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Abstract

We present a new deep learning framework for low-contrast
image enhancement, which trains the network using the
multi-exposure sequences rather than explicit ground-truth
images. The purpose of our method is to enhance a low-
contrast image so as to contain abundant details in various
exposure levels. To realize this, we propose to design the loss
function using the structure tensor representation, which has
been widely used as high-dimensional image contrast. Our
loss function penalizes the difference of the structure ten-
sors between the network output and the multi-exposure im-
ages in a multi-scale manner. Eventually, the network trained
by the loss function produces a high-quality image approxi-
mating the overall contrast of the sequence. We provide in-
depth analysis on our method and comparison with conven-
tional loss functions. Quantitative and qualitative evaluations
demonstrate that the proposed method outperforms the exist-
ing state-of-the art approaches in various benchmarks.

Introduction
Camera sensors often fail to capture clear images or videos
under poor conditions, such as insufficient lighting environ-
ment, limited camera performance, and inappropriate set-
ting for the equipment. The lost details and low contrast not
only cause unpleasant subjective feelings, but also degener-
ate the performance of high-level vision algorithms such as
detection and stereo matching. The demand for low-contrast
image enhancement has tremendously grown for both hu-
man and machine perceptions. Over the last decades, various
methods have been proposed to enhance the low-contrast
images. Traditional enhancement techniques can be mainly
categorized into two groups: histogram-based (Arici, Dik-
bas, and Altunbasak 2009; Celik and Tjahjadi 2011) and
Retinex-based (Fu et al. 2016; Guo, Li, and Ling 2017)
methods. However, they require manual parameter adjust-
ments, and fail to produce a high-quality results due to the
complex structures in natural scenes.

Recently, convolutional neural networks (CNNs) have
shown a massive advance in many low-level vision
tasks (Dong et al. 2015; Kim et al. 2017; Kupyn et al. 2018),
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due to their powerful representation ability to image struc-
ture. They utilize a set of degraded and ground-truth im-
age pairs as training dataset, where the degraded images
are usually obtained by corrupting the clean ones. With the
paired training examples, the deep networks can be trained
to learn a high-dimensional non-linear mapping from the de-
graded observations to their ground-truths. The most com-
mon choice of loss functions is mean square error (MSE) or
mean absolute error (MAE), which measure per-pixel inten-
sity difference between CNN outputs and the ground-truths.
However, these loss functions suffer from poor results due to
their independent property on local characteristics of the im-
age. Beyond the pointwise quality metrics, several loss func-
tions (Zhao et al. 2016; Dosovitskiy and Brox 2016) have
considered the neighboring pixels to obtain perceptually en-
hanced outputs. Especially, the perceptual loss (Dosovitskiy
and Brox 2016) ensures the output image to have the similar
high-level feature with that of the ground-truth image.

In the area of single image contrast enhancement, we can
train the CNNs with the above loss functions to map the low-
contrast input into the corresponding reference image. The
paired training dataset has been constructed by retouching
low-contrast images through human experts (Bychkovsky
et al. 2011) or photography algorithms (Cai, Gu, and Zhang
2018). However, there may be no unique or well-defined
high-quality ground-truth given a low-contrast image. Fur-
thermore, the results obtained by the direct network suffer
from various distortions, such as noise amplification, false
color, and wrong contrast. Such distortions come from the
difficulties in balancing both the contrast enhancement and
color reconstruction with single ground-truth images. The
recent CNN-based enhancement approaches have resolved
the distortions assisted by additional networks (Cai, Gu, and
Zhang 2018; Ren et al. 2019), refinement (Wei et al. 2018),
or adversarial training (Ignatov et al. 2017).

In this paper, we introduce a novel deep learning frame-
work for single image contrast enhancement, which uses
the multi-exposure image sequences, not an explicit high-
quality image, as weak supervision for network training. Al-
though each exposure image has only weak contrast, the
entire sequences can provide a rich details for contrast en-
hancement. Our goal is to enhance the low-contrast images
using abundant details in the multi-exposure sequence. To
realize this, we first define the contrast of the sequence using
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the structure tensor representations (Di Zenzo 1986), which
have been widely used as the fusion strategy of variational
fusion methods (Socolinsky and Wolff 2002; Gu et al. 2012;
Connah, Drew, and Finlayson 2014). Different from varia-
tional image fusion methods, we propose to design the loss
function using the structure tensor. The loss function min-
imizes the structure tensor difference between the network
output and the multi-exposure sequences. Eventually, our
method can produce high-quality results approximating the
overall contrast of the multiple images.

Our main contributions can be summarized as follows:

• We propose a multi-scale structure tensor loss function
for single image contrast enhancement. The proposed loss
function effectively enforces the contrast of enhanced re-
sult to approximate the overall contrast of multi-exposure
image sequences.

• We provide a performance comparison of the structure
tensor loss with other functions, such as MAE, SSIM,
and perceptual losses. Furthermore, we show that the pro-
posed loss function is more suitable for single image en-
hancement than image fusion.

• The experimental results demonstrate the effectiveness of
our method in various low-contrast benchmarks, such as
low-illumination, under-exposure, and low-end device.

Related Works
Single Image Contrast Enhancement
Traditional contrast enhancement techniques have been clas-
sified into two categories: histogram-based (Arici, Dik-
bas, and Altunbasak 2009; Celik and Tjahjadi 2011) and
Retinex-based (Fu et al. 2016; Guo, Li, and Ling 2017)
methods. Histogram-based methods redistribute the lumi-
nous intensity distribution in global (Arici, Dikbas, and Al-
tunbasak 2009) or local (Celik and Tjahjadi 2011) man-
ner to improve the image contrast. Such simple operation,
however, produces unrealistic contrast distortions in the en-
hanced images due to the lack of structural information.
Retinex-based methods (Fu et al. 2016; Guo, Li, and Ling
2017) decompose the input image into reflectance and illu-
mination components based on Retinex theory (Land 1977),
and adopt different strategies to enhance each component.
However, Retinex-based methods usually destroy the natu-
ralness of images, since the physical model in Retina theory
ignores the camera response characteristics.

Recently, the CNNs have been applied to solve the con-
trast enhancement problem (Cai, Gu, and Zhang 2018; Wei
et al. 2018; Ignatov et al. 2017). Motivated by Retinex the-
ory, Wei et al. (Wei et al. 2018) proposed the Retinex-Net
that consists of decomposition and enhancement modules.
Since the enhancement module also amplifies the noise,
handcrafted denoising is additionally performed to refine the
reflectance. Cai et al. (Cai, Gu, and Zhang 2018) proposed a
two-stage CNN architecture for contrast enhancement. The
first stage enhances the image contrast, followed by an ad-
ditional refinement to relieve the distortions from the first
stage. Ren et al. (Ren et al. 2019) proposed an edge stream
using recurrent neural network (RNN) to capture additional

edge details. Wang et al. (Wang et al. 2019) designed the
network to estimate illumination map rather than enhanced
image directly. The CNN-based methods train the networks
using conventional reconstruction losses, i.e., MAE, SSIM,
and perceptual losses, with explicit high-quality ground-
truth labels. In contrast to the previous works, we propose
a new loss function to directly measure the contrast differ-
ence between the results and multi-exposure sequence. Our
method can generate high-quality enhanced result through a
single forward network, which does not require additional
refinement or networks.

Variational Image Fusion
Image fusion is a process to generate a fused image contain-
ing the important features from the multiple images. Based
on the fact that local brightness change is highly related to
human perception, variational fusion methods transfer the
gradient information from the source images to the fused im-
age. The fundamental process is to compare the local struc-
ture among different dimensional images, i.e., source and
fused images. Structure tensor (Di Zenzo 1986), which is
also called the first fundamental form in differential geom-
etry, is a powerful method to simultaneously describe the
local structure of high-dimensional images. Socolinsky and
Wolff (Socolinsky and Wolff 2002) first proposed to use the
structure tensor to visualize the multi-spectral images into
gray-scale image. Gu et al. (Gu et al. 2012) applied the
structure tensor into the multi-exposure image fusion. The
spectral edge (SpE) fusion (Connah, Drew, and Finlayson
2014) extended more general fusion approach, which gen-
erates a naturalistic color image from the multi-spectral im-
ages. Contrary to these fusion methods, our method uses the
structure tensor to enhance the contrast of single image.

Background and Motivation
Structure Tensor Representation
Gradient domain processing has attracted significant inter-
est based on the fact that local brightness changes are com-
monly related to visually relevant features. However, when
dealing with high-dimensional images, the concept of lo-
cal contrast should be redefined to be applicable to various
dimensionality. Structure tensor representation (Di Zenzo
1986) is a powerful tools to describe gradient informa-
tion across the multi-channel image. The gradient of an N -
dimensional image I at a single pixel (x, y) is defined by the
following Jacobian matrix∇I

∇I(x, y) =

 D1I1(x, y)
...

D1IN (x, y)

D2I1(x, y)
...

D2IN (x, y)

 , (1)

where In is the nth gray-level image of I. D1In and D2In
indicate the gradients of In with respect to horizontal and
vertical directions, respectively. The gradient in the direction
of v = [cos θ sin θ]

T is given by∇Iv. Assuming Euclidean
metric, we define the contrast of I at (x, y) in the direction
of v as the squared magnitude of∇Iv as follows:
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(a) (b) (c)

Figure 1: The framework of (a) variational image fusion (Socolinsky and Wolff 2002; Connah, Drew, and Finlayson 2014), (b)
exposure estimation based contrast enhancement (Ying, Li, and Gao 2017; Ren et al. 2018; Zhang, Nie, and Zheng 2019), and
(c) our contrast enhancement.

ZI,v(x, y) = vT (∇I)T (∇I)v. (2)

The 2 × 2 matrix ZI(x, y) = (∇I)T (∇I) is the structure
tensor, which summarizes the combined derivative structure
of the multi-channel image as follows:

ZI(x, y) =


N∑

n=1
(D1In(x, y))

2
N∑

n=1
(D1In(x, y)) (D2In(x, y))

N∑
n=1

(D2In(x, y)) (D1In(x, y))
N∑

n=1
(D2In(x, y))

2

. (3)

Since the structure tensor of (3) is a symmetric matrix with
real values, it has two real and non-negative eigenvalues. The
eigenvectors of the structure tensor indicate the direction of
maximal and minimal contrast of (2), and the corresponding
eigenvalues denote the rates of change.

Motivation
Once the contrast is defined for an arbitrary dimension of
images, it becomes natural to apply the structure tensor into
image fusion. The fundamental idea behind structure ten-
sor based image fusion is to find the fused image whose
structure tensor is identical to that of source images. The fu-
sion methods sequentially perform the gradient-fusion and
reintegration (Fig. 1(a)). Socolinsky and Wolff (Socolinsky
and Wolff 2002) defined a scalar gradient field by multi-
plying the maximum eigenvector of ZI with the maximum
eigenvalue of ZI. The gray-scale fused image is obtained
by solving Poisson equation. Connah et al.(Connah, Drew,
and Finlayson 2014) proposed more general fusion approach
which generates a naturalistic color image from the multi-
spectral images. They calculated multi-dimensional gradient
field which not only preserves the structure tensor of inputs,
but also keeps the naturalistic colors of a reference RGB im-
age. The reintegration step is performed by a look-up-table
(LUT) mapping (Finlayson, G. D., and Drew 2011).

Motivated by structure tensor based image fusion, we ap-
ply the framework to single image contrast enhancement
(Fig. 1(c)). Different from the sequential fusion methods that
just employ the structure tensor as the fusion strategy for
fused-gradient, the proposed framework uses the metric as
the loss function to train the whole network parameters. The
multi-exposure images are only required for network train-
ing, and our method directly reconstructs detail-enhanced
image through a single forward network. Employing the

multi-exposure sequence for single image contrast enhance-
ment can be similar to the framework of (Ying, Li, and Gao
2017; Ren et al. 2018; Zhang, Nie, and Zheng 2019). They
synthesize the multi-exposure images given low-contrast in-
put, and then combine them to obtain enhanced result (Fig.
1(b)). Our framework can be regarded to combining multi-
exposure simulation and fusion processes of (Ying, Li, and
Gao 2017; Ren et al. 2018; Zhang, Nie, and Zheng 2019)
through a single forward network.

Proposed Method
Given a low-contrast image f , we design a single forward
network DCNN to obtain an enhanced image u, i.e., u =
DCNN (f). Different from general image enhancement ap-
proaches that train the network with single ground-truth im-
ages, we propose to train DCNN using the multi-exposure
image sequence I = {I1, · · · , IN}.

Multi-Scale Structure Tensor Loss Function
We propose a multi-scale structure tensor loss function for
directly reconstructing multi-exposure contrast from a single
low-contrast image as follows:

L(u, I1, · · · , IN ) =
M−1∑
s=0

∑
c∈{r,g,b}

∑
(x,y)∈Ω

∥∥ZTs(uc)(x, y)− ZTs(Ic)(x, y)
∥∥2

F
, (4)

where ‖A‖F denotes the Frobenius norm of a matrix A,
and Ω is a domain for image coordinates. The subscripts
c and s indicate RGB index and scale factor, respectively.
Ic is an N -dimensional image concatenating c components
(c ∈ {r, g, b}) from N multi-exposure image sequence.
We minimize structure tensor difference between network
output and the sequence at each RGB component, sepa-
rately. Calculating structure tensors with all RGB compo-
nents causes the color information missing problem. Fur-
thermore, we compare the structure tensor at M scale image
size to ensure wider structural information of the image. The
Ts(uc) is a resized image from the original ones with 1/2s

scale. The resizing operator Ts is implemented by blurring
the previous scale image Ts−1(uc) with a 5 × 5 Gaussian
kernel with standard deviation 1.4, followed by downsam-
pling the blurred one by a scaling factor 2. The averaging
with Gaussian weights enables the network output to capture
global luminance consistency of the multi-exposure images.
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Figure 2: The overall architecture of our contrast enhancement. The network is trained by the proposed loss function of (4) with
the multi-exposure sequences. At the test phase, the network output is linearly normalized to visualize within [0, 255].

To apply the standard back-propagation algorithm (Mozer
1989) for network training, the proposed loss function of (4)
should be fully differentiable. We provide the partial deriva-
tive ofLwith respect to uc. The resizing operator Ts is omit-
ted to simplify the notions. Let us denote dijuc

as the compo-
nents of Zuc(x, y) (1 ≤ i, j ≤ 2). From (4), ∂L

∂uc(x,y) is
calculated as follows:

∂L
∂uc(x, y)

= 2
2∑

i=1

2∑
j=1

(
dijuc
− dijIc

) ∂dijuc

∂uc(x, y)
. (5)

Based on the structure tensor definition in (3),
∂dij

uc

∂uc(x,y) can
be obtained by:

∂dijuc

∂uc(x, y)
= DT

i Djuc(x, y) +DT
j Diuc(x, y). (6)

(6) can be simply implemented by convolutional layer with
1D Laplacian (for i, j = 1 or 2) and 2D Laplacian (for i = 1,
j = 2 or i = 2, j = 1 ) operators.

Network Architecture
The network with large receptive fields can capture wide
contextual information from the image. Generally, there are
two methods to ensure large receptive fields of the net-
work: deeper architecture (Zhang et al. 2017) and encoder-
decoder (Noh, Hong, and Han 2015). However, the archi-
tectures require more parameters to be learned and increase
the complexity. Furthermore, encoder-decoder architecture
with pooling layers (or strided convolution) losses the sub-
tle details during the resolution reduction at encoder part.
In this paper, we instead design our network DCNN using
the multi-scale context aggregation network (CAN) (Yu and
Koltun 2015) to make tradeoff between the size of receptive
field and the number of parameters. The CAN uses dilated
convolutions to aggregate wide contextual information.

We construct the CAN architecture for low-contrast im-
age enhancement using 7 dilated convolution layers as
shown in Fig. 2. All convolution layers have the size of 3×3

(a) Input (b) Reference (c) M = 1

(d) M = 2 (e) M = 3 (f) M = 4

Figure 3: The effect of the number of scales M in (4): (a)
Low-light input, (b) reference, (c)-(f) results of our method
trained with M = 1, 2, 3, and 4.

kernels with 64 intermediate feature maps except the last
layer. The last convolution layer applies a 1× 1 convolution
that predicts the enhanced image u. We set the dilation fac-
tor lk of kth convolution layer to 2k−2 for 2 ≤ k ≤ 6. The
factors of the first and the last layer set to 1 (l1 = l7 = 1).
The receptive fields of DCNN are 65× 65. We use paramet-
ric rectified linear unit (PReLU) (He et al. 2015).

The network DCNN is trained by the proposed loss func-
tion of (4) to approximate the structure tensor of N multi-
exposure image pairs. However, an image containing the
overall structural information of the multiple images is nat-
urally represented beyond the conventional intensity range
[0, 255]. As a result, we do not use any activation function
at the last convolution layer in order not to limit the in-
tensity range of the network output. This can be regarded
our method as high dynamic range (HDR) image generation
from low-contrast standard dynamic range (SDR) image. To
visualize the network output u with [umin, umax] (umin < 0
and umax > 255), we linearly normalized u at the test phase.

Experiments
Our enhancement method requires the multi-exposure image
sequences to train the networkDCNN . Recently, large-scale
multi-exposure image dataset (Cai, Gu, and Zhang 2018) has
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(a) Input (b) N = 2 (c) N = 3 (d) N = 5 (e) N = 7

Figure 4: The effect of the multi-exposure image sequenceN in (4): (a) Input, (b)-(e) results of our method trained withN = 2,
3, 5, and 7. Training the network with larger number of sequences produces an enhanced image with abundant details.

(a) Input (b) Reference (c) MAE loss

(d) SSIM loss (e) Perceptual loss (f) Our loss

Figure 5: Results of DCNN according to training different
loss functions: (a) Low-light image, (b) reference image, (c-
f) results trained by MAE, MS-SSIM (Zhao et al. 2016), per-
ceptual (Dosovitskiy and Brox 2016), and our losses.

been constructed including both indoor and outdoor scenes.
We trained our network using 7 multi-exposure sequences
for each image from (Cai, Gu, and Zhang 2018), which
covers most of the exposure levels. The TensorFlow library
with 12GB NIVIDIA Titan GPU is used for network con-
struction and training (our code will be made publicly avail-
able). The loss function of (4) is minimized with the Adam
solver (Kingma and Ba 2014) (β1 = 0.9, β2 = 0.999, and
ε = 10−8 setting). We randomly cropped 5 × 104 patches
with 128 × 128 size from our training dataset, and trained
our network using the patches. The learning rate was initial-
ized as 10−3 and halved every 10 epoches until 100 epoches.

Analysis
Effect of scale numberM The proposed method could be
vulnerable to capture natural color information when train-
ing the network with a single scale manner (M = 1), since
the loss function of (4) only compares the structural infor-
mation between the network output and the multi-exposure
images through the structure tensor. The multi-scale design
of our loss ensures that the network reconstructs the global
color consistency of the multi-exposure images due to the
weighted averaging process. Fig. 3 shows the results of our
method according to the number of scales M . We used 7
multi-exposure sequences to train the network. When we set
M = 1, the enhanced result does not contain enough color
information (Fig.3(c)). Our method reconstructs color infor-
mation well as M increases. We empirically confirmed that

(a) (b) (c) (d)

Figure 6: Comparison of multi-exposure fusion and single
enhancement of our loss function (4): (a) Under-exposure,
(b) over-exposure, (c) Dfusion

CNN (I), and (d) DCNN (f).

the network trained by M = 4 is enough to produce high-
quality results with abundant colors (Fig. 3(f)).

Effect of image sequence number N We trained our net-
work varying the number of image sequence N as 2, 3, 5,
and 7 to analyze the effect of N . The number of scale M in
(4) is fixed to 4. Fig. 4 shows the visual results of our method
according to different N . For N = 2 (Fig. 4(b)), the re-
sults do not match the correct color and contrast information,
since the normal exposure images are not included when
training the network. The results trained with large number
of sequences (N = 7, Fig. 4(e)) show visually best results
since wide range of exposure levels can provide abundant
details for the contrast enhancement.

Comparison with Different Loss Functions Fig. 5 shows
the results of DCNN which are trained with various loss
functions, including MAE, MS-SSIM (Zhao et al. 2016),
and perceptual (Dosovitskiy and Brox 2016) losses. We
used the high-quality images (Fig. 5(b)) from the training
dataset (Cai, Gu, and Zhang 2018) as the ground-truth for
the losses. The result with MAE loss suffers from color dis-
tortions (Fig. 5(c)) due to the independent property on local
characteristics of the loss. Even though the SSIM and per-
ceptual losses consider the neighboring pixels, they also pro-
duce the enhanced image with amplified noises (Fig. 5(d)-
(e)). Different from other losses, our method ensures the
high-quality enhanced results without such distortions (Fig.
5(f)). The visual results demonstrate that our loss function
with multi-exposure image sequence outperforms the con-
ventional losses with explicit ground-truths.
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(a) Input image (b) SRIE (c) LIME (d) Retinex-Net

(e) DHN (f) SICE-Net (g) UPE (h) Ours

Figure 7: Visual comparison with state-of-the-art methods on under-exposure image from (Cai, Gu, and Zhang 2018). (a)
Under-exposure image, (b) SRIE (Fu et al. 2016), (c) LIME (Guo, Li, and Ling 2017), (d) RetiNex-Net (Wei et al. 2018), (e)
DHN (Ren et al. 2019), (f) SICE-Net (Cai, Gu, and Zhang 2018), (g) UPE (Wang et al. 2019), and (h) ours.

Comparison with Multi-Exposure Fusion
The structure tensor has been used to train the multi-
exposure image fusion in (Jung et al. 2020), where the
network generates a fused image which contains the over-
all contrast from multiple inputs. Given a stacked multi-
exposure sequence I, we trained the networks Dfusion

CNN (I)
using the structure tensor loss with M = 4 and N = 7. Fig.
6 shows the results of Dfusion

CNN (I) and DCNN (f). Fig. 6(a-
b) are two examples of seven multi-exposure images. For
the static scene with no moving objects (the first row of Fig.
6), Dfusion

CNN (I) outputs a fused image with abundant color
and contrast. However, when the sequence is not perfectly
aligned due to the movement of camera and objects, the
fused image suffers from ghost and blurry artifacts as shown
in the second row of Fig. 6(c). Different from multi-exposure
fusion, our single image contrast enhancement is free from
the misalignment problem (Fig. 6(d)). Even though several
multi-exposure sequence in our training dataset is not per-
fectly aligned, there is no significant effect on the perfor-
mance of contrast enhancement due to large portion of cor-
rect alignment region. This coincides with the observation in
the literature of weakly- and self-supervised semantic seg-
mentation (Lin et al. 2016; Pathak et al. 2017).

Qualitative Evaluation
Results on under-exposure benchmarks We compare
our method with the following six state-of-the-art methods:
SRIE (Fu et al. 2016), LIME (Guo, Li, and Ling 2017),

Retinex-Net (Wei et al. 2018), DHN (Wang et al. 2019),
SICE-Net (Cai, Gu, and Zhang 2018), and UPE (Wang et al.
2019). The first two methods are Retinex-based algorithm,
and the others are the recent CNN-based methods. The re-
sults for the comparison methods are obtained from author’s
source codes. For fair comparison, we further re-trained the
CNN-based methods on our training dataset.

Fig. 7 shows the visual result of our method with the com-
parison methods on under-exposure image from (Cai, Gu,
and Zhang 2018). SRIE (Fu et al. 2016) tends to generate
darker results compared to other methods. The results of
LIME (Guo, Li, and Ling 2017) suffer from contrast dis-
tortion (ceiling in Fig. 7) and saturation (curtain in Fig. 7).
Retinex-Net (Wei et al. 2018) severely amplifies the noise,
and contain unnatural color information. DHN (Wang et al.
2019) and SICE-Net (Cai, Gu, and Zhang 2018) suffer from
wrong details. UPE (Wang et al. 2019) brings visually bet-
ter results, but still contains weak details in dark region and
color distortion (near the window in Fig. 7). Compared to
the comparison methods, the proposed method results with
abundant details, better contrast, and natural colors, while
avoiding saturation artifacts.

Results on various low-contrast benchmarks We apply
the proposed method, which is trained on under-exposed
inputs, on different low-contrast benchmarks to show the
robustness. Fig. 8 shows the results of recent CNN-based
methods on low-light (Guo, Li, and Ling 2017) (first row)

1730



(a) Input (b) DHN (c) SICE-Net (d) UPE (e) Ours

Figure 8: Visual comparison on various low-contrast benchmarks. From first to second rows, the inputs lost details by low-
light (Guo, Li, and Ling 2017) and low-end device (Ignatov et al. 2017).

Method Under-exposure
(Cai, Gu, and Zhang 2018)

Under-exposure
(Ma et al. 2017)

Low-light
(Guo, Li, and Ling 2017)

DPED
(Ignatov et al. 2017)

SRIE 4.147 / 2.220 4.766 / 2.896 3.447 / 2.713 5.312 / 2.939
LIME 4.477 / 2.426 4.978 / 2.544 4.424 / 3.290 5.692 / 3.107

Retinex-Net 5.513 / 1.895 6.006 / 2.259 7.385 / 1.978 6.370 / 2.107
DHN 3.345 / 3.138 2.880 / 3.262 3.855 / 2.832 2.819 / 3.190

SICE-Net 2.528 / 3.291 3.133 / 3.349 4.008 / 3.153 2.585 / 3.118
UPE 2.164 / 3.280 2.689 / 3.408 3.833 / 2.898 2.505 / 3.350
Ours 1.987 / 3.612 2.482 / 3.516 3.613 / 3.642 2.246 / 3.420

Table 1: Average NIQE (Mittal, Soundararajan, and Bovik 2013) and CDQE (Fang et al. 2015) metrics on four benchmarks (Cai,
Gu, and Zhang 2018; Ma et al. 2017; Guo, Li, and Ling 2017; Ignatov et al. 2017) for contrast enhancement. The lower/higher
values of NIQE/CDQE, the better image quality. The best results for each benchmark are highlighted in bold.

and smartphone (Ignatov et al. 2017) (second row) images.
DHN (Wang et al. 2019) does not contain vivid and natural
color. The results of SICE-Net (Cai, Gu, and Zhang 2018)
contains distorted contrast (for low-light image) and over-
smoothing (for smartphone image). UPE (Wang et al. 2019)
generates naturalistic enhanced images, but tend to be low-
contrast and dark compared to other methods. We observed
that our method works well to enhance the low-contrast im-
ages from various benchmarks regardless of the difference
between test and training examples.

Quantitative Evaluation
Since the ground-truths for real scenarios are not usu-
ally available, we use two no-reference quality met-
rics, i.e., NIQE (Mittal, Soundararajan, and Bovik 2013)
and CDQE (Fang et al. 2015), for objective evaluation.
NIQE (Mittal, Soundararajan, and Bovik 2013) measures the
naturalness of an image by comparing with a corpus of pris-
tine naturalistic images, and CDQE (Fang et al. 2015) mea-
sures the contrast distortion of enhanced results based on
natural scene statistics (NSS). We constructed four differ-
ent testsets from two under-exposure (Cai, Gu, and Zhang

2018; Ma et al. 2017), low-light (Guo, Li, and Ling 2017),
and low-end device (Ignatov et al. 2017) benchmarks. Each
dataset consists of 118, 24, 10, and 30 examples, respec-
tively. Table 1 summarizes the quantitative evaluations of the
comparison methods on the benchmarks. We observed that
the proposed method outperforms other methods in terms of
the image naturalness and contrast distortion.

Conclusion
We introduced the new deep learning approach for single im-
age contrast enhancement motivated by existing variational
fusion methods. The key idea of our approach is to utilize
the structure tensor representations as the loss function with
various multi-exposure image sequences. The proposed loss
function enables the network to generate an enhanced image
approximating the abundant contrast from the sequences.
Rather than penalizing per-pixel intensity (or high-level fea-
ture) difference, our direct contrast mapping with various ex-
posure levels is appropriate for enhancing low-contrast im-
age. The experimental results demonstrate the superiority of
our method in various low-contrast benchmarks.
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