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Abstract

Action recognition is computationally expensive. In this pa-
per, we address the problem of frame selection to improve
the accuracy of action recognition. In particular, we show
that selecting good frames helps in action recognition perfor-
mance even in the trimmed videos domain. Recent work has
successfully leveraged frame selection for long, untrimmed
videos, where much of the content is not relevant, and easy to
discard. In this work, however, we focus on the more stan-
dard short, trimmed action recognition problem. We argue
that good frame selection can not only reduce the compu-
tational cost of action recognition but also increase the ac-
curacy by getting rid of frames that are hard to classify. In
contrast to previous work, we propose a method that instead
of selecting frames by considering one at a time, considers
them jointly. This results in a more efficient selection, where
“good” frames are more effectively distributed over the video,
like snapshots that tell a story. We call the proposed frame
selection SMART and we test it in combination with differ-
ent backbone architectures and on multiple benchmarks (Ki-
netics, Something-something, UCF101). We show that the
SMART frame selection consistently improves the accuracy
compared to other frame selection strategies while reducing
the computational cost by a factor of 4 to 10 times. We also
show that when the primary goal is recognition performance,
our selection strategy can improve over recent state-of-the-art
models and frame selection strategies on various benchmarks
(UCF101, HMDB51, FCVID, and ActivityNet).

Introduction
Video processing is computationally expensive. At the same
time, the amount of video content being generated is increas-
ing fast and constitutes a large part of the computation of
many big social media platforms. Traditionally, most efforts
in action recognition have focused on improving accuracy
by creating larger architectures. These architectures take as
input either a frame or a set of frames (also called a clip) and
produce a prediction. These predictions are then aggregated
over time. The frames or clips are either sampled densely
(Simonyan and Zisserman 2014; Yue-Hei Ng et al. 2015) or
randomly (Wang et al. 2016).

Videos, however, provide an opportunity for reducing
computational cost in multiple ways. First, videos contain
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highly temporally redundant data, making it easier to skip
parts without losing much information (Fan et al. 2018).
Second, some parts of a video can be more discriminative
than others, due to their content, or other phenomena like
blur, occlusions, etc. Supporting this intuition, Huang et al.
(2018) show experimentally that using an oracle to make an
optimal selection of frames (or clips), produces more accu-
rate classification results than using the entire video. Addi-
tionally, Sevilla-Lara et al. (2019) show that many action
classes in standard datasets do not require motion or tempo-
ral information to be identified. For a human observer, a few
still frames are often discriminative enough. This suggests
that large parts of a video can be discarded.

Several recent works(Korbar, Tran, and Torresani 2019;
Wu et al. 2019c; Zhu et al. 2019) have successfully lever-
aged these principles to reduce computational cost at test
time. These methods have used a common strategy: they use
an inexpensive way to decide which regions of the video are
important and discriminative, and only process those with an
expensive method. This general problem has been referred to
as frame or clip selection. While very successful, most frame
and clip selection methods have focused on a particular
domain of action recognition, namely long, and frequently
sparse videos with a typical length of a minute or more, e.g.
ActivityNet(Caba Heilbron et al. 2015), Sports1M(Karpathy
et al. 2014), FCVID(Jiang et al. 2017a), Youtube 8M(Abu-
El-Haija et al. 2016). This is indeed the domain where dis-
carding portions of a video is easier and has potentially the
largest effect. In contrast, the problem of frame selection in
short videos of a few seconds remains much less explored,
probably due to its difficulty.

In this paper we propose a method to do frame selection in
the core, standard activity classification setting of trimmed
video clips. Part of the challenge in this setting is that “good”
frames are often temporally close together within a video.
Since most existing frame selection methods consider the
value of choosing a frame one at a time, the selected frames
tend to only represent part of the action. In other words, the
diversity of frames, and their ability to tell a story are dis-
regarded. We also show that using language features along
with visual features helps improve the performance.

To handle these challenges, we propose a model that, in
addition to considering the discriminative value of a single
frame, also considers its relation to others in a video. We do
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this by using an attention and a relational network (Meng
et al. 2019; Sung et al. 2018), that examines the value of
frames jointly. We learn our Sampling through Multi-frame
Attention and Relations in Time, which we dub the SMART
selection network.

We test our SMART frame selection network on several
trimmed action recognition datasets, including Something-
something, UCF101 and subsets of Kinetics. We observe
that in all of them the proposed method outperforms the
baselines, including using the full video, while reducing the
computational cost by a factor of 4 to 10, depending on the
dataset. We also test the proposed method on the untrimmed
setting in ActivityNet and FCVID, where we get higher ac-
curacies than all previous work on frame selection. Further,
we extend our frame selection approach to select frames
that are then passed at test time to deep action recognition
models and show that we obtain state-of-the-art results on
UCF101 and HMDB51 which are trimmed video datasets,
showing that frame selection can be an important step to im-
prove accuracy in trimmed action recognition.

Related Work
The field of action recognition is wide, and includes a large
variety of subproblems, and families of methods. Here we
focus on the two areas within action recognition that are
most relevant to our work: frame selection as well as atten-
tion and relational models.
Frame Selection. Selecting important frames for action
recognition is a relatively new area. Many approaches have
successfully trained a reinforcement learning (RL) agent ap-
proach that examines one frame at a time, to predict how
many frames can be skipped.

AdaFrame(Wu et al. 2019c) leverages RL, in combina-
tion with an LSTM that is augmented with memory that
helps providing context information for selecting frames to
use. Given a frame, it generates a prediction of the action
class and it decides which frame to observe next and com-
putes the expected reward of seeing more frames. FastFor-
ward(Fan et al. 2018) is an end-to-end reinforcement learn-
ing approach. It consists of two sub networks: an adaptive
stop network and fast forward network. The adaptive stop
network can either let the frame sampling continue or stop.
The fast forward network has a set of several actions (going
backwards or going forward with varying seconds). The RL
agent learns to skim through the video.

FrameGlimpse(Yeung et al. 2016) follows the intuition
that detecting an action is dependent on observation and
refinement. FrameGlimpse relies on a recurrent neural net-
work based agent that observes and decides where to look
next. Given the current frame, the agent also decides whether
to emit a prediction based on a confidence score. If the agent
is not confident enough then it decides to look ahead.

Multi-agent Reinforcement Learning (MARL)(Wu et al.
2019a) formulates the frame sampling procedure as multi-
ple parallel Markov decision processes which pick frames by
gradually adjusting an initial sampling. They have a context-
aware observation network which models context informa-
tion among nearby agents and historical states of a specific

agent. They also have a policy network which generates a
probability distribution over a predefined action space.

SCSampler(Korbar, Tran, and Torresani 2019) is a
lightweight clip-sampler that can efficiently obtain the most
salient temporal clips. They sample features directly from
compressed videos and also from the audio obtained from
the video. Attention aware sampling (AAS) (Dong, Zhang,
and Tan 2019) uses an agent which discards irrelevant
frames using attention. They consider the frame selection
procedure as a Markov decision process and train an agent
without extra labels through deep reinforcement learning.

While all these approaches showed great results, they
have mostly focused on the scenario of untrimmed videos.
SCSampler does however report results on Kinetics(Carreira
and Zisserman 2017), however, it requires audio as an extra
modality. Untrimmed videos contain significant parts of un-
necessary data and discarding them is easier than discarding
frames from trimmed videos. In contrast to previous work,
we propose a method that instead of selecting frames by con-
sidering one at a time, considers them jointly.
Attention and Relational Models. The concept of atten-
tion was introduced by Bahdanau, Cho, and Bengio (2014)
for the objective of machine translation. This concept of at-
tention is based on the concept that the neural network will
learn how relevant different samples are regarding the de-
sired output state in a sequence, or image regions. These
values of importance are specified as weights of attention
and are generally calculated at the same time as other model
parameters trained for a specific goal.

Attention has been used in first person action recognition
by having a joint learning of gaze and actions (Li, Liu, and
Rehg 2018), by using object-centric attention (Sudhakaran
and Lanz 2018) or via event modulated attention (Shen et al.
2018). The use of attention to weigh spatial regions repre-
sentative of a task was done by generating spatial attention
masks implicitly by training the network with video labels
(Sharma, Kiros, and Salakhutdinov 2015; Zhang et al. 2018;
Girdhar and Ramanan 2017). Temporal attention was used
for action recognition by detecting change in gaze (Piergio-
vanni, Fan, and Ryoo 2017; Shen et al. 2018).

LRCN (Donahue et al. 2016) introduced a simple LSTMs
for frame-aggregation across time for action recognition.
Non-local Networks (Wang et al. 2018) introduce a residual
self attention block in convolutional networks to aggregate
information across all temporal and/or spatial locations.

Inspired by the relation-net(Sung et al. 2018), relation at-
tention was proposed to deal with the task of facial emotion
recognition (Meng et al. 2019). They believed that having a
global level representation of features in addition to the local
level representation helps obtain better results. We improve
upon this approach by adding relation-temporal attention to
add a global representation to our temporal attention.

SMART Frame Selection
The proposed approach is designed to use a small por-
tion of the overall computational cost in selecting the best
frames. These frames will then be classified using a more
computationally expensive model. Therefore, we use a very
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Figure 1: Overview of the SMART frame selection.

lightweight representation of the frames as input to the
SMART frame selection model.

The model consists of two streams. The first considers the
information of the frames one at a time, and outputs a score
δi for each frame, which represents how useful the frame
is for classification. The second stream considers the entire
video at a time. It takes as input pairs of frames, and uses
an attention and relational network to also obtain a score γi
of how useful these pairs of frames are. Both scores are then
multiplied, to obtain a final score of how good each frame is.
Given a budget of n frames, we now select the top n frames
with the highest discriminative score, and use an expensive,
high quality classifier for the final prediction. An overview
of the method can be seen in Fig. 1. We now describe each
of the components in detail.

Feature Representation
We choose the lightweight MobileNet(Sandler et al. 2018)
to extract the visual features of each frame, to minimize the
computational cost of this stage. We also make the obser-
vation that, in addition to the visual features, we can use
language features associated with the content of the frame.
The intuition behind this is to enrich the representation with
terms that are related to the content of the image. One could
imagine that if for an action class like “kayaking”, having as-
sociated words like water, boat, or paddle can help discrim-
ination in cases where the kayak is not apparent visually.
We run Mobilenet pre-trained on Imagenet on the frames,
and take the top 10 Imagenet classes with highest probabil-
ity. The names of these classes are then embedded with a
pre-trained GloVe (Pennington, Socher, and Manning 2014)
over Wikipedia 2014 and average over the 10 classes. The
language embedding is then concatenated with the visual
features resulting in a feature vector Xi for each frame i.

Single-frame Selector
This stream is designed to be extremely fast. We build on
the observation from Huang et al. (2018) that an oracle that

looks at the predictions from an expensive network, and se-
lects the frames with the highest confidence for the ground
truth class, actually outperforms using the entire video for
prediction. Thus, we use a simple multi-layer perceptron
(MLP) that takes as input a feature vector Xi, and computes
the confidence of the classification for the ground truth. This
MLP has 2 layers, and is trained using the oracle mentioned
before wherein each frame outputs the probability of that
frame with respect to the ground truth class. At training time
we can obtain the ground truth probability of each frame us-
ing an expensive model trained on the dataset we are looking
at. At test time δi is predicted by the trained model as the im-
portance score of a particular frame.

Global Selector
The multi-frame discriminator is designed to use informa-
tion across frames for selection. This is done by first obtain-
ing a global representation of the video using an attention
model over the entire video. Given this global representa-
tion, the temporal relationships across frames are learned us-
ing a relation model and a long short-term memory (LSTM)
network. While lightweight and easy to learn, this network
provides information about how useful frames are when con-
sidered globally. The global selector uses a relational model
to learn temporal relationships across frames over the entire
video. This produces an inexpensive global representation of
the video.
Pairs of frames. Consider an input sequence X =
(X1, ..., XN ), Xi represents the concatenated visual and cat-
egorical features in frame i and N represents the total num-
ber of frames. For each frame, we concatenate a second,
randomly selected frame, Xi

r, r ∈ {1, ..., N}. The random
frame is always chosen from the subsequent set of frames
to capture the temporal changes that occur in actions. Some
actions will be most recognizable when these pair of frames
are only a few frames apart, while others will be more rec-
ognizable when they are further apart. This random choice
allows the model to be flexible and capture the temporal
changes in different classes. The input to the attention model
is the concatenation of both vectors Zi = [Xi : Xi

r]. The
output of the network are a set of temporal relation-attention
weights γ1, γ2, .., γN . This helps our model to obtain tem-
poral information.
Attention Module. The coarse self-attention weights αi are
first calculated using a fully connected layer and a sigmoid
function (Meng et al. 2019). The mathematical represen-
tation is in Eq. 1, where U are network parameters. We
now aggregate the input features using these self-attention
weights. We do this in order to obtain a global representa-
tion Z ′ of the frame features, as in Eq. 1.

Self-attention weights are learned using individual frames
with the help of non-linear mapping. To obtain a more reli-
able form of attention, we need both local and global fea-
tures to be used. Z ′ is aggregated from all local features and
hence contains the global information of the video. Hence,
by using Z ′ we can further refine the attention weights by
modeling the relationship between local frame features and
Z ′.
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αi = σ(ZiU) and Z′ =

∑N
i=1 αiZi∑N
i=1 αi

(1)

Relation Module. We can add a sample concatenation and
another fully connected layer (Sung et al. 2018) to estimate
a relation-attention weight β. Θ1 is a parameter of the fully
connected layer and σ represents the sigmoid function. Us-
ing this we have obtained frame attention weights. However,
we also want temporal attention weights. We use an LSTM
to capture sequential per frame changes. The input to the
LSTM at each time step is the dynamic weighted sum using
the relational self-attention weights ’ωt’. This is represented
in Eq. 2.

βi = σ([Zi : Z′]TΘ1) and ωt =
t∑

i=1

βiZi (2)

The temporal attention weights are then calculated as
shown in Eq. 3 and Eq. 4. It is dependent on the previous
time step output of the LSTM and the input at that time step.
b is a bias vector.

ht,mt = LSTM(ωt, ht−1,mt−1) (3)

λt = softmax(Vht + b) (4)
To compute the relational-temporal weights, we fol-

low the procedure used to obtain relational-frame attention
weights, as in Eq. 5. Here Θ2 is simply a network parameter.

Z′′ =

∑N
t=1 λtωt∑N
t=1 λt

and γt = σ([ωt : Z′′]TΘ2) (5)

Using these γt we can obtain an attended content vector
ct at time ’t’ using Eq. 6. Here hi refers to the hidden state
of the LSTM at i. For classification, ct is fed into an MLP
to generate the predicted label y. Overall, this module aims
to minimize the loss Lcls that is described in Eq. 7, given
ground truth labels ŷt. Steps to calculate all the attention
weights and intermediaries can be seen in Figure 2.

ct =
t∑

i=1

γihi (6)

Lcls = −
C∑
i=1

ŷi log(yi) + ε
∑
i

∑
j

Θ2
i,j (7)

Experimental Analysis
In this section we describe all experiments that we conduct
to test the behavior of the proposed SMART frame selection
network. In the qualitative results analysis subsection we de-
scribe the ablation experiments that led to the specific design
of the network, justify each of the components and measure
their impact. We analyze the behavior of the frame selector
components individually (single frame and global selection).
We show the generality of the proposed method on several
datasets. Finally, we compare to other state-of-the-art frame
sampling methods in the untrimmed setting, showing that
the proposed method still produces higher accuracy.

Figure 2: Steps involved in calculating the attention weights
and intermediaries involved.

Experimental Setup
Datasets. We use 6 of the most popular benchmark
datasets throughout our experimental analysis. We use the
Something-something-v2 dataset (Goyal et al. 2017) for our
extensive ablation study. The purpose of the ablation study is
to drive the design choices through experimental evidence.
We choose this for the ablation study because we think that it
contains the types of actions where relations of frames over
time matter more. This allows us to truly evaluate the effect
of the global model that we propose. In particular, the action
classes in this dataset are designed to focus on the action,
(eg.: “put something”, “pushing something” ) instead of on
an object (eg.: “playing guitar”). As a result, actions tend to
have more temporal structure, and relations across frames
may matter more.

The Something-something dataset has a total of 168,913
training videos and 24,777 validation videos with a total of
174 classes. After the ablation study, we show the generality
of our approach by testing it in other datasets as well. The
Kinetics(Carreira and Zisserman 2017) dataset is one of the
most widely used large-scale datasets in action recognition.

We use two subsets (Sevilla-Lara et al. 2019) of Kinetics
that have been identified as containing mostly temporal in-
formation and mostly static information. In our experiments
we refer to these as Kinetics-Temporal and Kinetics-Static.
These subsets were created using a human perceptual test,
where users are asked to identify the class of a video where
the frames are not in order, therefore removing temporal in-
formation. Static classes are those that users could identify
without temporal information. Temporal classes are those
that users were not able to identify when the frames were
not in order.Each of the two splits contains 32 classes. The
temporal subset consists of 26509 videos and the static sub-
set consists of 23675.

For our generality tests, we also use the well-known
UCF101(Soomro, Zamir, and Shah 2012) dataset which
contains 101 classes and about 13K videos.

We also extend our approach as a pre-processing step
for more complex models and compare performances on
HMDB51 which contains 51 classes and 6849 video clips
along with UCF101. Previous frame selection for action
recognition have focused on untrimmed videos. In order to
compare with them, we use ActivityNet(Caba Heilbron et al.
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2015) and FCVID(Jiang et al. 2017b). ActivityNet consists
of 19994 videos, and contains 200 classes. As the testing la-
bels are not available publicly, the reported performances are
on the validation set. FCVID is made up of 91, 223 videos
taken from YouTube having an average duration of 167 sec-
onds, and these are annotated into 239 classes.
Implementation Details. As mentioned before, the
lightweight features used for frame selection are
computed using MobileNet(Sandler et al. 2018) and
GloVe(Pennington, Socher, and Manning 2014). After the
frame selection is done, we can use a more expensive and
high-quality feature representation. In our experiments, we
use three different backbones: ResNet-152, ResNet-101(He
et al. 2016), and Inception-v3(Szegedy et al. 2017). The
backbones are pre-trained either on ImageNet(Deng et al.
2009) or Kinetics. These architectures are representative of
the state-of-the-art, and are chosen according to what other
methods that we want to compare to have used.

We use Pytorch for implementation. All frames are re-
sized to 224x224. We use mini-batch stochastic gradient
descent, with a momentum of 0.9. We run 200 epochs
on UCF101 and the Kinetics subsets, and 100 epochs on
Something-something dataset and Activitynet due to the
computational requirements for these larger scale datasets.
We use a batch size of 128 for UCF101 and the Kinetics sub-
sets and a batch size of 64 for the Activitynet and something-
something datasets. The initial learning rate is set at 0.0001
and reduces by 10 after every 25 epochs.
Baselines. We compare the performance of our frame selec-
tion model with that of random and uniform frame selection.
Random frame selection picks frames uniformly at random
from the entire video, while uniform frame selection picks
frames that are evenly spaced. Once the frames are picked,
we predict an action by average pooling the predictions of
every selected frame. In addition to these baselines, we com-
pare to other state-of-the-art frame sampling methods, in-
cluding Adaframe(Wu et al. 2019c), FastForward(Fan et al.
2018), FrameGlimpse(Yeung et al. 2016) and MARL(Wu
et al. 2019a).

Ablation Study on the SMART Frame Selection
Here, we look at the impact of the feature representation
(visual and categorical), the choice of frame selector (the
global multi-frame selector and the single-frame discrimina-
tor), and the use of pairs of frames. We use the Something-
something-v2 (Goyal et al. 2017) dataset for this study. Ta-
ble 1 shows the results.

We first test and compare the use of the simple visual
features (from MobileNet), then combining them with the
categorical ones (from GloVe). We use the global selector
for this initial test. We observe that the addition of semantic
language features helps, supporting the intuition that using
words related to the content of a frame actually helps in the
context of frame selection. Using that, we examine the effect
of different selectors: the single-frame selector, the global
selector, and the combination of both. We observe that the
combination of both is the best choice, suggesting that these
two selectors behave in different but complementary ways.

Inc v3 Res-152
Method Acc G Acc G

Baselines
Random 44.2 152 45.8 277
Uniform 49.6 152 50.8 277
All frames 58.8 607 60.1 1105

Input
Features

VF 58.3 182 60.2 308
VF + GloVe 59.2 183 60.3 309

Selector
SFS only 59.7 155 60.7 279
GS only 59.2 183 60.3 309
SFS + GS 60.6 184 61.0 310

SMART 2-frame input 60.8 186 61.2 311

Table 1: Ablation study to determine the effect of each of
the components of the SMART frame selection network. In
the table, the best configuration of each section is the set-
ting used for the section below. We use 26 frames for all ex-
periments. Something-something-v2 dataset. ’G’ represents
GLOPs, ’VF’ represents standalone visual features, ’SFS’
and ’GS’ stand for single frame selection and global selec-
tion respectively.

We also measure the impact of using pairs of frames as
input to the global selector. While we use a relational com-
ponent inside the selector, adding pairs would give an ad-
ditional mechanism to consider frames jointly. We observe
that this does indeed help. Since we use random frames, we
report the average accuracy in Table 1. The standard devi-
ation on the Something-something-v2 (Goyal et al. 2017)
dataset on 10 random runs was 0.067 using Inception v3 and
0.082 using Resnet-152.

Analysis of the Behavior of SMART Frame
Selection
Number of Selected Frames. First, we measure the impact
of selecting different number of frames. For this, we vary the
number of selected frames between 10 and 50, and measure
the impact on accuracy and GFLOPs and compare with ran-
dom and uniform sampling. The results are in Fig. 3(a). We
choose the Something-something dataset, and the Inception-
v3 as backbone.

We see that as the number of frames increases, the uni-
form and random frame selection perform strictly. The pro-
posed method performs much better than these baselines
across frames. It is also interesting that the accuracy in-
creases and reaches a peak, and then slowly drops in per-
formance. This behavior confirms the intuition that there is a
sweet spot in the number of frames, and that using more than
that, will include frames that are harder to classify, which
will pollute the prediction.
Frame Selection Across Similar Classes. We now plot the
combined frame score from both selectors, to analyze its be-
havior. We plot the frame score of classes that are seman-
tically related, to compare if frames scores are also sim-
ilar. The Something-something dataset contains groups of
classes that are very related. We sample 25 videos within
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Figure 3: (a) Behavior of different sampling strategies with
respect to number of frames. Orange represents SMART ,
blue represents uniform selection and red represents random
selection (b) Comparison of the importance score of seman-
tically similar actions. We can see a striking resemblance for
all actions involving pushing.

a class, for 5 classes and average the importance scores.
The plots are shown in Fig. 3. We see a strong resemblance
for actions involving “pushing”, suggesting that the general
structure of the action has been captured by the model.

Selecting Frames with the Global Selector vs. the Single-
frame Selector. We measure whether the pattern of frame
selection from the global selector tends to be different from
the pattern from the single-frame selector. For this, we ran-
domly sample 25 videos within a class, and score each of
their frames with the two selectors. We plot the average
score at each frame, in Fig. 4. Again we use the Something-
something dataset and Inception-v3. While the scores from
the single-frame selector change more erratically, the score
from the global selector seems to be more temporally con-
sistent. This suggests that frames scores from the global se-
lector are actually more structured.

Selected frames. It is also interesting to look at the frames
selected for one of the classes, in Fig. 5. Indeed, the few
selected frames do tell the story of the action. The class is
“pulling something so that it gets stretched”.

Figure 4: Graphical comparison of how the two selection
modules give importance scores. We can see that each selec-
tor is giving different importance weights to different parts
of the video. The classes are (a) Spinning something and it
continues spinning and (b) Throwing something in the air
and catching it

Figure 5: Examples of frames not selected (top) and se-
lected (bottom) for the class “pulling something so that it
gets stretched”. Frames from (Goyal et al. 2017).

Quantitative Results Analysis
Generality of SMART on Additional Datasets
UCF101. Results for UCF101 can be seen in Table 2a.
As in the Something-something dataset we observe that the
SMART selection outperforms the baselines of random and
uniform, regardless of the number of frames. We also see
that it outperforms using the full video (for all except for us-
ing 10 frames) while the “sweet spot” of number of frames
is slightly larger than in the Something-something dataset.
This is consistent with the fact that videos in UCF101 are
about 7 seconds long, while Something-something are closer
to 3 seconds. Therefore it makes sense that the proportion of
“good frames” stays the same.
Subsets of Kinetics. We also show results on the subsam-
pled 32 temporal classes of Kinetics and the 32 static classes
(Sevilla-Lara et al. 2019). These two subsets are described in
detail in the Datasets section. Results are shown in Table 2b.
We see that the pattern is similar to all other experiments:
SMART outperforms the other sampling baselines, and for
the optimal number of frames, it outperforms the full video
as well. Also the proposed method behaves slightly differ-
ently in these two subsets of Kinetics. This is consistent with
the expected behavior of the proposed method, which con-
siders the entire video globally, and is able to make selec-
tions that are more temporally aware.

Performance on Untrimmed Datasets
Finally, we compare the performance of the proposed
method to previous work for untrimmed video. Therefore,
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Method Accuracy GFLOPs

#F 10 26 50 10 26 50

Random 63.2 68.3 70.2 110 277 652
Uniform 63.8 69.1 70.7 110 277 652
SMART 72.8 75.3 75.5 164 331 706

All frames 74.6 74.6 74.6 1969 1969 1969

(a) UCF101 dataset

Method Temporal, Acc Static, Acc GFLOPs

#F 10 26 50 10 26 50 10 26 50

Uniform 59.4 60.3 62.1 60.1 60.6 61.2 110 227 652
Random 60.1 60.8 62.7 60.3 60.9 61.7 110 227 652
SMART 63.1 64.8 65.4 61.4 61.9 62.6 185 353 728

All frames 64.1 64.1 64.1 62.4 62.4 62.4 2761 2761 2761

(b) Kinetics dataset subsets: Temporal and Static

Table 2: Baseline frame sampling techniques vs our SMART
with ResNet-152 backbone; #F: #frames.

we test on the ActivityNet(Caba Heilbron et al. 2015)
and the FCVID(Jiang et al. 2017b) datasets. We show
that using fewer frames than recent approaches such as
Adaframe(Wu et al. 2019c), FastForward(Fan et al. 2018),
FrameGlimpse(Yeung et al. 2016) we can obtain a higher
accuracy. However, we access all frames which makes our
approach slower than these. We also compare with LiteEval
(Wu et al. 2019b) which is a lightweight action recognition
model. We also compare our approach to Multi-agent Rein-
forcement Learning (MARL)(Wu et al. 2019a) approach and
Dynamic Sampling Networks (DSN) (Zheng et al. 2020) by
using a model pretrained on Kinetics for fair comparison.
Table 3 shows the results.

Extension of SMART as a Pre-processing Step
We look at the results of using our approach as a pre-
processing step to Temporal Segment Networks (TSN)
(Wang et al. 2016) and using the selected frames at inference
in Table 4. To the best our knowledge this gives us state-of-
the-art results on UCF101 and HMDB51. We compare with
other recent state-of-the-art approaches such as two-stream
networks (Simonyan and Zisserman 2014; Gowda 2017),
DynaMotion (Asghari-Esfeden, Sznaier, and Camps 2020),
I3D (Carreira and Zisserman 2017) and Knowledge Integra-
tion network (KI-Net) (Zhang et al. 2020) which are among
the latest state-of-the-art approaches. We also add compari-
son with AAS (Dong, Zhang, and Tan 2019) as a frame se-
lection approach.

Improving Performances of Other Models
Here, we show that using our model to select frames and
pass the selected frames at inference helps to improve the
performance of models such as I3D (Carreira and Zisserman
2017), STM-ResNet (Feichtenhofer, Pinz, and Wildes 2017)
and ISTPAN (Du et al. 2018). This can be seen in Table 5.

Pre- Back- ActivityNet FCVID
Method trained bone #F Acc #F Acc

FastForward Imagenet Inc v3 9.61 58.1 15.34 73.3
FrameGlimpse Imagenet VGG16 9.42 62.8 9.26 71.7
Adaframe Imagenet Res101 8.65 71.5 8.21 80.2
LiteEval Imagenet Res101 - 72.7 - 80.0
SMART Imagenet Res101 8 71.4 8 80.8
SMART Imagenet Res101 10 73.1 10 82.1
DSN Kinetics Res18 10c 68.0 - -
DSN Kinetics Res34 10c 82.6 - -
MARL Kinetics Res152 25 83.8 - -
SMART Kinetics Res152 24 84.4 - -

Table 3: Results on ActivityNet and FCVID of the SMART
frame selection. Compared to recent state-of-the-art meth-
ods, the proposed method outperforms their accuracy. #F:
Number of frames, 10c corresponds to 10 clips used instead
of frames

Method Backbone UCF101 HMDB51

Two-stream VGG 92.5 62.4
I3D Inc v3 98.0 80.7
DynaMotion + I3D Inc v3 98.4 84.2
TSN BN-Inc 94.2 69.9
KI-Net Res-152 97.8 78.2
AAS TSN 94.6 71.2
SMART TSN 95.8 74.6
AAS TSN+Kinetics 96.8 77.3
SMART TSN+Kinetics 98.6 84.3

Table 4: Extending SMART as a pre-processing step to state-
of-the-art deep learning approaches. The ’+ Kinetics’ indi-
cate that the backbone is pre-trained with Kinetics.

Method UCF101 HMDB51

ISTPAN 95.5 70.7
ISTPAN + SMART 96.4 72.1
I3D 98.0 80.0
I3D + Smart 98.2 81.1
STM-Resnet 94.2 68.9
STM-Resnet + SMART 94.9 69.7

Table 5: Extending SMART to other approaches

Conclusion
We have proposed a method for frame selection that we re-
fer to as SMART frame selection. The method addresses the
issue of considering all frames in a video at once, instead of
individually, therefore making decisions globally. The pro-
posed method outperforms the accuracy of the baselines on
different action classification datasets and reduces the com-
putation cost up to 4 times. Further, it outperforms recent
frame selection approaches on untrimmed videos. Also, it
can be extended as a pre-processing step to obtain state-of-
the-art accuracy on 2 benchmarks.
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