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Abstract

Object association, i.e., the identification of which observa-
tions correspond to the same object, is a central task for
the area of multiple object tracking. Two prominent mod-
els capturing this task have been introduced in the literature:
the Lifted Multicut model and the more recent Lifted Paths
model. Here, we carry out a detailed complexity-theoretic
study of the problems arising from these two models that is
aimed at complementing previous empirical work on object
association. We obtain a comprehensive complexity map for
both models that takes into account natural restrictions to in-
stances such as possible bounds on the number of frames,
number of tracked objects and branching degree, as well as
less explicit structural restrictions such as having bounded
treewidth. Our results include new fixed-parameter and XP
algorithms for the problems as well as hardness proofs which
altogether indicate that the Lifted Paths problem exhibits a
more favorable complexity behavior than Lifted Multicut.

Introduction
Multiple Object Tracking (MOT) is an important area of re-
search in computer vision and artificial intelligence (Milan
et al. 2017; Chu et al. 2020; Huang and Zhou 2019) dat-
ing back to 1988 (Pylyshyn and Storm 1988). The tracking-
bydetection paradigm allows us to decompose MOT into
two tasks. First, an object detector is used on each frame
of a video sequence in order to find the putative locations of
all objects appearing in the video. Then, in the object associ-
ation task, we remove false positive detections and associate
correct detections to the corresponding identities, resulting
in trajectories for individual objects. The focus of this paper
lies on the latter of the two tasks.

A popular approach for the object association task in
MOT (also called the image decomposition problem (Keu-
per et al. 2015; Arbelaez et al. 2011)) is to model it as a mul-
ticut problem on a graph representation of the instance (Tang
et al. 2015, 2016; Keuper et al. 2020; Kumar, Charpiat, and
Thonnat 2014). There, one builds a graph G which con-
tains a vertex for each detection in each time frame, and
whenever two detections (in different time frames) could
represent consecutive appearances of the same object, an
edge is added connecting these two detections. The edges
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are equipped with weights that represent the likelihood that
two detections are of the same object, and the aim is to
partition G into connected components while minimizing
the sum of the weights of removed edges; the intuition is
that each connected component corresponds to one object.
This multicut model was subsequently extended with special
“lifted” edges in order to encode long-range interactions,
i.e., auxiliary information about the (dis-)similarity of non-
consecutive detections (Tang et al. 2017; Babaee, Li, and
Rigoll 2019; Horňáková, Lange, and Andres 2017); the dis-
tinction between normal and lifted edges is that connected
components are defined only using the former1.

A closely related approach to object association models
the problem not via multicut, but via disjoint paths (often
considered in the context of network flows) (Zhang, Li, and
Nevatia 2008; Berclaz et al. 2011; Chari et al. 2015; Hof-
mann, Wolf, and Rigoll 2013). In particular, the representa-
tion used here is a directed graph G′ obtained in a very sim-
ilar manner as the graph model for multicut, with the main
difference being the use of arcs which are directed from ear-
lier to later frames and the addition of two special vertices:
a universal source s and a universal sink t. The problem one
needs to solve on G′ is to find a maximum-weight set of
internally vertex-disjoint s-t paths, where each such path
will correspond to the track of one object. Very recently,
Horňáková et al. (2020) extended the disjoint paths model
via lifted arcs which—as in the multicut model—encode
auxiliary information about detections that are not consec-
utive. There, the authors also argued that the lifted disjoint
paths model had advantages over the lifted multicut model;
for instance, the lifted multicut model does not encode in-
formation about individual frames, and hence the fact that
an object only appears once per frame needs to be enforced
separately (Horňáková et al. 2020).

Aim. Unlike in previous works, here we initiate a deeper
study of LIFTED MULTICUT and LIFTED PATHS from a
complexity-theoretic point of view. It is known that both
problems are NP-complete in their full generality, but what
if we are dealing with instances where, e.g., the number of
objects we are interested in is small? Or, does the problem
become tractable when the number of frames is significantly
smaller than the number of detections? Do the answers to

1Formal definitions are provided in the Preliminaries.
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these questions depend on whether the input graphs have
natural properties? The theoretical parameterized complex-
ity paradigm (Downey and Fellows 2013; Cygan et al. 2015)
offers exactly the tools needed to provide detailed answers
to such questions, and yet almost nothing is known about the
parameterized complexity of the two problems of interest—
contrasting recent advances in our understanding of the pa-
rameterized complexity of fundamental problems in many
other subfields of AI (Ganian et al. 2020; Bredereck et al.
2020; Pfandler et al. 2015; Ordyniak and Szeider 2013; Ga-
nian and Ordyniak 2018). The primary aim of this paper is
to remedy this situation.

The cornerstone of parameterized complexity is the idea
of analyzing the difficulty of problems not only when mea-
sured in terms of the input size, but also under the assump-
tion that one or several numerical parameters of instances
are small: in particular, if we consider k to be the sum of all
designated parameters and n to be the input size, then we
distinguish whether an NP-complete problem P:

• can be solved in time f(k) ·nO(1) for some function f (in
which case it is fixed-parameter tractable or FPT), or

• can be solved in time nf(k) for a function f but is believed
not to be FPT (in which case it is XP i.e., solvable in
polynomial-time for constant parameter values, but W[1]-
hard), or

• remains NP-hard even when k is fixed to be a constant (in
which case it is paraNP-hard).

Contributions. Our main contribution is a comprehensive
complexity classification of LIFTED PATHS and LIFTED
MULTICUT with respect to all combinations of five natural
kinds of restrictions on instances—each captured by a nu-
merical value that can be either considered as a parameter,
or as a fixed constant. The first three of these values are di-
rectly tied to the MOT instance:

1. the number of frames (r) for LIFTED PATHS2,
2. the number of objects we are interested in, i.e., the number

of paths (p), and
3. the maximum “branching” degree of an observation,

which is the number of immediate predecessors and suc-
cessors of an observation (d).3

The remaining two restrictions are tied to a graph param-
eter called treewidth (Robertson and Seymour 1986), which
intuitively measures how tree-like a graph is. Aside from be-
ing an extremely well-studied and versatile parameter that
has been shown to be bounded in various graph models (e.g.,
in control flow graphs (Thorup 1998)), it is also a measure of
a graph’s sparsity that has also been shown to have interest-
ing algorithmic properties for numerous AI problems (Peters
2016; Eiben et al. 2020; Ganian and Ordyniak 2018; Ganian,
Ordyniak, and Ramanujan 2017). In MOT, it is reasonable to

2Frames do not immediately translate to a meaningful notion in
the LIFTED MULTICUT model as it is used in the literature.

3A fourth natural option would be to consider the number o of
detections per frame, but this is not a useful restriction. In particu-
lar, if r is a parameter then parameterizing by o trivializes the in-
stance, and otherwise one can transform any instance into an equiv-
alent one such that o is bounded by a constant.

tw∗
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Figure 1: Overview of our complexity results for LIFTED
PATHS with respect to all combinations of considered pa-
rameters. Red (top bubble) marks paraNP-hardness, yel-
low (middle bubble) marks XP-time solvability with lower
bounds excluding fixed-parameter tractability, and green
(bottom bubble) marks fixed-parameter tractability. Our re-
sults also include precise lower bounds for the yellow bubble
that distinguish between parameters and constants.

expect that some instances will result in bounded-treewidth
graphs at least as far as the “base graph” (i.e., the graph
containing only the non-lifted edges) is concerned—for in-
stance, this is true whenever the number of observations per
frame and the number of time frames between two consecu-
tive detections of any object are bounded. Hence our fourth
parameter is:

4. the treewidth of the base graph (tw).

And as our fifth and final parameter, we consider:

5. the treewidth of the combined graph, i.e., the graph con-
taining both kinds of edges (tw∗).

Our results for LIFTED PATHS are summarized in Fig-
ure 1. Observe that while parameterizing by tw∗ is suffi-
cient to achieve fixed-parameter tractability, this is a much
stronger restriction than parameterizing by tw and, in a
sense, “penalizes” users for adding auxiliary information
via lifted edges. On the other hand, the runtime of all our
other algorithms is virtually oblivious to the presence and
structure of such lifted edges—in particular, there adding
more information via lifted edges will never make a class
of tractable instances intractable.

The highlights of our technical contributions to the com-
plexity map for LIFTED PATHS are:

• a fixed-parameter algorithm w.r.t. p, r, d (Theorem 2, ob-
tained via an algorithmic technique called color coding),

• an algorithm (Theorem 4) which not only estab-
lishes fixed-parameter tractability w.r.t. tw, r, d and XP-
tractability w.r.t. tw, r, but also implies XP-tractability
w.r.t. a well-studied graph parameter called treedepth (Ne-
setril and de Mendez 2012),

• an involved W[1]-hardness reduction for the parameteri-
zation by tw when r is fixed to a constant (Theorem 10),
which provides a precise understanding of the complexity
in the yellow bubble of Figure 1.

We then turn our attention to LIFTED MULTICUT. While
the problem exhibits a similar behavior to LIFTED PATHS as
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far as tw∗ is concerned, we show that it is significantly more
difficult to achieve tractability via restrictions to the base
graph. In particular, we resolve the problem’s complexity
for all other parameterizations by developing a non-trivial
reduction which establishes paraNP-completeness even on
extremely simple base graphs and when the aim is to track
only two objects.
Related Work. Other problems have also been used
to model the object association task in MOT, such as
CLIQUE (Zamir, Dehghan, and Shah 2012; Dehghan, As-
sari, and Shah 2015), INDEPENDENT SET (Brendel, Amer,
and Todorovic 2011), MULTIGRAPH MATCHING (Hu et al.
2020) and INTEGER QUADRATIC PROGRAMMING (Hen-
schel et al. 2018). In contrast to the two models considered
here, the above examples often offer only limited options for
integrating long-range interactions (Horňáková et al. 2020).

Preliminaries
For an integer i, we let [i] = {1, 2, . . . , i} and [i]0 = [i] ∪
{0}. We refer to the handbook by Diestel (2012) for standard
graph terminology, and to the more recent books for a basic
overview of parameterized complexity theory (Downey and
Fellows 2013; Cygan et al. 2015). A universal source in a
digraph is a vertex with no incoming arcs but outgoing arcs
to all other vertices. Analogously, a universal sink in a di-
graph is a vertex with no outgoing arcs but incoming arcs
from all other vertices.
Treewidth. A nice tree-decomposition T of a graph G =
(V,E) is a pair (T, χ), where T is a tree (whose vertices we
call nodes) rooted at a node r and χ is a function that assigns
each node t a set χ(t) ⊆ V such that the following holds:
• For every uv ∈ E there is a node t such that u, v ∈ χ(t).
• For every vertex v ∈ V , the set of all nodes t satisfying
v ∈ χ(t) forms a subtree of T .

• |χ(`)| = 1 for every leaf ` of T and |χ(r)| = 0.
• There are only three kinds of non-leaf nodes in T :

Introduce node: a node twith exactly one child t′ such
that χ(t) = χ(t′) ∪ {v} for some vertex v 6∈ χ(t′).
Forget node: a node t with exactly one child t′ such
that χ(t) = χ(t′) \ {v} for some vertex v ∈ χ(t′).
Join node: a node t with two children t1, t2 such that
χ(t) = χ(t1) = χ(t2).

The width of a nice tree-decomposition (T, χ) is the size
of a largest set χ(t) minus 1, and the treewidth of the graph
G, denoted tw(G), is the minimum width of a nice tree-
decomposition of G. Efficient fixed-parameter algorithms
are known for computing a nice tree-decomposition of near-
optimal width (Bodlaender et al. 2016; Kloks 1994). When-
ever we speak of the treewidth of a directed graph, we mean
the treewidth of its underlying undirected graph, which is
the simple graph obtained by replacing each arc by an undi-
rected edge.

We let Tt denote the subtree of T rooted at a node t, and
we use χ(Tt) to denote the set

⋃
t′∈V (Tt)

χ(t′).

Problem Definitions. The formal definitions of our prob-
lems follow those given in the literature (Horňáková et al.
2020; Tang et al. 2017; Babaee, Li, and Rigoll 2019;

Horňáková, Lange, and Andres 2017). An instance of
LIFTED PATHS is a tuple I = (G,H,w, `, p) where:

• G = (V,E) is an n-vertex acyclic digraph with V parti-
tioned into:

– a universal source V0 = {s} and sink Vr+1 = {t}, and
– (time) frames V1, . . . , Vr,

such that each arc ab ∈ E where a ∈ Vi and b ∈ Vj
satisfies i < j.

• H = (V \ {s, t}, F ) is an acyclic digraph,
• wG : V ∪ E → Z and wH : F → Z are weight functions

such that wG(s) = wG(t) = 0,
• ` ∈ Z is a target lower bound, and
• p ∈ N∪{+∞} is an upper bound on the number of paths.

The weight w(P ) of a path P in G is defined as
(
∑

x∈P wG(x)) +
∑

ab|ab∈F∧{a,b}⊆P wH(ab), where P is
understood as a set of vertices and edges. The task in LIFTED
PATHS is to either find an internally vertex-disjoint set P of
at most p-many s-t paths such that

∑
P∈P w(P ) ≥ `, or

correctly determine that no such set P exists.
Instances of the LIFTED MULTICUT problem share mul-

tiple similarities to those of LIFTED PATHS, but also have
some differences (several of which are highlighted in bold).
Each such instance is a tuple I = (G,H,w, `, p) where

• G = (V,E) and H = (V, F ) are n-vertex undirected
graphs,

• wG : E→ Z and wH : F → Z are weight functions,
• u ∈ Z is a target upper bound, and
• p ∈ N∪{+∞} is an upper bound on the number of parts.

The task in LIFTED MULTICUT is to decide whether G
can be vertex-partitioned into at most p-many subgraphs
G1, . . . , Gj , which we call parts, such that:

1. each Gi, i ∈ [j] is connected, and
2. (

∑
e∈E′ wG(e)) + (

∑
e∈F ′ wH(e)) ≤ u, where E′ ⊆ E

and F ′ ⊆ F are the subsets of edges whose two endpoints
lie in pairwise distinct parts.

Throughout this paper, we consider the following param-
eters for LIFTED MULTICUT and LIFTED PATHS:

• p: the number of parts or paths, respectively,
• r: the number of frames in LIFTED PATHS,
• d: the maximum degree in G (for LIFTED MULTICUT)

or of the underlying undirected graph of G − {s, t} (for
LIFTED PATHS),

• tw: the treewidth of the base graph, i.e., G or the underly-
ing undirected graph of G, respectively,

• tw∗: the treewidth of the combined graph, i.e., G∗ =
(V,E ∪ F ) or the underlying undirected graph of G∗ =
(V,E ∪ F ), respectively.

Algorithms and Tractability Results
In this section we will provide all of the algorithms for
LIFTED PATHS required to obtain the complexity map de-
tailed in Figure 1, as well as establish the tractability of
LIFTED MULTICUT parameterized by tw∗. We divide our
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exposition into three subsections: one dedicated to algo-
rithms that utilize some combination of “basic parameters”
(i.e., r, p or d), one dedicated to algorithms that exploit the
treewidth of the base graph (tw), and one establishing the
tractability of both problems parameterized by tw∗.
Basic Parameters. We begin with a simple observation
that identifies a tractable fragment of LIFTED PATHS via an
enumeration argument.

Observation 1. LIFTED PATHS can be solved in time
O(np·r).

Our second task is to obtain a fixed-parameter algorithm
for LIFTED PATHS parameterized by p+r+d. The algorithm
relies on a technique called color coding (Cygan et al. 2015).

Theorem 2. LIFTED PATHS can be solved in time
epr(pr)O(log pr)(p+ 1)prdrn log n.
Proof Sketch. The idea behind color coding is to randomly
color the input such that with high proability the solution
is colored in a way that allows one to efficiently find it. In
our case, we will use colorings of the vertices of G with
p colors and we will look for solutions that are “colorful”.
That is, suppose we are given a coloring λ : V (G)\{s, t} →
{1, . . . , p} of the vertices of G with p colors. A solution P
is colorful if:
• every path P ∈ P is colored uniformly, i.e., every vertex

in P \ {s, t} is assigned the same color by λ and
• every two paths in P are assigned distinct colors by λ.
In order to employ color coding using this notion, we need
to show that colorful solutions can be found efficiently and
that a random coloring makes a solution colorful with suf-
ficiently high probability. We start by observing the former,
i.e., that COLORFUL LIFTED PATH, where one is addition-
ally given a vertex-coloring λ ofG−{s, t}with p colors and
asks whether G has a colorful solution, can be solved effi-
ciently. This can be done by enumerating all paths of each
color and choosing one of maximum weight for each color.
Claim 3. COLORFUL LIFTED PATHS can be solved in time
O(drn).

Since the coloring is not provided to us but we assume it
to be chosen uniformly and indenpendently at random for
every vertex of G − {s, t}, we also need to argue that there
is a sufficiently high probability that a solution P is colorful.

Because there are at least p colorful colorings of the paths
in P (if there is only one path in P) and the total number of
colorings of the at most pr many vertices used by paths in P
is at most ppr, we obtain that the probability that P is col-
orful is at least p

ppr = p−(p−1)r. Therefore, the randomized
algorithm that colors V (G) \ {s, t} uniformly and indepen-
dently at random and then uses Claim 3 to check whether
there is a colorful solution, will find a solution in an instance
(if one exists) with probability at least p−(p−1)r. But this
means that repeating the algorithm p(p−1)r times already
gives a randomized algorithm with constant error probabil-
ity. Note that the total runtime of this randomized algorithm
is at mostO(p(p−1)rdrn). Moreover, the use of random col-
orings can be avoided by applying well-known derandom-
ization techniques (Cygan et al. 2015, Section 5.6.1), result-
ing in a deterministic algorithm with the stated runtime.

Treewidth of the Base Graph. Both of the tractability
results involving tw required for the complexity map of Fig-
ure 1 follow from a single algorithm, obtained below. Ob-
serve that the number of directed paths going through any
vertex in G can be upper-bounded by dr, and hence by nr.

Theorem 4. LIFTED PATHS can be solved in time
∆O(tw)n3, where ∆ is the maximum number of directed
paths going through any vertex in G.
Proof Sketch. Let I = (G,H,w, `, p) be an instance of
LIFTED PATHS and let (T, χ) be a nice tree-decomposition
of G − {s, t} with root r of width ω ∈ O(tw), which can
be computed in linear time (Bodlaender et al. 2016). We
provide a dynamic programming algorithm that computes
a set of records for every node of the tree-decomposition in
a bottom-up manner.

For a node t ∈ V (T ) a record is a triple (P, δ,W ),
where P is a set of (vertex-)disjoint paths in G each con-
taining at least one vertex from χ(t), δ is a natural num-
ber, and W is a real number. A record R = (P, δ,W ) is
valid for t if W is the maximum weight of any solution
for the instance I induced by the vertices in V (R, t) =
(χ(Tt) ∪ {s, t}) \ (V (P) ∪ χ(t)) that uses exactly δ paths.
That is, W is the maximum total weight of any set P of
exactly δ vertex-disjoint paths in G[V (R, t)]. We denote by
R(t) the set of all valid records for t. Note that I has a solu-
tion if and only if (∅, δ,W ) ∈ R(r) with δ ≤ p and W ≥ `.
Moreover, |R(t)| is upper-bounded by ∆ω · n.

To complete the proof, it now suffices to show how to
computeR(t) for every node t of T via leaf-to-root dynamic
programming. We illustrate this procedure on the example of
introduce and join nodes. For a vertex v ∈ V (G), let PG(v)
be the set of directed paths in G− {s, t} going through v.
Introduce nodes: Let t be an introduce node of T with child
t′ and χ(t)\χ(t′) = {v} for some v ∈ V (G)\{s, t}. Then,
R(t) contains all records that are inR(t′) and an additional
record (P ∪ {P}, δ,W ) for every record (P, δ,W ) ∈ R(t′)
and P ∈ PG(v) such that P contains no vertex in V (P) =⋃

P∈P V (P ) and no vertex in χ(t′). More formally:

R(t) = R(t′) ∪ { (P ∪ {P}, δ,W ) | (P, δ,W ) ∈ R(t′)

∧P ∈ PG(v) ∧ P ∩ (V (P) ∪ χ(Tt′)) = ∅ }

Join nodes: Let t be a join node of T with children t1 and t2.
To computeR(t) we proceed in two steps. First we compute
an auxiliary setR′(t) fromR(t1) andR(t2) as follows:

R′(t) = { (P, δ1 + δ2,W1 +W2) |
(P, δ1,W1) ∈ R(t1) ∧ (P, δ2,W2) ∈ R(t2) }

To obtain R(t) from R′(t), we then remove “duplicate”
records, i.e., records that agree in P and δ. More formally:

R(t) = { (P, δ,W ) | (P, δ,W ) ∈ R′(t) ∧
W = max{W ′|(P, δ,W ′) ∈ R′(t)} }

Treewidth of the Combined Graph. To complete the
upper-bound component of our complexity analysis, we es-
tablish the fixed-parameter tractability of LIFTED PATHS
and LIFTED MULTICUT parameterized by tw∗. This is
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achieved via the use of Courcelle’s famous theorem (Cour-
celle 1990), or more precisely its extension towards opti-
mization problems by Arnborg, Lagergren, Seese (1991);
see also the summary provided by, e.g., Langer et al. (2014).

Proposition 5 (Courcelle’s Theorem for Optimization).
Given (1) a labeled digraph G = (V,E) whose underlying
undirected graph has treewidth k, (2) a weight function ω :
V ∪ E → Z, and (3) a formula φ(X1, . . . , X`) in Monadic
Second Order Logic with ` free set variables, finding an
interpretation (S1, . . . , S`) such that G |= φ(S1, . . . , S`)
and which maximizes

∑
a∈

⋃
i∈[`] Si

ω(a) is fixed-parameter

tractable parameterized by |φ|+ k.

Theorem 6. LIFTED PATHS and LIFTED MULTICUT are
fixed-parameter tractable when parameterized by tw∗.
Proof Sketch. Let us first consider the LIFTED PATHS prob-
lem. Let G∗ be the combined digraph (V,E ∪ F ) where we
label each arc as “base” (if it occurs in E), “lifted” (if it
occurs in F ), or both. Consider a weight function ω that
is defined for each edge e as wG(e) + wH(e) (where any
undefined terms are replaced by 0) and for each vertex v
as ωG(v). To apply Courcelle’s Theorem, we construct a
Monadic Second Order Logic formula φ(X1, X2, X3) that
will be interpreted over (sets of) vertices and edges of G∗
with three free set variables. Crucially, the formula will be
true if and only if X1 is interpreted as a set S1 of arcs that
form directed paths from s to t,X2 as a set S2 of arcs whose
both endpoints lie on some path defined by S1, and S3 are
all vertices occurring on paths in S1. Assuming basic knowl-
edge of Monadic Second Order Logic, constructing such a
formula is a moderately tedious but ultimately simple task,
and hence we leave this as an exercise for interested readers.
Once we construct such a formula of size bounded by a func-
tion of tw∗, then the fixed-parameter tractability of LIFTED
PATHS parameterized by tw∗ follows from Proposition 5.

The same approach can be used for LIFTED MULTICUT;
the main distinction is that instead of using the formula φ,
we construct a formula whose set variables will capture the
edges that are cut in a partitioning of G.

Lower Bounds
We proceed towards the second component of our complex-
ity map, notably lower bounds. These are structured in three
subsections: one providing two NP-hardness reductions for
restrictions of LIFTED PATHS, one dedicated to identify-
ing the precise boundaries of fixed-parameter tractability for
LIFTED PATHS, and the last one establishing the intractabil-
ity of LIFTED MULTICUT even under severe restrictions.
Excluding Polynomial Algorithms for Lifted Paths.
The two NP-hardness proofs for LIFTED PATHS both start
from a variant of the classical Satisfiability problem (SAT).

Theorem 7. LIFTED PATHS is NP-hard even when re-
stricted to instances such that tw ≤ 2, d ≤ 3 and p = 1.
Proof Sketch. We reduce from the decision version of
MAX-2-SAT: given a 2-CNF formula ϕ over variables
x1, . . . , xn and clauses C1, . . . , Cm along with an integer
a, does there exist an assignment of the variables in ϕ which

satisfies at least a clauses? MAX-2-SAT is well-known to
be NP-hard (Garey, Johnson, and Stockmeyer 1976).

The construction proceeds as follows. For each variable
xi, G contains the vertices xstart

i , xtrue
i , xfalse

i and xend
i and

the following arcs: xstart
i xtrue

i , xstart
i xfalse

i , xtrue
i xend

i , xfalse
i xend

i .
Similarly, for each clause Ci we construct the ver-
tices cstart

i , cfirst
i , csecond

i , cend
i and add the following arcs:

cstart
i cfirst

i , cstart
i csecond

i , cfirst
i cend

i , csecond
i cend

i . We also add an arc
from each xend

i to xstart
i+1 (for i < n), an arc from each cend

i to
cstart
i+1 (for i < m), and the arc xend

n cstart
1 . Naturally, we also

have s as a universal source and t as a universal sink; this
completes the construction ofG. Observe that there are mul-
tiple paths from xstart

1 to cend
m , but in each path we can choose

either a “true” or “false” vertex for each variable and either
a “first” or “second” vertex for each clause. All vertices and
edges in G receive a weight of 0.

For the arc set F of H , we proceed as follows. For each
literal that occurs in a clause, for example the literal ¬xi in
clause Cj = (¬xi, xz), we create an arc from the vertex
representing the same valuation of that variable to the vertex
representing the position that literal holds in the clause; in
the mentioned example, we would create the arc xfalse

i cfirst
j .

This way, each vertex corresponding to a literal in a clause
will have one incoming arc in F , and we let wH assign a
weight of 1 to each such arc. Moreover we introduce the arc
xstart

1 cend
m and let wH(xstart

1 cend
m ) = 2m. The aim of this is to

ensure that we must include a path that contains both these
vertices together to achieve an objective value of at least 2m.

Finally, we set ` = a + 2m. It can be shown that the
initial MAX-2-SAT instance is a Yes-instance if and only
if the constructed LIFTED PATHS instance is a Yes-instance
for p = 1 and the instance has the desired properties.

Theorem 8. LIFTED PATHS is NP-hard even when re-
stricted to instances such that r ≤ 5, d ≤ 6, and all weights
are set to zero or one.
Proof Sketch. We reduce from 3-SAT-2, i.e., the variant
of 3-SAT where each variable occurs at most twice pos-
itively and at most twice negatively, which is known to
be NP-hard (Yannakakis 1978). Consider an instance of
3-SAT-2 with variables x1, . . . , xn and clauses C1 =
(l11, l

2
1, l

3
1), . . . , Cm = (l1m, l

2
m, l

3
m).

We construct an instance of LIFTED PATHS by first letting
G = (V,E) have the vertex set {s, t} ∪

⋃
i∈[5] Vi where

• V1 = {a1, . . . an} is the set of variable decision vertices,
• V2 = {v1

xi
, v1

x̄i
| i ∈ [n]} is the set of first literal occur-

rence vertices,
• V3 = {v2

xi
, v2

x̄i
| i ∈ [n]} is the set of second literal

occurrence vertices,
• V4 = {b1, . . . bn} is the set of variable decision partner

vertices, and
• V5 = {c1, . . . , cm} is the set of clause vertices.
The arc set ofG is defined asE = {sv | v ∈ V \{s}}∪{vt |
v ∈ V \ {s, t}} ∪ {aiv1

xi
, aiv

1
x̄i
| i ∈ [n]} ∪ {v1

l v
2
l | l ∈

{x1, x̄1, . . . , xn, x̄n}}∪{v2
xi
bi, v

2
x̄i
bi | i ∈ [n]}∪{vh

lji
ci | i ∈

[m], j ∈ [3], h ∈ [2]}. In this way each ai or bi has degree
2 in G − {s, t}, each vl has degree at most 4 in G − {s, t},
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and each cj has degree at most 6 in G − {s, t}. We set the
weights of all arcs and vertices in G to zero. Second, we set
F = {aibi | i ∈ [n]} ∪ {v`

lji
ci | i ∈ [m], j ∈ [3], ` ∈

[2]} with all arcs of H having weight 1. To complete the
proof, it suffices to show that the original 3-SAT-2 instance
was satisfiable if and only if the constructed LIFTED PATHS
instance with target lower bound ` = n+m is a Yes-instance
(with p = ∞). To observe this, consider the set of paths
constructed as follows:
• whenever a variable xi is set to true and that variable is the

“first” variable to satisfy the clause cj with its first literal,
use the path (s, v1

xi
, cj , t) (where v1

x̄i
would be used if xi

is set to false, and v1
x̄i

for its second literal);
• whenever a variable is set to true, use the path

(s, ai, v
1
x̄i
, v2

x̄i
, bi, t).

It is easy to verify that the constructed paths correspond to a
solution for the original 3-SAT-2 instance.

Excluding Fixed-Parameter Algorithms for Lifted Paths.
The first result in this section is a fairly straightforward
W[1]-hardness reduction for LIFTED PATHS parameterized
by r + tw + p; in particular, the reduction rules out fixed-
parameter tractability for the problem parameterized by r
even if the tw and p are fixed to very small constants. How-
ever, on its own the reduction still leaves one final gap in
our understanding of the complexity of LIFTED PATHS. In
particular, while Theorem 2 also provides a fixed-parameter
algorithm parameterized by p when r is fixed to a constant,
at this point it is not yet clear whether the problem is FPT or
W[1]-hard when parameterized by tw in the case of r being
fixed by a constant. The second result in this section then
closes this gap via an intricate reduction. Both reductions
start from the well-known W[1]-complete problem MULTI-
COLORED CLIQUE (Pietrzak 2003).
Theorem 9. LIFTED PATHS is W[1]-hard parameterized by
r, even if p = 1 and tw = 2.

We now proceed to our second, significantly more in-
volved W[1]-hardness reduction.
Theorem 10. LIFTED PATHS is W[1]-hard parameterized
by tw even if r = 8.
Proof Sketch. Consider an instance (D, k) of MULTICOL-
ORED CLIQUE with partition V (D) = M1 ∪ · · · ∪Mk}. In
the following we denote by Ei,j the set of all edges in E(D)
with one endpoint in Mi and the other endpoint in Mj , for
every i and j with 1 ≤ i < j ≤ k. To show the theorem,
we will construct an instance I = (G,H,wG, wH , `,∞) of
LIFTED PATHS where r = 8 and G has treewidth at most(
k
2

)
+ 2k(k − 2) + 3 such that D has a k-clique if and only

if I is a Yes-instance.
For every vertex v ∈ V (D), we add a vertex gadget P (v)

to I that is illustrated in Figure 2 and consists of k − 1 di-
rected paths (denoted P1(v), ..., Pk−1(v)) having 6 vertices
(the vertices pjv,i) each. Moreover, H contains a vertex arc
of weight 1 from the first vertex of each path to its last vertex
and we denote by AV the set of all vertex arcs added in this
manner.

For every i and j with 1 ≤ i < j ≤ k, we add the vertex
xi,j together with the following arcs to G and H:

p1v,1 p2v,1 p3v,1 p4v,1 p5v,1 p6v,1

p1v,2 p2v,2 p3v,2 p4v,2 p5v,2 p6v,2

p1v,3 p2v,3 p3v,3 p4v,3 p5v,3 p6v,3

P (v1)

P (vn)

a1
2

a2
2

b12

b22

x2,3

x2,4

x1,2

Figure 2: Illustrations for the construction used in the proof
of Theorem 10 for the case that k = 4. Arcs in G and
H are represented by solid lines and dashed lines, respec-
tively. Left: The gadget P (v). Right: The connections be-
tween the choice gadget and the vertices in X with M2 =
{v1, . . . , vn}. The paths P (v) for v ∈M2 are given in gray.

• for every vertex v ∈ Mi, we add an arc from the third
vertex p3

v,j−1 of Pj−1(v) to xi,j to G,
• for every vertex v ∈ Mj , we add an arc from xi,j to the

fourth vertex p4
v,i of Pi(v),

• for every edge e = {u, v} ∈ E(D) ofD with u ∈Mi and
v ∈ Mj , we add an arc of weight 1 to H , which we refer
to as an edge arc, that goes from the third vertex p3

u,j−1

of Pj−1(u) to the fourth vertex p4
v,i of Pi(v). Let AE be

the set of all edge arcs added to H in this manner and let
X = {xi,j | 1 ≤ i < j ≤ k }.
Moreover, for every i with 1 ≤ i ≤ k, we add a choice

gadget C(i) having vertices a1
i , b

1
i , . . . , a

k−2
i , bk−2

i and an
arc in H of weight 3 from aji to bji for every j with 1 ≤
j ≤ k − 2; we refer to these as choice arcs. Let AC be the
set of all choice arcs added to H in this manner. Finally, we
connect the choice gadgets to the vertex gadgets as follows.
For every i with 1 ≤ i ≤ k, we add the following arcs to G:
• an arc from aji to the first vertex p1

v,j of Pj(v) for every j
with 1 ≤ j ≤ k − 2 and every v ∈Mi.

• an arc from the last vertex p6
v,j+1 of Pj+1(v) to bji for

every j with 1 ≤ j ≤ k − 2 and every v ∈Mi.
The choice gadget and the vertices in X together with their
connections to the path gadgets are illustrated in Figure 2.
Note that G (without s and t) can be partitioned into the
following 8 layers (and therefore r = 8): The vertices aji ,
followed by the first, second, and third vertex of each path
in P (v) for v ∈ V (D), the vertices in X , followed by the
fourth, fifth, and sixth vertex of each path in P (v) for v ∈
V (D), and the vertices bji . Setting ` = (|V (D)| − k)(k −
1) + 3(k − 2)k +

(
k
2

)
completes the construction of I.

Regarding the treewidth ofG, we observe that deleting the
set Y = {s, t}∪X ∪{ aji , b

j
i | 1 ≤ i ≤ k∧ 1 ≤ j ≤ k− 2 }

from G results in a tree; since |Y | =
(
k
2

)
+ 2k(k− 2) + 2, it
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t1 t2 t3 t4 t5 t6

vx1 vx̄1
vx2

vx̄2
vx3

vx̄3

f1 f2 f3 f4 f5 f6

Figure 3: G of the constructed LIFTED MULTICUT instance
in the proof of Theorem 11 for a NAE 3-SAT formula on
variables x1, x2, x3. The dashed lines indicate a partition
which corresponds to assigning x1, x̄2 and x3 to true.

follows that tw(G) ≤
(
k
2

)
+ 2k(k − 2) + 3, as required.

The main idea behind the construction is that ev-
ery solution P for I has to connect the vertices
a1
i , b

1
i , . . . , a

k−2
i , bk−2

i of the choice gadget for every i with
1 ≤ i ≤ k using only the k − 1 paths of the path gad-
get P (v) of a single vertex v ∈ Mi; since otherwise more
than k − 1 paths in {P (u) | u ∈ Mi } are used up to con-
nect the higher valued arcs in AC . Moreover, to reach the
total weight all other paths in {P (u) | u ∈ Mi } need to
be used to connect the vertex arcs in AV . Finally, the max-
imum number of edge arcs in AE can only be connected if
the vertices {v1, . . . , vk} that have been chosen to connect
the choice gadgets form a k-clique inD; since only the paths
in P (vi) are free, i.e., not used to connect the vertex arcs and
can therefore be used to connect the edge arcs.

Lower Bounds for Lifted Multicut. As our final result,
we show that compared to LIFTED PATHS, LIFTED MULTI-
CUT remains highly intractable even when strongly restrict-
ing all considered aspects of the problem.
Theorem 11. LIFTED MULTICUT is NP-hard for tw = 2,
p = 2 and d = 2.
Proof Sketch.. We reduce from Not All Equal 3-SAT (NAE
3-SAT) in the following way: Consider an instance of
NAE 3-SAT with variables x1, . . . , xn and clauses C1 =
(l11, l

2
1, l

3
1), . . . , Cm = (l1m, l

2
m, l

3
m). W.l.o.g. no clause

contains both the positive and negative literal of a vari-
able. We construct an instance of LIFTED MULTICUT by
firstly letting G = (V,E) have the vertex set V =
{t1,f1, . . . ,t2n,f2n} ∪ {vxi , vx̄i | i ∈ [n]}, and the
edge set E = {titi+1,fifi+1 | i ∈ [2n − 1]} ∪
{t2i−1vxi ,f2i−1vxi | i ∈ [n]} ∪ {t2ivx̄i ,f2ivx̄i | i ∈ [n]}.
It is easy to verify that in this way tw(G) = 2.

We set wG(e) = 2m for all edges e ∈ E \
{titi+1,fifi+1 | i ∈ [2n − 1]}, and wG(titi+1) = 5mn
and wG(fifi+1) = 5mn for i ∈ [2n − 1]. An example of
the construction of G is given in Figure 3 (together with an
illustration of the correspondance of an assignment for NAE
3-SAT to a partition of G).

Secondly we let H be defined on the vertex set V with
the edge set given by F = {t1f1} ∪ {vxivx̄i | i ∈ [n]} ∪
{v

l
j1
i
v
l
j2
i
| i ∈ [m], 1 ≤ j1 < j2 ≤ 3}. We set wH(t1f1) =

−5mn, wH(vxi
vx̄i

) = −1 for i ∈ [n], and wH(v
l
j1
i
v
l
j2
i

) =

−1 for i ∈ [m] and 1 ≤ j1 < j2 ≤ 3.

Now the original NAE 3-SAT instance is satisfiable if
and only if the LIFTED MULTICUT instance with bound u =
4mn−5mn−2m−n = −mn−2m−n is a Yes-instance.

To observe this, note that the weights inG andH are cho-
sen in a way that {t1, . . . ,t2n} has to be a subset of one
part of any partition of G with the desired objective value
and {f1, . . . ,f2n} has to be a subset in a different part of
such a partition. This is because the edges connecting tis
and fis repectively to each other have very high, and t1f1

has a very low (negative) weight. Similarly since separating
any vertex vxi

or vx̄i
from both ti and fi in a partition of

G is penalized more than separating it from either ti or fi,
one can argue that in any partition of G with the desired ob-
jective value there are only two parts, one containing all tis
and the other containing all fis.

Moreover the weights of the edges of the form vxivx̄i in
H prevent vxi and vx̄i from being in the same part of a par-
tition with the desired objective value, and the edges of the
form v

l
j1
i
v
l
j2
i

in H prevent all vertices corresponding to lit-
erals of any clause from being in the same part of a partition
with the desired objective value. Thus a setting all variables
to true which correspond to vertices in the same part as t1

in a partition with the desired objective value is equivalent
to a not-all-equal satisfying assignment and vice versa.

This hardness already holds under severe restrictions of
all parameters considered in Theorem 11. We are actually
able to draw the line between polynomial-time solvable and
NP-hard cases exactly, even regarding the specific numerical
bounds, by noting that the problem is trivial as soon as p = 1
or d = 1. As for the case of tw = 1 we can show hardness
also for this case—in fact, by a reduction from 1-IN-3-SAT
we show that the problem remains NP-hard even when the
base graph is a star.

Theorem 12. LIFTED MULTICUT is NP-hard even when
restricted to instances such that G is a star.

Concluding Remarks
We carried out a detailed theoretical analysis of both the
well-established LIFTED MULTICUT and the more recent
but promising LIFTED PATHS model for object association
in MOT. Our analysis identifies the precise boundaries of
tractability for the problems under natural restrictions.

Somewhat unexpectedly, our findings suggest that the
LIFTED PATHS model is by far better suited for exploit-
ing the considered parameters than the LIFTED MULTI-
CUT model, and our hardness proofs for LIFTED MULTI-
CUT show intractability for extremely restricted instances,
potentially signifying a substantial algorithmic advantage of
considering LIFTED PATHS. Hence, it would be interesting
to study if this is also reflected in practice, i.e., to design ex-
periments that isolate and compare the effect on the running
time of using LIFTED MULTICUT versus LIFTED PATHS.

Another interesting research direction would be to ana-
lyze the properties of real-life instances of LIFTED MULTI-
CUT and LIFTED PATHS that arise during MOT, in particular
with respect to how tw and tw∗ compare to each other and
the identification of other algorithmically useful parameters.
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Pfandler, A.; Rümmele, S.; Wallner, J. P.; and Woltran, S.
2015. On the Parameterized Complexity of Belief Revision.
In Yang, Q.; and Wooldridge, M. J., eds., Proceedings of the
Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-
31, 2015, 3149–3155. AAAI Press.

Pietrzak, K. 2003. On the parameterized complexity of the
fixed alphabet shortest common supersequence and longest
common subsequence problems. J. of Computer and System
Sciences 67(4): 757–771.

Pylyshyn, Z. W.; and Storm, R. 1988. Tracking multiple
independent targets: evidence for a parallel tracking mecha-
nism. Spatial vision 3: 179–197.

Robertson, N.; and Seymour, P. D. 1986. Graph minors. II.
Algorithmic aspects of tree-width. J. Algorithms 7(3): 309–
322.

Tang, S.; Andres, B.; Andriluka, M.; and Schiele, B. 2015.
Subgraph decomposition for multi-target tracking. In IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, 5033–
5041. IEEE Computer Society.

Tang, S.; Andres, B.; Andriluka, M.; and Schiele, B. 2016.
Multi-person Tracking by Multicut and Deep Matching. In
Hua, G.; and Jégou, H., eds., Computer Vision - ECCV 2016
Workshops - Amsterdam, The Netherlands, October 8-10
and 15-16, 2016, Proceedings, Part II, volume 9914 of Lec-
ture Notes in Computer Science, 100–111.
Tang, S.; Andriluka, M.; Andres, B.; and Schiele, B. 2017.
Multiple People Tracking by Lifted Multicut and Person Re-
identification. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017, 3701–3710. IEEE Computer Soci-
ety.
Thorup, M. 1998. All Structured Programs have Small Tree-
Width and Good Register Allocation. Inf. Comput. 142(2):
159–181.
Yannakakis, M. 1978. Node- and Edge-Deletion NP-
Complete Problems. In Lipton, R. J.; Burkhard, W. A.; Sav-
itch, W. J.; Friedman, E. P.; and Aho, A. V., eds., Proceed-
ings of the 10th Annual ACM Symposium on Theory of Com-
puting, May 1-3, 1978, San Diego, California, USA, 253–
264. ACM.
Zamir, A. R.; Dehghan, A.; and Shah, M. 2012. GMCP-
Tracker: Global Multi-object Tracking Using Generalized
Minimum Clique Graphs. In Computer Vision - ECCV
2012 - 12th European Conference on Computer Vision, Flo-
rence, Italy, October 7-13, 2012, Proceedings, Part II, vol-
ume 7573 of Lecture Notes in Computer Science, 343–356.
Springer.
Zhang, L.; Li, Y.; and Nevatia, R. 2008. Global data associa-
tion for multi-object tracking using network flows. In CVPR.
IEEE Computer Society.

1396


