation does not take into ac-
count the inter-class variations, and category-level domain
adaptation rely solely on category classifier. To this end,
we propose a novel method by clustering the samples as
K groups across the source and target domains. Concretely,
we cluster the probability distribution into K groups using
cross-domain grouping module, followed by group-level do-
main alignment. By setting K greater than 1, domain align-
ment of complicated data distribution can be solved by an
alignment of K simple data distributions which is the chal-
lenge in global domain adaptation. By setting K less than
cls, the domain misalignment in category-level can be miti-
gated without using a category classifier trained in the source
domain. In the following, we introduce our overall network
architecture (Section ), several constraints for cross-domain
grouping (Section ), and cross-domain alignment (Section ).

Network Architecture

Fig. 2 illustrates our overall framework. Our network con-
sists of three major components: 1) the semantic segmen-
tation network G, 2) the cross-domain grouping module C
to cluster sub-spaces based on the output probability distri-
bution, and 3) the discriminator D for group-level domain
adaptation. In the following sections, we denote source and
target domains as l ∈ {S, T} unless otherwise stated.

Segmentation network. Following the works (Tsai et al.
2018; Li, Yuan, and Vasconcelos 2019; Wang et al. 2020),
we exploit DeepLab-V2 (2017a) with ResNet-101 (2016)
pre-trained on ImageNet (2009) dataset. The source and tar-
get images Il are fed into the segmentation network G, out-
putting pixel-wise class probability distribution Pl = G(Il).
Note that Pl is extracted from the segmentation network be-
fore applying a softmax layer with same resolution as the in-
put using bilinear interpolation, similar to Tsai et al. (2018).

Cross-Domain grouping network. Our cross-domain
grouping network C is formulated as two convolutions. We
design each convolution with 1 × 1 kernel and group map-
ping function. The first convolution produces 64-channel
feature, followed by ReLU and batch normalization. The
second convolution produces K grouping scores, followed
by softmax function to output group probability Hk

l =
C(Pl). We then apply element-wise multiplication between
Hk

l and each channel dimension in Pl, obtaining group-
specific feature F k

l . The cross-domain grouping network can
be easily replaced with other learnable clustering methods.

Discriminator. For group-level domain alignment, we fed
F k
l into the discriminator D. Following Li et al. (2019),

we set the discriminator using five 4 × 4 convolutional
layers of stride 2, where the number of channels is
{64, 128, 256, 512, 1} to form the network. We use a leaky
ReLU (2013) parameterized by 0.2 which is utilized for each
convolutional layer except the last one.

Losses for Cross-Domain Grouping
Perhaps one of the most straightforward ways of group-
ing is to utilize existing clustering methods, e.g. k-
means (Coates and Ng 2012) or non-negative matrix fac-
torization (NMF) (Collins, Achanta, and Susstrunk 2018).
These strategies, however, are not learnable, and thus, they
cannot weave the advantages of category-level domain in-
formation. Unlike these, we present a learnable cluster-
ing module with two loss functions to take advantage of
the category-level domain adaptation methods. We discuss
in more detail about the effectiveness of our grouping
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(a) Source Image (b) Ground Truth (c) k=1 (d) k=3 (e) k=5 (f) k=7

(h) Target Image (i) Ground Truth (j) k=1 (k) k=3 (l) k=5 (m) k=7

(g) k=8

(n) k=8

Figure 3: Visualization of cross-domain grouping on the source (first row) and target (second row) image with K = 8. (From
left to right) Input image and clustering results. Note that color represents the K different sub-space.

compared to non-learnable models (Coates and Ng 2012;
Collins, Achanta, and Susstrunk 2018) in Section . In the
following, we present each loss function in detail.

Semantic consistency. Our first insight about grouping is
that the category distribution of each group between the
source and target domains has to be consistent so that the
clustered group can benefit from the category-level domain
adaptation method. To this end, we first estimate the class
distribution Qk

l by using average pooling layer on each
group-level feature F k

l such that Qk
l , where each elements

in Qk
l = [qk1 , ..., q

k
cls] indicates the probability distribution

of containing a particular categories at kth group . We then
encourage a semantic consistency among class distribution
by utilizing l2-norm ‖·‖2 as follows:

Lco(G,C) =
∑

k∈{1,...,K}

∥∥Qk
S −Qk

T

∥∥2 . (1)

Minimizing loss (1) has two desirable effects. First, it en-
courages the difference of each class distribution of group
to be similar, and it also provides the supervisory signals for
aligning the probability distribution of group-level features.

Orthogonality. The semantic consistency constraint in (1)
encourages the class distribution of group across the source
and target domains to be consistent. This, however, does not
guarantee that class distribution is different for each group.
In other words, we cannot divide the multi-modal complex
distribution into several simple distributions. To this end, we
draw the second insight by introducing orthogonality con-
straint such that, any two class distribution Qj1

l and Qj2
l ,

should be orthogonal each other. It can be realized that their
cosine similarity (2) is 0 since Qk

l are non-negative value.
We define the cosine similarity with l2-norm ‖·‖2 as follows:

cos(Qj1
l , Q

j2
l ) =

Qj1
l ·Q

j2
l∥∥Qj1

l

∥∥
2

∥∥Qj2
l

∥∥
2

, j1, j2 ∈ {1, ...,K}.

(2)
We then formulate an orthogonal loss for training such that

Lorth(G,C) =
∑
l

∑
j1,j2

cos(Qj1
l , Q

j2
l ), (3)

where we apply a loss function on each domain l ∈ {S, T}.
By forcing the cross-domain grouping module C to make

each group to be orthogonal, it can divide a multi-modal
complex distribution into the K simple class distributions.

Losses for Cross-Domain Alignment
In this section, we present a group-level adversarial learning
framework as an alternative to global domain adaptation and
category-level domain adaptation.

Group-level alignment. To achieve group-level domain
alignment, a straight forward method is to use K indepen-
dent discriminators, similar to conventional category-level
domain alignment methods (Chen et al. 2017b; Du et al.
2019). However, we simultaneously update grouping mod-
ule C while training the overall network, thus cluster assign-
ment may not be consistent at each training iteration. To this
end, we adopt conditional adversarial learning framework
following (Long et al. 2018), by combining group-level fea-
ture F k

l with Qk
l as a condition as follows:

Lcadv(G,C,D) = −
∑
k

[log(D(F k
S ⊗Qk

S))]

−
∑
k

[log(1−D(F k
T ⊗Qk

T ))],
(4)

where ⊗ represent outer product operation. Note that using
group-level feature F k

l only as input to the discriminator is
equivalent to global alignment, while we give a condition by
using cross-covariance between F k

l and QK
l as input. This

leads to discriminative domain alignment according to the
different groups.

Group-level class equivalence. For group-level adversar-
ial learning, the existence of particular classes across dif-
ferent domains is desirable. However, since the number of
pixels for particular classes are dominant in each image, it
can cause class imbalance problem. Thus adaptation model
tends to be biased towards majority classes and ignore mi-
nority classes (Zou et al. 2018). To alleviate this, we propose
group level class equivalence following Zhao et al. (2018).
We first apply max pooling layer for each group level feature
Mk

l such that each element of Mk
l = [mk

l,1, ...,m
k
l,cls] is a

maximum score for each category corresponding to group k.
We then utilize maximum classification score in the source
domain mk

S as a pseudo-label, where we aim to train maxi-
mum classification score in target domain mk

T to be similar.
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(a) Source Image (b) Ground Truth

(h) Target Image (i) Ground Truth (k) DFF(j) K-means (l) Ours (Iter 0k)

(e) Ours (Iter 0k)(d) DFF(c) K-means

(m) Ours (Iter 80k)

(f) Ours (Iter 80k)

(n) Ours (Iter 120k)

(g) Ours (Iter 120k)

Figure 4: Visualization of cross-domain grouping result of (a) source and (c) target image with GT classes as corresponding
colors (b,i) via (c,j) K-means, (d,f) DFF, (e,l) Ours (Iter 0k), (f,m) Ours (Iter 80k) and (g,n) Ours (Iter 120k). Compared to
non-learnable model, our method can better capture semantic consistent objects across source and target domains.

To this end, we apply multi-class binary cross-entropy loss
for each class as follows :

Lcl(G,C) = −
∑
k

∑
u

[m k
S,u ≥ τ ] log(m k

T,u), (5)

where Iverson bracket indicator function [·] evaluates to 1
when it is true and 0 otherwise, and u ∈ {1, ..., cls} denotes
category. Note that we merely exclude too low probability
with the threshold parameter τ .

Training
The overall loss function of our approach can be written as

L(G,C,D) = Lseg(G) + λcoLco(G,C) + λclLcl(G,C)

+ λorthLorth(G,C) + λcadvLcadv(G,C,D),
(6)

where Lseg is the supervised cross-entropy loss for se-
mantic segmentation network on the source data, and
λco, λorth, λcadv and λcl are balancing parameter for differ-
ent losses. We then solve the following minmax problem for
optimizing G,C and D.

min
G,C

max
D

L(G,C,D). (7)

Experiments
Experimental Setting
Implementation details. The proposed method was im-
plemented in PyTorch library (Paszke et al. 2017) and sim-
ulated on a PC with a single RTX Titan GPU. We uti-
lize BDL (Li, Yuan, and Vasconcelos 2019) as our base-
line model following conventional work (Wang et al. 2020),
including self-supervised learning and image transferring
framework. To train the segmentation network, we utilize
stochastic gradient descent (SGD) (1998), where the learn-
ing rate is set to 2.5×10−4. For grouping network, we utilize
SGD, with learning rate as 1×10−3. Both learning rates de-
creased with “poly” learning rate policy with power fixed to
0.9 and momentum as 0.9. For discriminator training, we use
Adam (2014) optimizer with an initial learning rate 1×10−4.
We jointly train our segmentation network, grouping net-
work, and discriminator using (7) for a total of 120k itera-
tions. We randomly paired source and target images in each

iteration. Through the cross-validation using grid-search in
log-scale, we set the hyper-parameters λco, λorth, λcadv, λcl
and τ as 0.001, 0.001, 0.001, 0.0001 and 0.05, respectively.

Datasets. For experiments, we use the GTA5 (Richter
et al. 2016) and SYNTHIA (Ros et al. 2016) as source
dataset. GTA5 dataset (Richter et al. 2016) contains 24,966
images with 1914×1052 resolution. We resize images to
1280 × 760 following other work (Tsai et al. 2018). For
SYNTHIA (Ros et al. 2016), we use SYNTHIA-RAND-
CITYSCAPES dataset with 9,400 images with 1280×760
resolution. We use Cityscapes (Cordts et al. 2016) as tar-
get dataset, which consists of 2,975, 500 and 1,525 images
with training, validation and test set. We train our network
with training set, while evaluation is done using validation
set. We resize images to 1024 × 512 for both training and
testing as (Li, Yuan, and Vasconcelos 2019). We evaluate
the class-level intersection over union (IoU) and mean IoU
(mIoU) (Everingham et al. 2015).

Analysis
We first visualize each group through cross-domain group-
ing in Fig. 3. Clustered groups for various k showed that our
networks clustered semantically consistent regions across
the source and target domains through (1). Also, clustered
regions along different k indicate that our network effec-
tively divided regions into different group using (2).

We further compare our grouping network with k-means
clustering algorithm (2012) and deep feature factoriza-
tion (2018) which is not trainable methods. As shown in
Fig. 4, our method can better capture the object boundaries
and semantic consistent objects across source and target do-
mains compared to other non-learnable methods. We further
visualize each clustered group through cross-domain group-
ing with an evolving number of iteration. As the number
of iterations increases, cross-domain grouping and group-
level domain alignment share complementary information,
which decomposes the data distribution and aligns domains
for each grouped sub-spaces in a joint and boosting manner.

In Fig. 5, we show the t-SNE visualization (van der
Maaten and Hinton 2008) of the output probability distri-
bution of our method compares to the non-adapted method
and baseline (Li, Yuan, and Vasconcelos 2019). The result
shows that our method effectively aligns the distribution of
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(c) Target Image

(a) Source Image

(d) Ground Truth

(b) Ground Truth

(e) Non-adapted model

Source Target

(f) Baseline (Li et al., 2019)

Source Target

(g) Ours

Source Target

Figure 5: Visualization of output probability distribution of (a) source and (c) target image with GT classes as corresponding
colors (b,d) via t-SNE using (e) non-adapted model, (f) baseline (Li, Yuan, and Vasconcelos 2019) and (g) ours. Our method
effectively reduce domain discrepancy along with different domain, while others failed (represented using a circle).
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Figure 6: Ablation study for domain alignment with different
number of clusters K on GTA5→ Cityscapes.

the source and target domains, while others failed to reduce
the domain discrepancy. Furthermore, we observe that our
model successfully grouped minority categories (i.e. traffic
signs in yellow) while others failed. It indicates that the loss
(5) can solve class imbalance problem.

Ablation Study
Fig. 6 shows the result of ablation experiments with different
number of groups K. Note that the results with K = 1 are
equivalent to global domain adaptation as a baseline. The
result shows that ours with various number of K consis-
tently outperform the baseline, which shows the effective-
ness of our group-level domain alignment. The performance
has improved as K increased from 1, and after achieving
the best performance at K = 8 the rest showed no signifi-
cant difference. The lower performance with the larger num-
ber of K indicates that over-clustered samples can actually
degrade performance as conventional category-level adapta-
tion methods. Since the result with K = 8 has shown the
best performance on both GTA5 → Cityscapes and SYN-
THIA→ Cityscapes, we set K as 8 for all experiments.

Table 1 shows the result of ablation experiments to vali-
date the effects of proposed loss functions. It verifies the ef-
fectiveness of each loss function, including group-level do-
main adaptation, group-level semantic consistency, group-
level orthogonality, and group-level class equivalence. The

Method Loss Functions mIOU
Lseg Lcadv Lco Lorth Lcl

Source only X 36.6

Ours

X X 48.8
X X X 49.1
X X X X 50.8
X X X X X 51.5

Table 1: Ablation study for domain alignment with different
loss functions on GTA5→ Cityscapes.

full usage of our proposed loss functions yields the best
results. We also find that adding group-level orthogonality
leads to a large improvement in the performance, which
demonstrates that we effectively divide the multi-modal
complex distribution into K simple distributions for group-
level domain alignment.

Comparison with State-of-the-art Methods
GTA5 → Cityscapes. In the following, we evaluated our
method on GTA5→ Cityscapes in comparison to the state-
of-the-art methods including without adaptation, global
adaptation (Tsai et al. 2018), image-level adaptation (Wu
et al. 2018; Chang et al. 2019; Li, Yuan, and Vasconce-
los 2019) and category-level domain alignment (Luo et al.
2019; Du et al. 2019; Vu et al. 2019; Tsai et al. 2019; Huang
et al. 2020; Wang et al. 2020). As shown in Table 2, our
method outperforms all other models on the categories “car,
truck, bus, motor, and bike” which share similar appear-
ance. Specifically, we observe that our model achieves per-
formance improvement on the categories “pole and traffic
sign”. It demonstrates that our group-level class equivalence
effectively solves the class imbalance problem.

SYNTHIA → Cityscapes. We further compared our
method to the state-of-the-art methods (Luo et al. 2019;
Tsai et al. 2018; Du et al. 2019; Li, Yuan, and Vasconcelos
2019; Huang et al. 2020; Wang et al. 2020) on SYNTHIA
→ Cityscapes, where 13 common classes between SYN-
THIA (Ros et al. 2016) and Cityscapes (Cordts et al. 2016)
datasets are evaluated. As shown in Table 3, our method
outperforms conventional methods. We can observe that our

1804



(b) Ground Truth

(g) Ground Truth

(a) Input Image (c) Non-adapted (d) Baseline (Li et al., 2019) (e) Ours

(f) Input Image (h) Non-adapted (i) Baseline (Li et al., 2019) (j) Ours

Figure 7: Qualitative results of domain adaptation on GTA5 → Cityscapes. (From left to right) Input image, ground-truth,
non-adapted result, baseline result and ours result.

GTA5 → Cityscapes
Road SW Build Wall Fence Pole TL TS Veg. terrain Sky PR Rider Car Truck Bus Train Motor Bike mIoU

Without Adaptation 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
Tsai et al. (2018) 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
Wu et al. (2018) 85.0 30.8 81.3 25.8 21.2 22.2 25.4 26.6 83.4 36.7 76.2 58.9 24.9 80.7 29.5 42.9 2.5 26.9 11.6 41.7

Chang et al. (2019) 91.5 47.5 82.5 31.3 25.6 33.0 33.7 25.8 82.7 28.8 82.7 62.4 30.8 85.2 27.7 34.5 6.4 25.2 24.4 45.4
Li et al. (2019) 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

Luo et al. (2019) 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
Du et al. (2019) 90.3 38.9 81.7 24.8 22.9 30.5 37.0 21.2 84.8 38.8 76.9 58.8 30.7 85.7 30.6 38.1 5.9 28.3 36.9 45.4
Vu et al. (2019) 90.3 38.9 81.7 24.8 22.9 30.5 37.0 21.2 84.8 38.8 76.9 58.8 30.7 85.7 30.6 38.1 5.9 28.3 36.9 45.4

Tsai et al. (2019) 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5
Huang et al. (2020) 92.4 55.3 82.3 31.2 29.1 32.5 33.2 35.6 83.5 34.8 84.2 58.9 32.2 84.7 40.6 46.1 2.1 31.1 32.7 48.6
Wang et al. (2020) 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2

Ours 91.1 52.8 84.6 32.0 27.1 33.8 38.4 40.3 84.6 42.8 85.0 64.2 36.5 87.3 44.4 51.0 0.0 37.3 44.9 51.5

Table 2: Quantitative results of domain adaptation on GTA5→ Cityscapes.

SYNTHIA→ Cityscapes
Road SW Build TL TS Veg. Sky PR Rider Car Bus Motor Bike mIoU

Tsai et al. (2018) 84.3 42.7 77.5 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7
Li et al. (2019) 86.0 46.7 80.3 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4

Luo et al. (2019) 82.5 24.0 79.4 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 46.3
Du et al. (2019) 84.6 41.7 80.8 11.5 14.7 80.8 85.3 57.5 21.6 82.0 36.0 19.3 34.5 50.0

Huang et al. (2020) 86.2 44.9 79.5 9.4 11.8 78.6 86.5 57.2 26.1 76.8 39.9 21.5 32.1 50.0
Wang et al. (2020) 83.0 44.0 80.3 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 52.1

Ours 90.7 49.5 84.5 33.6 38.9 84.6 84.6 59.8 33.3 80.8 51.5 37.6 45.9 54.1

Table 3: Quantitative results of domain adaptation on SYNTHIA→ Cityscapes.

model achieve similar improvements in GTA5→Cityscapes
scenario. Compared to baseline (Li, Yuan, and Vasconcelos
2019), our model achieves large improvement in the perfor-
mance “traffic sign and traffic light”.

Conclusion
We have introduced cross-domain grouping and alignment
for domain adaptive semantic segmentation. The key idea is
to apply an intermediate grouping module such that multi-
modal data distribution can be divided into several simple
distributions. We then apply group-level domain alignment
across source and target domains, where the grouping net-
work and segmentation network can be trained in a joint
and boosting manner using semantic consistency and or-

thogonality constraints. To solve the class imbalance prob-
lem, we have further introduced a group-level class equiv-
alence constraint, resulting state-of-the-art performance on
domain adaptive semantic segmentation. We believe our ap-
proach will facilitate further advances in unsupervised do-
main adaptation on various computer vision tasks.
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