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Abstract

Deep metric learning aims to learn a deep embedding space,
where similar objects are pushed towards together and dif-
ferent objects are repelled against. Existing approaches typ-
ically use inter-class characteristics, e.g., class-level infor-
mation or instance-level similarity, to obtain semantic rele-
vance of data points and get a large margin between differ-
ent classes in the embedding space. However, the intra-class
characteristics, e.g., local manifold structure or relative re-
lationship within the same class, are usually overlooked in
the learning process. Hence the data structure cannot be fully
exploited and the output embeddings have limitation in re-
trieval. More importantly, retrieval results lack in a good rank-
ing. This paper presents a novel self-supervised ranking aux-
iliary framework, which captures intra-class characteristics as
well as inter-class characteristics for better metric learning.
Our method defines specific transform functions to simulates
the local structure change of intra-class in the initial image
domain, and formulates a self-supervised learning procedure
to fully exploit this property and preserve it in the embedding
space. Extensive experiments on three standard benchmarks
show that our method significantly improves and outperforms
the state-of-the-art methods on the performances of both re-
trieval and ranking by 2%-4%.

Introduction
Deep Metric learning aims to learn effective distance or sim-
ilarity measures between arbitrary objects with the success
of deep learning. It’s a crucial topic in computer vision and
has been applied to a variety of tasks, including face verifi-
cation (Liu et al. 2017), person re-identification (Xiao et al.
2017), and fine-grained image retrieval (Qian et al. 2019).
The paradigm of deep metric learning aims to project data
onto an embedding space, where the embeddings of visual-
semantically similar samples (e.g., images of the same class)
are close together, while dissimilar ones (e.g., images from
different classes) are far apart from each other. Most of the
deep metric learning approaches focus on designing objec-
tive functions which can be defined in terms of pairwise sim-
ilarities between an anchor (regarded as a query in retrieval)
and corresponding positive/negative samples (Sohn 2016;
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Figure 1: Illustration of the limitation of previous works.
Best retrieval result ranking should be 1, 2, 3, 4, but previ-
ous method may return a random order like 2, 4, 1, 3 since
they overlook the relationship of different positive samples.
(a) Inherent intra-class variances from the same category. (b)
Previous methods only maximize the inter-class variance but
cannot preserve the intra-class properties. (c) Our method
captures intra-class variance by keeping their ranking infor-
mation to achieve better retrieval result.

Ge 2018). Their performances heavily rely on sampling
strategies (Wu et al. 2017; Suh et al. 2019), pairs weight-
ing (Wang et al. 2019a,b), and examples generation (Zhao
et al. 2018; Zheng et al. 2019) to mine informative samples.
Recent works improve the model through using boost-like
policies, including attentions (Kim et al. 2018), features sep-
aration (Sanakoyeu et al. 2019), and self-supervised strate-
gies (Roth et al. 2019; Wang et al. 2020). These ensem-
ble approaches are built on standard objective functions to
distinguish negative samples. Generally, existing methods
concentrate on learning class-discriminative embeddings by
maximizing inter-class variance.

However, these deep metric learning approaches com-
pletely dismiss intra-class variance in the embedding space,
i.e., relative distance between positive samples and the an-
chor or local manifold structure. They regard all positive
samples equally since the lack of annotations and try their
best to discriminate positive and negative samples, while
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Figure 2: Overview of our approach. We use one backbone network fθ and two head networks gθ, qθ to optimize two loss
functions jointly. Primary metric learning loss Lmetric is built in embeddings space zi. Self-supervised surrogate objective
function Lranking is solved in embedding space z′n to support metric learning by preserving intra-class variance and ranking
information, which are generated by transform functions Tn of different strengths n with no extra manual annotations.

the ranking of different positive samples is discarded totally.
In a word, previous methods mainly concentrate on how to
maximize the inter-class variance and increase the margin
of different class-neighbors in the embedding space, while
the intra-class variance is minimized and local structure is
destroyed unconsciously. Fig. 1(a) shows the latent intra-
class variance within a certain class, without considering this
property, previous methods would learn a less efficient em-
bedding space, shown in Fig. 1(b), as compared with the op-
timal result in Fig. 1(c). In summary, previous methods are
not able to fully exploit the intra-class variance, which is
also very important to learn better embeddings.

In this work, we propose a novel self-supervised ranking
learning auxiliary framework, which can be easily integrated
with existing metric learning techniques. The overall frame-
work of our method is illustrated in Fig. 2. In inter-class
characteristics mining phase, any existing metric learning
algorithms can be applied. Meanwhile, we define a standard
criterion to generate and measure intra-class variance, and
propose a self-supervised learning procedure to learn to pre-
serve the corresponding ranking information in the embed-
ding space. In this way, the learned embeddings not only
maintain inter-class separability but also discriminate sub-
tle intra-class variance, leading to a better global and local
embedding structure for retrieval and ranking. Our contri-
butions are summarized as follows: (1) We design a typi-
cal paradigm to preserve local structure by measuring intra-
class variance for deep metric learning. (2) We propose a
general self-supervised auxiliary framework with specific
transform functions and ranking preserving strategy. It can
not only capture intra-class properties, but also learn dis-
criminative semantic embeddings. (3) Evaluation results on
three benchmark datasets demonstrate that our method can

improve and outperform the performances of state-of-the-art
approaches on both retrieval and ranking by 2%-4%.

To our best knowledge, our method is the first self-
supervised framework which capture intra-class variance for
deep metric learning.

Related Work
Deep Metric Learning
Deep metric learning is a fundamental algorithm to learn
similarity measure between objects with the advent of deep
neural networks. A large variety of loss functions have
been proposed these years and can be categorized into two
classes, pair-based and proxy-based. Pair-based methods
(Wu et al. 2017; Wang et al. 2019b) are built on a group of
pairwise distances between the anchor and positive or nega-
tive samples. These losses can mine rich structural relation-
ships among data by examining multiple sample pairs. But
their performances are heavily dependent on hard sampling
strategies (Suh et al. 2019) or negative examples generation
(Zheng et al. 2019) to select more valuable samples in a
mini-batch. The proxy-based losses (Qian et al. 2019; Deng
et al. 2019) utilize proxy embeddings as the class-related
representation and a part of network parameters. They en-
courage each image as the anchor point to be close to the
proxies of the same class and far away from these of dif-
ferent classes, instead of other image points. They reduce
the computational complexity and obtain faster convergence
when the number of classes is small.

Based on the above loss functions, ensemble methods
(Opitz et al. 2018; Kim et al. 2018) are proposed to boost
the performance using advanced techniques. For example,
Divide (Sanakoyeu et al. 2019) uses the divide-and-conquer
strategy to learn on partitional embedding spaces. MIC
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(Roth et al. 2019) combines inter-class discriminative fea-
tures with characteristics shared across classes. HORDE (Ja-
cob et al. 2019) includes pooling feature representations as
well as the higher-order moments. XBM (Wang et al. 2020)
uses the memory mechanism to expand large batch sizes.

Learning-to-rank strategy is widely used in metric learn-
ing. They learn the ranking objective functions by minimiz-
ing ranking quality measures, such as Recall, R-precision,
and MAP (Järvelin et al. 2002), which are used to evalu-
ate the performance of ranking results. The loss functions
can mainly be divided into three categories with different
motivations and formulations (Chen et al. 2009). The point-
wise loss considers the absolute correlation of a single re-
turned result under a given query. The pairwise loss con-
siders the relative correlation between two results under a
certain query. The listwise loss considers the list of output
results, and directly optimizes the whole list to make it as
close to the best ranked list as possible.

Self-supervised Learning
Self-supervised learning (SSL) has made great development
in the past years. It aims to learn transferable embeddings
without relying on manual annotations and can be used for
various downstream tasks as pre-training. The supervisory
signals come from diverse well-designed pretext tasks, in-
cluding colorization (Zhang et al. 2017), rotation prediction
(Gidaris et al. 2018), and clustering (Caron et al. 2018).
Lately, contrastive based self-supervised methods (He et al.
2020) achieve strong performances close to the supervised
baseline. They train models by reducing the distance be-
tween representations of augmented views of the same im-
age (as positive pairs) and increasing the distance between
representations of different augmented views from different
images (as negative pairs). They focus on the semantic rela-
tionship of pairwise images and have common ground with
metric learning methods. Besides, it’s has been proved that
SSL is effective for some specific problems such as semi-
supervised learning (Zhai et al. 2019) and crowd counting
(Liu et al. 2019). Inspired by this, researchers start to make
use of SSL for metric learning (Roth et al. 2019; Wang
et al. 2020), which further enhance the discrimination of
inter-class variance. In contrast, our framework uses the self-
supervised method to measure and learn intra-class variance.

Proposed Method
First we introduce the preliminaries of deep metric learning.
Let X = {x1, ..., xK} denotes a set of training images in
the original RGB space, and yi is the corresponding label
of xi, yi ∈ [1, 2, . . . , C]. The deep metric learning models
are comprised of two networks: a representation encoder fθ
and a head encoder qθ with θ the parameters. fθ is a Con-
volutional Neural Network(CNN) with global pooling and
qθ is a fully-connected layer. Through these networks, we
can get two-stage embeddings, hi = fθ(xi) ∈ RF and
zi = qθ(hi) ∈ RD. The goal of deep metric learning is
to learn fθ and qθ jointly such that embeddings of similar
images, zi, are close to each other while those of dissimi-
lar ones are far apart. Formally, the distance between two

images xi, xj in the embedding space is defined as dE(, ):

dE(xi, xj) = d(zi, zj) = ‖zi − zj‖2 . (1)

where d(, ) is the Euclidean distance and various kinds of
loss functions can be used to learn the embeddings.

Measure of Intra-class Variance
Definition of intra-class variance Intra-class variance is
the diverse visual representations of the semantic similar ob-
ject such as scale, color, viewpoint, and so on. It is fine-
grained detail changes under the certain class contrast to
inter-class variance. Given an image x, its positive sample
xp ∈ Xp and negative sample xn ∈ Xn, the intra-class and
inter-class variances are defined as dE(x, xp) and dE(x, xn)
respectively. Most existing methods focus on increasing the
margin between dE(x, xp) and dE(x, xn), so as to ensure
the following constraint hold:

max
xp∈Xp

dE(x, xp) < min
xn∈Xn

dE(x, xn). (2)

Here we take Triplet loss (Schrof et al.2015) as an example,
since it is a fundamental part of many loss functions (Sohn
2016; Wu et al. 2017; Wang et al. 2019a):

Lmetric(Ltriplet) = [dE(x, xp)− dE(x, xn) + α]+, (3)

where [x]+ means max(0, x). Triplet loss makes the anchor
point x closer to positive points xp than other negative points
xn by a margin α (ya = yp 6= yn), thus only inter-class
variance (margin between difference classes) is optimized,
while the intrinsic intra-class variance is ignored. For a im-
age x with its positives xp1, xp2, to learn better representa-
tions, z, zp1, zp2, in the embedding space, it is desirable that
the following constraint also hold (Zhang et al. 2014):

if dM (x, xp1) < dM (x, xp2), then d(z, zp1) < d(z, zp2).
(4)

where dM is the measure of intra-class variance in the orig-
inal image domain. Eq (4) means the relationships between
intra-class variance, e.g., relative rankings, in the embedding
space are consistent with those in the original image domain.
Current human-labeled signal, e.g., class label or pairwise
label, treats images from the same category equally, i.e., two
images are similar, it not able to further distinguish between
similar images. To find a proper metric dM to quantify the
intra-class variance, we start with the help of self-supervised
learning strategy.

Simulative transform functions Specifically, we define a
general transform function Tn, which simulates the various
changes of intra-class properties, n is a positive integer and
represents transformation intensity, where a larger n indi-
cates a larger quantitative variance:

Tn = {TI | Tscale, Tcolor, Tviewpoint, ...}, (5)
Tn is an expandable set for any proper transforms TI

and the controllable Tn can quantify intra-class variance and
measure them approximately. For image x and two positive
integer i, j, we hold:

if i < j, then dM (x, Ti(x)) < dM (x, Tj(x)). (6)
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Figure 3: Examples of intra-class variance and relevant
transform functions. Including various changes of (a) scale,
(b) viewpoint, and (c) color, corresponding to Random Crop,
Perspective Transform, and Color Jitter respectively.

We choose three representative intra-class variances and
relevant transforms to compose final transform Tn ⊆ Tn.
First we choose the spatial transform random crop (with re-
sizing) to reflect diverse scales, as shown in Fig. 3(a). Iij
means the RGB value of image I in position (i, j),Rn is the
cropped region whose size is inversely proportional to n.

T cropn (I) = Iij · I(i,j)∈Rn
, (7)

Then we use the perspective transform to imitate the vari-
ety of viewpoint, as shown in Fig. 3(b). n reflects the distor-
tion scale which can be determined by the relative distance
between start-points and end-points. I = (Ix, Iy, Iz) means
the original coordinate, and An is coefficients matrix:

T ptn (I) = An · I, (8)

In addition, we apply the appearance transformation,
color jitter, which randomly and sequentially changes the
brightness, contrast, and saturation of an image to express
the various color distributions, as shown in Fig. 3(c). n re-
flects adjusting factor to control the jitter range:

T colorn (I) = CJn(I; bri, con, sat), (9)

Finally, we cascade the above transforms into a complete
transform function Tn to generate intra-class variance.

Tn = T cropn ∗ T ptn ∗ T colorn . (10)

Self-supervised Ranking Framework
Now we introduce our self-supervised ranking auxiliary
framework. First, we uniformly sample an image x from X .
With the transform function Tn, we get a number of aug-
mented views from x by applying the transform with differ-
ent strength: {vn = Tn(x)}Nn=0, where T0(x) = x and larger
n indicates larger transform strength. Then we use the same
backbone network fθ to encode images and a multi-layer
perception (MLP) gθ to establish a new embedding space.
So we get corresponding embeddings hn = fθ(vn) ∈ RF
and z′n = gθ(hn) ∈ RD, as shown in Fig 2.

For embeddings z′n from different augmented views vn, it
is required that the embedding of the original image x, z′0,
should be closer to the embeddings of augmented views with
lower strength than those with higher strength, which is:

if i < j, then d(z′0, z
′
i) < d(z′0, z

′
j). (11)

This ranking preserving objective is formulated based on the
pairwise ranking loss (Schrof et al.2015). Without loss of
generality, we use similarity S(, ) in our following introduc-
tion. The similarity of a image pair with weaker augmenta-
tions should be larger than that with stronger augmentations
in the embedding space by a fixed margin α.

Lbase =
[
S(z′0, z

′
j)− S(z′0, z′i) + α

]
+
, when i < j.

(12)
Then we use the listwise ranking loss to integrate all aug-
mented views:

Llist =
1

N − 1

N−1∑
n=1

[S(z′0, z
′
n+1)− S(z′0, z′n) + α]+, (13)

In a mini-batch, we denote the m-th image as xm (m =
1, 2, ...,M ) and the related augmented views as vm,n. Be-
sides, we use LogSumExp and SoftPlus functions to smooth
Eq. (13). After summing over all xm, Llist becomes:

Lsort =
1

M

M∑
m=1

1

s
log[1 +

N−1∑
n=1

es(−Sm,n+Sm,n+1+α)].

(14)
where Sm,n is S(z′m,0, z

′
m,n) and s is the scale factor.

Eq. (13) has a limitation that gradients are fixed, the value
is ±1 when a training pair violates the constraint and 0 oth-
erwise. The loss cannot mine any informative sample pairs
(Wang et al. 2019a) and leads to the trivial samples (Wang
et al. 2019b) during training. By contrast, the gradient of Eq.
(14) is weighted according to the relative hardness, which is
the degrees of strength that a pair violates the constraint. As
shown in Eq. (15), a harder pair can get larger gradient mag-
nitude, where hm,n = es(−Sm,n+Sm,n+1+α).

∂Lsort
∂Sm,n

=
hm,n−1 − hm,n
1 +

∑N−1
j=1 hm,j

. (15)

Meanwhile, since vm,n is generated by certain transfor-
mations, it is still a positive sample of image xm. Therefore,
we should add the constraint for positive pairs to ensure
Sm,n is larger than a boundary β. We also use the smooth
version of the pointwise loss (Yi et al. 2014) to control the
relative hardness:

Lpos =
1

M

M∑
m=1

1

s
log[1 +

N∑
n=1

e−s(Sm,n−β)]. (16)

With the weighted sum of Eq (14) and Eq (16), where λ
controls the balance, we reach the self-supervised list-wise
ranking loss:

Lranking = Lsort + λLpos, (17)

Our auxiliary framework is independent of the choice of
metric learning losses, which is explained in Section 3.1. We
just incorporate Eq. (17) into Eq. (3) and train the entire net-
work (fθ, gθ, qθ). The overall objective Lmakes up of a gen-
eral metric learning loss and our proposed self-supervised
ranking learning loss, where γ weights the importance. The
whole training procedure is outlined in Alg. 1.

Lmulti−task = Lmetric + γLranking. (18)

1373



Algorithm 1 Model training process with our method

Input:
images X , class labels Y ,
neural networks fθ, gθ, qθ,
hyper-parameters α, β, s, λ, γ, ptask

Output:
network parameters θ (θf , θg, θq)

epoch← 0
while Not Converged do

repeat
x, y ←MiniBatch(X,Y )
z ← Embedding(x; fθ, qθ)
Compute Lmetric(z, y)
θf , θq ← Backward(Lmetric)
if p < ptask, p ∼ U(0, 1) then
vn ← Tn(x)
z′n ← Embedding(vn; fθ, gθ)
Compute Lranking(z′n)
θf , θg ← Backward(Lranking)

end if
until Epoch End
epoch← epoch+ 1

end while

Discussion
Since we hold on an auxiliary self-supervised task for train-
ing, the extra runtime and computation cost need to be con-
sidered objectively. Our proposed ranking loss, Lranking ,
belongs to general pair-based loss, which usually has high
computational complexity, e.g., O(M2) for Contrastive loss
(Chopra et al. 2005) and Triplet loss (Schrof et al. 2015) with
sampling strategies, O(M3) for Lifted Structure (Oh Song
et al. 2016) and N-pair (Sohn 2016), with mini-batch size
M . By contrast, the complexity of Lranking is only O(M),
as the number of transformations is limited (4 in our exper-
iments). Low time consumption and fast convergence speed
are advantageous in the training stage.

Meanwhile, our training stage alternates between the met-
ric learning task and the self-supervised task. The latter re-
quires extra forward/backward processes and parameters for
the model. In fact, we execute the auxiliary optimizing pro-
cess by proper probability ptask every iteration thus the ad-
ditional runtime is acceptable. The parameters of the MLP
gθ are negligible, as compared with the backbone network.
It is also worth noting that our method does not increase pa-
rameters and runtime in the inference stage.

Last but not least, as compared with other multi-task aux-
iliary method MIC (Roth et al. 2019), we don’t use extra op-
eration modules, like gradient reversal layer, which brings
performance instability and parameter complexity.

Implementation Details
We use PyTorch (Paszke et al. 2019) to implement our
method on a single GTX 1080Ti GPU with 11GB mem-
ory. ResNet50 (He et al. 2016) with Global Max Pooling
pretrained on ImageNet (Russakovsky et al. 2015) is used

as backbone network fθ. We replace last layer with a ran-
domly initialized fully-connected layer qθ for metric learn-
ing. Besides, an MLP with a 512-dim hidden layer gθ is
added to solve the self-supervised task. The output embed-
dings are L2 normalized when computing similarity and the
dimension (D) is 128 or 512. The input images are first
resized to 256 × 256, then cropped to 224 × 224. For
training, we use random crop and random horizontal flips
for data augmentation. For testing, we only use the single-
center crop. We use AdamW (Loshchilov et al. 2017) opti-
mizer with 4e−4 weight decay and 120 batch size. The ini-
tial learning rate is 10−4 and scaled up 10 times on output
layers for faster convergence. Mini-batches are constructed
with the balanced sampler. The hyper-parameters setting is:
α = 0.05, β = 0.5, s = 12, λ = 1.0, γ = 0.8, ptask =
0.8,M = 20, N = 4. We evaluate our framework on three
metric learning losses, Triplet loss (Schrof et al. 2015), Mar-
gin loss (Wu et al. 2017), MS loss (Wang et al. 2019a),
whose parameters are the default.

Experiments
Given a query, retrieval can be separated into two stages, first
distinguishes positive neighbors, then ranks them according
to the degree of similarities. We evaluate the performances
of our method in terms of retrieving and ranking.

Datasets
We evaluate our proposed method on three widely-used
datasets following the standard protocol (Oh Song et al.
2016). (1) CUB-200-2011 (CUB) (Wah et al. 2011) contains
11,788 images of 200 species of birds. We use 5,864 images
of its first 100 classes for training and 5,924 images of the
remaining classes for testing. (2) Cars-196 (Cars) (Krause
et al. 2013) contains 16,185 images of 196 car models. We
use 8,054 images of its first 98 classes for training and 8,131
images of the other classes for testing. (3) Stanford Online
Products (SOP) (Oh Song et al. 2016) contains 120,053 on-
line product images of 22,634 categories sold on eBay.com.
We use 59,551 images of 11,318 classes for training and
60,502 images of the rest for testing.

Comparison on Retrieving Results
First, we evaluate the retrieval performance of our method
in terms of Recall@K and NMI (Schütze et al. 2008). Our
framework can help models discriminate inter-class variance
because local structures of the embedding space are fully ex-
ploited and the process is stimulative to learn class-related
boundaries. Tab. 1 show that our method brings considerable
improvement. Triplet (Schrof et al. 2015) and Margin loss
(Wu et al. 2017) get surprising promotions with our frame-
work, 3%-6% R@1 gains on all datasets. MS loss (Wang
et al. 2019a) also obtains a 4% gain on Cars. In a word, our
model is a universal auxiliary framework for deep metric
learning regardless of images category and loss functions.

We also compare our approach with the state-of-the-art
deep metric learning methods. We list the performances with
corresponding configurations since the backbone and em-
bedding dimension (generally, larger is better) can affect
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CUB-200-2011 Cars-196 Stanford Online Products
Method Dim R@1 R@2 R@4 R@8 NMI R@1 R@2 R@4 R@8 NMI R@1 R@10 R@100 R@1000 NMI
Triplet (Schrof et al. 2015) 64 42.6 55.0 66.4 77.2 55.4 51.5 63.8 73.5 82.4 53.4 66.7 82.4 91.9 - 89.5
Triplet (ReImp) 128 59.6 71.2 80.9 88.3 65.5 69.7 79.5 86.5 91.5 61.7 73.5 86.8 94.4 98.1 89.2
Ours (Triplet) 128 62.4 73.1 82.8 89.4 67.6 73.3 82.0 88.2 92.5 64.2 75.8 88.6 95.2 98.3 89.7
Margin (Wu et al. 2017) 128 63.6 74.4 83.1 90.0 69.0 79.6 86.5 91.9 95.1 70.3 72.7 86.2 93.8 98.0 90.7
Margin (ReImp) 128 63.4 75.0 84.2 91.0 68.8 79.5 87.5 92.4 95.5 68.0 74.6 87.6 94.6 98.2 89.3
Ours (Margin) 128 66.5 76.8 85.5 91.0 69.7 84.5 90.2 93.7 96.1 70.1 77.9 89.5 95.4 98.4 90.1
MS (Wang et al. 2019a) 64 57.4 69.8 80.0 87.8 - 77.3 85.3 90.5 94.2 - 74.1 87.8 94.7 98.2 -
MS (ReImp) 128 63.3 74.8 83.7 90.3 67.8 81.6 89.0 93.6 96.4 69.8 77.2 89.4 95.5 98.5 89.9
Ours (MS) 128 65.6 76.5 85.2 90.8 69.4 85.5 91.4 94.7 97.0 70.5 78.1 89.7 95.6 98.5 90.2

Table 1: Retrieval accuracy on three standard datasets. ReImp indicates our re-implementation with official codes and settings.
We use ResNet50 (He et al. 2016) as backbone and 128 as embedding dimension.

CUB-200-2011 Cars-196 Stanford Online Products
Method Setting R@1 R@2 R@4 R@8 NMI R@1 R@2 R@4 R@8 NMI R@1 R@10 R@100 R@1000 NMI
HDC (Oh Song et al. 2017) G384 53.6 65.7 77.0 85.6 - 73.7 83.2 89.5 93.8 - 69.5 84.4 92.8 97.7 -
A-BIER (Opitz et al. 2018) G512 57.5 68.7 78.3 86.2 - 82.0 89.0 93.2 96.1 - 74.2 86.9 94.0 97.8 -
ABE (Kim et al. 2018) G512 60.6 71.5 79.8 87.4 - 85.2 90.5 94.0 96.1 - 76.3 88.4 94.8 98.2 -
XBM (Wang et al. 2020) G512 61.9 72.9 81.2 88.6 - 80.3 87.1 91.9 95.1 - 77.4 89.6 95.4 98.4 -
HTL (Ge 2018) BN512 57.1 68.8 78.7 86.5 - 81.4 88.0 92.7 95.7 - 74.8 88.3 94.8 98.4 -
RLL-H (Wang et al. 2019b) BN512 57.4 69.7 79.2 86.9 63.6 74.0 83.6 90.1 94.1 65.4 76.1 89.1 95.4 - 89.7
SoftTriple (Qian et al. 2019) BN512 65.4 76.4 84.5 90.4 69.3 84.5 90.7 94.5 96.9 70.1 78.3 90.3 95.9 - 92.0
Circle (Sun et al. 2020) BN512 66.7 77.4 86.2 91.2 - 83.4 89.8 94.1 96.5 - 78.3 90.5 96.1 98.6 -
MIC (Roth et al. 2019) R128 66.1 76.8 85.6 - 69.7 82.6 89.1 93.2 - 68.4 77.2 89.4 95.6 - 90.0
Divide (Sanakoyeu et al. 2019) R128 65.9 76.6 84.4 90.6 69.6 84.6 90.7 94.1 96.5 70.3 75.9 88.4 94.9 98.1 90.2
PADS (Roth et al. 2020) R128 67.3 78.0 85.9 - 69.9 83.5 89.7 93.8 - 68.8 76.5 89.0 95.4 - 89.9
RaMBO (Rolı́nek et al. 2020) R512 63.5 74.8 84.1 90.4 - - - - - - 77.8 90.1 95.9 98.7 -
Ours (Margin) R128 66.5 76.8 85.5 91.0 69.7 84.5 90.2 93.7 96.1 70.1 77.9 89.5 95.4 98.4 90.1
Ours† (Margin) R512 68.2 78.1 86.5 91.6 70.3 87.7 92.5 95.4 97.3 72.1 78.6 90.6 96.2 98.7 90.5

Table 2: Comparison with the state-of-the-art deep metric learning methods. Backbone networks of the models are denoted by
abbreviations: G–GoogleNet (Szegedy et al. 2015), BN–Inception (Ioffe et al. 2015), R–ResNet50 (He et al. 2016). Superscripts
in the networks denote embedding sizes. † indicates models using larger embedding size (512).

Method CUB Cars SOP
MAP RP MAP RP MAP RP

Contrastive (Chopra et al. 2005) 32.9 34.5 32.5 34.0 42.6 41.7
N-pair (Sohn 2016) 31.2 32.6 30.3 31.9 38.8 38.2
ProxyNCA (Attias et al. 2017) 33.0 34.6 31.2 33.1 43.0 42.2
Triplet-semi (Schrof et al. 2015) 31.4 33.1 29.7 31.5 41.2 40.5
Margin (Wu et al. 2017) 32.9 34.6 33.4 34.8 44.6 43.8
MS (Wang et al. 2019a) 32.7 34.4 34.1 35.6 45.2 44.3
Ours (Margin) 33.6 35.1 36.6 37.5 45.4 44.5
Ours (MS) 32.9 34.6 37.0 38.0 45.7 44.9

Table 3: Ranking accuracy on three datasets. All of the meth-
ods use the setting R128 for a fair comparison.

performances greatly. Tab. 2 demonstrates that our method
outperforms state-of-the-art methods on all datasets. For ex-
ample, it surpasses current loss functions, e.g., SoftTriple
(Qian et al. 2019), RLL-H (Wang et al. 2019b) and Circle
(Sun et al. 2020) by 2% - 4% in Recall@1.

When compared with other boost-like methods with the
same backbone (R128) and baseline loss (Margin loss), our
approach still gets better promotion and generalization. For
example, we achieve a higher performance than Divide
(Sanakoyeu et al. 2019) by 65.9% → 66.5% on CUB, and
outperform MIC (Roth et al. 2019) by 82.6% → 84.5% on
Cars and PADS (Roth et al. 2020) by 76.5% → 77.9% on
SOP. It is worth noting that, despite our method uses 128-
d embeddings, it still gets better results than some state-
of-the-art ensemble methods with 512-d embeddings, such
as A-BIER (Opitz et al. 2018), ABE (Kim et al. 2018) and
RaMBO (Rolı́nek et al. 2020).
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Figure 4: Precision-Recall curves for retrieval. All of the
methods use the setting R128 for a fair comparison.

Comparison on Ranking Results
Now we evaluate the performances with Precision-Recall
curve, Mean Average Precision (MAP) and R-Precision
(RP) as metrics, which are more informative and rational to
measure ranking accuracy. These protocols have been men-
tioned in recent work (Musgrave et al. 2020, Fehervari et al.
2019). Tab. 3 and Fig. 4 show our model improves the rank-
ing performances when compared to other methods, which
confirms the effectiveness in learning intra-class variance.
There are lots of samples in every class on CUB and Cars
datasets, hence their intra-class variances are abundant and
the ranking improvements are impressive. However, SOP
has a few examples under each class, the capture of intra-
class features is not sensitive for retrieval, which leads to
little gain with our method.

Qualitative results are illustrated in Fig. 5. Our method
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Query Margin baseline Ours (Margin)

(a)

(b)

(c)

Figure 5: Qualitative retrieval results with or without our
method on Margin loss (Wu et al. 2017). (a), (b), (c) is for
CUB, Cars, SOP datasets respectively. For each query image
(leftmost), top-5 retrieval results are presented with left-to-
right ranking according to relative distances. Correct results
are highlighted with green, while incorrect red.
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Figure 6: Impact of hyper-parameters. We evaluate two cru-
cial hyper-parameters by R@1 results, ranking margin α (in
Lsort) and positive boundary β (in Lpos).

promotes models to learn more robust embeddings by cap-
turing intra-class variance. Now the new embeddings can
help to retrieve images correctly and also keep their relative
rankings while the original baseline fails, especially when
there are misleading poses (Fig. 5a) or colors (Fig. 5b).

Ablation Study
We provide ablation experiments to verify the effectiveness
of our method and evaluate the contribution of different
modules. We choose Margin loss (Wu et al. 2017) and train
models on CUB and Cars datasets.

Hyper-parameters In Fig. 6, we show the impact of two
important hyper-parameters, α, β. When one is variable, the
other is fixed as the default setting for controlled experi-
ments. As the boundary of positive pairs, β can’t be too
large or small otherwise the performances drop heavily. And
the performances are stable when α is changed in a proper
range. Note that the setting in Section is not best since we
did not tune them elaborately according to the test set.

Transform functions Self-supervised learning methods
are sensitive to the choice of image augmentations (He et al.
2020; Chen et al. 2020), so we assess the impact of trans-
form functions for our model. As shown in Fig. 7, the per-

-4

-3

-2

-1

0
CUB
Cars

D
ec

re
as

e 
of

R
@

1 
 fr

om
 b

as
el

in
e

Figure 7: Impact of removing transform. Decrease of R@1
when we remove three transform functions gradually, (ran-
dom) crop, color (jitter), perspective (transform).

Lsort Lpos gθ CUB Cars
63.6 79.6

X 61.9 78.3
X 60.7 76.5
X X 62.5 79.4

X X 64.3 82.3
X X 65.8 84.0
X X X 66.5 84.5

Table 4: Contributions of different modules. The R@1 re-
sults of multiple combinations. ‘X’ means retaining the cor-
responding modules on our framework otherwise removing.

formance of our method drops when we remove the spe-
cific transform functions or their combinations. Especially
the random crop is the most important transform function
for the best result, as a common data augment in training net-
works. Then the color jitter and perspective transform take
the second and third place respectively.

Framework modules In order to analyze the effectiveness
of different modules, i.e., Lsort, Lpos and gθ, we evaluate
our framework with different compositions. Tab. 4 shows
that these modules are complementary. When only Lsort or
Lpos is incorporated into the self-supervised learning pro-
cedure, the performances even get worse. By contrast, the
combination of the two can help to learn better embeddings,
and the best result comes with the incorporation of all mod-
ules. We also find that Lsort is most important and Lpos, gθ
can further enhance its effect.

Conclusion

This work presents a novel self-supervised ranking auxil-
iary framework on deep metric learning. We define the stan-
dard form of intra-class variance and present relative trans-
form function to measure them. A specific network and ob-
jective are developed to preserve the corresponding ranking
information in the embedding space, which helps to learn
more discriminative embeddings. Experimental results show
that our approach significantly improves the baselines on re-
trieval and ranking tasks, and outperforms state-of-the-art
methods on all benchmarks.

1376



Acknowledgments
This work is supported by the National Natural Science
Foundation of China (grant No.U19A2057, No.61525206,
No.61876223), the National Key Research and Develop-
ment Program (grant No. 2020YFB1406603), the Funda-
mental Research Funds for the Central Universities (grant
No.WK3480000008).

References
Caron, M.; Bojanowski, P.; Joulin, A.; and Douze, M. 2018.
Deep clustering for unsupervised learning of visual features.
In Proceedings of the European Conference on Computer
Vision (ECCV), 132–149.

Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020.
A simple framework for contrastive learning of visual repre-
sentations. arXiv preprint arXiv:2002.05709 .

Chen, W.; Liu, T.-Y.; Lan, Y.; Ma, Z.-M.; and Li, H. 2009.
Ranking measures and loss functions in learning to rank. In
Advances in Neural Information Processing Systems, 315–
323.

Chopra, S.; Hadsell, R.; and LeCun, Y. 2005. Learning a
similarity metric discriminatively, with application to face
verification. In 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), vol-
ume 1, 539–546. IEEE.

Deng, J.; Guo, J.; Xue, N.; and Zafeiriou, S. 2019. Arcface:
Additive angular margin loss for deep face recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 4690–4699.

Fehervari, I.; Ravichandran, A.; and Appalaraju, S. 2019.
Unbiased evaluation of deep metric learning algorithms.
arXiv preprint arXiv:1911.12528 .

Ge, W. 2018. Deep metric learning with hierarchical triplet
loss. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 269–285.

Gidaris, S.; Singh, P.; and Komodakis, N. 2018. Unsuper-
vised Representation Learning by Predicting Image Rota-
tions. In International Conference on Learning Representa-
tions.

He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. 2020.
Momentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 9729–9738.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.

Ioffe, S.; and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167 .

Jacob, P.; Picard, D.; Histace, A.; and Klein, E. 2019. Metric
learning with horde: High-order regularizer for deep embed-
dings. In Proceedings of the IEEE International Conference
on Computer Vision, 6539–6548.
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