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Abstract
In this paper, we focus on the challenging few-shot class-
incremental learning (FSCIL) problem, which requires to
transfer knowledge from old tasks to new ones and solves
catastrophic forgetting. We propose the exemplar relation dis-
tillation incremental learning framework to balance the tasks
of old-knowledge preserving and new-knowledge adaptation.
First, we construct an exemplar relation graph to represent
the knowledge learned by the original network and update
gradually for new tasks learning. Then an exemplar relation
loss function for discovering the relation knowledge between
different classes is introduced to learn and transfer the struc-
tural information in relation graph. A large number of ex-
periments demonstrate that relation knowledge does exist in
the exemplars and our approach outperforms other state-of-
the-art class-incremental learning methods on the CIFAR100,
miniImageNet, and CUB200 datasets.

Introduction
To date, deep Convolutional Neural Networks (CNNs) have
achieved superior performances in a large number of com-
puter vision and pattern recognition tasks (He et al. 2020;
Tao et al. 2020; Krizhevsky, Sutskever, and Hinton 2012; He
et al. 2015; Deng et al. 2009). Currently, the universal ap-
proach is to learn a model on a large amount of data, which
is usually fixed and can not change in line with the needs of
users. Practical artificial intelligence models are supposed
to adapt to the ever-changing world. For example, they can
continuously learn new tasks without forgetting tasks that
they have learned before. Thus, incremental learning (i.e.,
continuous learning, or lifelong learning) has attracted much
attention due to the ability to perform continuous model
learning in a wide range of practical applications. The sce-
narios of incremental learning can be briefly divided into
the class-incremental (Rebuffi et al. 2017; Tao et al. 2020a;
Chang et al. 2021) and the task-incremental (Rajasegaran
et al. 2020) ones. This paper mainly focuses on the former
one.

Most of the class-incremental learning (CIL) ap-
proaches (Rebuffi et al. 2017; Castro et al. 2018; Hou et al.
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Figure 1: Comparisons of two different knowledge trans-
fer techniques: The individual knowledge distillation (IKD)
transfers the knowledge point to point (original output to
new output) while the relation knowledge distillation (RKD)
transfers the structural relations (e.g., adjacency) of the out-
put.

2019) learn new tasks from large scale training samples with
annotations. However, in practice, it is expensive and infea-
sible to continuously label a steady stream of data. As a re-
sult, it is more realistic that only very small amounts of sam-
ples with annotations are available. Therefore, in this paper,
we focus on this few-shot class-incremental learning (FS-
CIL) (Tao et al. 2020b) problem which is challenging but
has great application prospects.

Knowledge distillation is a common and effective ap-
proach to transfer knowledge from an old network to a new
one in CIL (Gou et al. 2020). For example, some early
CIL approaches (Rebuffi et al. 2017; Castro et al. 2018)
distill the original model’s soft targets directly into a new
one on the output layer to preserve old knowledge. In addi-
tion, the responses of the penultimate feature layer are also
used as the knowledge to guide the training of the new task
model (Hou et al. 2019; Tao et al. 2020b). All these methods
belong to the individual knowledge distillation (IKD) ap-
proaches (Park et al. 2019), which only focus on preserving
isolated points in the feature (or output) space. Concretely,
the IKD method only constrains the differences between the
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responses of the original network and the one learned in the
new task for individual exemplars. As a result, the mutual
relations of points, which are important to many artificial in-
telligence applications such as image classification and class
incremental learning, are inevitably ignored.

Clearly, there is a wealth of relational information be-
tween exemplars. For example, a cat is usually more similar
to a dog, than a car. Such relations can serve as useful priors
for learning in sequential tasks. Thus, it provides a more ef-
fective way to constrain not only the locations of exemplars
in the feature space but also their relations for the few-shot
CIL problem.

Motivated by this observation, we propose a novel few-
shot CIL framework, termed the exemplar relation distil-
lation incremental learning (ERDIL). ERDIL uses an ex-
emplar relation graph (ERG) to comprehensively explore
the relations information of exemplars from the old tasks
and leverages the graph-based relational knowledge distilla-
tion to effectively transfer old knowledge to the CNN model
for new tasks learning. More specifically, ERG is made up
of selected typical exemplars of old tasks as vertices and
the edges linking vertices. The edges of ERG are weighted
by the angles between the chosen exemplars. We first pro-
pose a novel degree-based exemplars selection mechanism
to construct the directed ERG. Then an exemplar relation
loss function is designed to transfer the comprehensive rela-
tional information embedded in the ERG for new task learn-
ing. Finally, we also introduce a metric learning loss term
to avoid the ambiguities problem between old and new class
data (Hou et al. 2019).

We perform extensive experiments on three commonly
used FSCIL datasets including CIFAR100 (Krizhevsky and
Hinton 2009), miniImageNet (Vinyals et al. 2016a), and
CUB200 (Wah et al. 2011). Our ERDIL framework greatly
improves the performance in terms of the accuracy. The ex-
perimental results successfully demonstrate that utilizing the
relations between exemplars in the ERG is helpful for better
preserving old knowledge. To summarize, our main contri-
butions include:

• We propose to constrain the relation of exemplars, rather
than their absolute positions for few-shot incremental
learning and put forward a novel relation knowledge dis-
tillation based FSCIL framework.

• We propose a degree-based graph construction algorithm
to model the relation of the exemplars.

• We make comprehensive comparisons between the pro-
posed method with the state-of-the-art FSCIL methods
and also regular CIL methods.

Related Work
Multi-task Incremental Learning
Multi-task incremental learning has explored a variety of
strategies to prevent networks from forgetting previously
learned tasks. Generally, the literature deals with this prob-
lem from the following three perspectives: (1) architectural
approaches: improving the network architecture, such as dy-
namic expansion, network pruning, and parameter masking

methods to reduce forgetting (Mallya and Lazebnik 2018;
Mallya, Davis, and Lazebnik 2018; Serrà et al. 2018; Yoon
et al. 2017). (2) Rehearsal approaches which periodically re-
play the memory for the past experiences of the old tasks and
constrain their losses during training the new tasks (Lopez-
Paz et al. 2017; Chaudhry et al. 2018; Shin et al. 2017; Wu
et al. 2018). (3) Regularization approaches that constrain the
network parameters, loss, and output logits update by the
learned knowledge (Li and Hoiem 2018; Kirkpatrick et al.
2017; Zenke, Poole, and Ganguli 2017; Lee et al. 2017).

However, the multi-task methods are based on task-level
where the network’s neural resources are allocated to each
task correspondingly while in the scenario where the FSCIL
setting is single-task and multi-class. As a consequence, we
have to exclude them for comparison in the experiment.

Class-Incremental Learning
Class-Incremental Learning: Class-incremental learning
aims to learn a unified classifier for all the classes. Knowl-
edge distillation is a popular technique to solve the catas-
trophic forgetting problem. Those approaches usually store
the old class exemplars to compute the distillation loss. For
example, iCaRL (Rebuffi et al. 2017) maintains an ’episodic
memory’ to mitigate forgetting and uses the nearest-
neighbor classifier to learn the new classes. EEIL (Castro
et al. 2018) combines the cross-entropy and distillation loss
to end-to-end learning. CIL problem exists critical bias is-
sue (Hou et al. 2019) because of the imbalanced number of
training samples of old and new classes. LUCIR (Hou et al.
2019) adopts a cosine distance metric to reduce classifica-
tion layer bias and applies distillation to the feature space
rather than the output logits.

In short, different from the individual knowledge distilla-
tion CIL approaches, the proposed ERDIL framework al-
leviates forgetting by maintaining the relations of feature
space.
Few Shot Class-Incremental Learning: FSCIL setting is
first proposed in TOPIC (Tao et al. 2020b) which not only
focuses on overcoming the catastrophic forgetting prob-
lem but also focuses on incrementally learning new classes
from very few labeled samples. TOPIC proposed a single
neural gas (NG) network to learn feature space typologies
for knowledge representation, and preserves the stabiliza-
tion and enhances the adaptation by adjusting NG. Later,
FSC (Zhao et al. 2020) proposed a novel multi-model FS-
CIL method. They make the base knowledge space and new
task knowledge space integrate into one space, namely com-
posite representation space and achieves a very good perfor-
mance though NCM (Mensink et al. 2013) classifier training
the new tasks.

In short, our ERDIL framework can be applied to single-
model and multi-model FSCIL scenarios and achieve rela-
tively better performance.

Few-Shot Learning
Few-shot learning (FSL) requires the model to be very
adaptable to a small number of unknown novel samples.
At present, there are mainly two categories. Meta-learning
based approaches (Finn, Abbeel, and Levine 2017; Nichol
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and Schulman 2018): it typically involves an individual
meta-learner model that is given a few novel training sam-
ples of a new task and tries to quickly learn a learner
model that “solves” this new task. Metric-learning based
approaches (Snell, Swersky, and Zemel 2017; Sung et al.
2018): Metric learning approaches try to learn feature rep-
resentations that preserve the class neighborhood structure.
Recently, some FSL works (Gidaris and Komodakis 2018;
Ren et al. 2019) attempt to learn a unified model capable
of recognizing both the base and novel classes while those
are not able to keep learning new tasks because they rely on
the base class for sampling meta-learning tasks. As a con-
sequence, these few-shot learning works can not be directly
applied to FSCIL.

Knowledge Distillation

Knowledge distillation, as a typical model compression and
acceleration method, has attracted much attention from the
community by learning small student models from large
teacher models (Gou et al. 2020). Knowledge distillation
can be divided into three categories according to ‘knowl-
edge’. (1) Logits-based knowledge utilizes the final output
layer as supervision information to generate student net-
work (Hinton, Vinyals, and Dean 2015; Guo et al. 2020).
(2) Feature-based knowledge approaches: Feature layer as
intermediate representations is used to train the student net-
work (Romero et al. 2014; Zagoruyko and Komodakis 2016;
Heo et al. 2019). (3) Relation-based knowledge further ex-
plores the structures between different layers and data sam-
ples (Yim et al. 2017; Park et al. 2019; Ramakrishnan et al.
2020). Compared with these works, we focus on a more
difficult few-shot incremental learning problem where what
knowledge to transfer and how to effectively transfer knowl-
edge is equally important.

Methodology

In few-shot class-incremental-learning, a model learns tasks
continually. Each task contains a batch of new classes
and each class only contains a few samples with labels.
Concretely, the FSCIL setting is defined as follows. Ini-
tially, assume that there is a batch of labeled training tasks

X(1), X(2), · · · , where X(t) = {(x(t)
i , y

(t)
i )}|X

(t)|
i=1 , and C(t)

is the set of classes of the t-th training set. There is no
overlap between the categories of different tasks so that
∀i, j, C(i) ∩ C(j) = ∅. Only the training set of the first
taskX(1) has large-scale training data (a.k.a., the base task),
while other subsequent tasks X(t) (a.k.a., the new task) just
contains a few samples. The model is continually trained on
X(1), X(2), · · · with a unified classification layer. OnlyX(t)

is available at the t-th training session. After the training on
X(t) is done, the model is tested to recognize all encoun-
tered classes C(1), · · · , C(t). In the C-way K-shot FSCIL
setting (Tao et al. 2020b; Zhao et al. 2020), the number of
classes in C(t) is C and the number of training samples per
class is K for each X(t), t > 1.

Overall Framework
A deep neural network can be seen as a composition of a
feature extractor f(·; θ) with parameter set θ and a classifi-
cation head with parameter set φ, which produces the out-
put logits o(x; θ, φ) = φT f(·; θ). Let Θ = {θ, φ} denotes
the entire parameter set. Firstly, we train Θ(1) on X(1) with
the cross-entropy loss. Then we incrementally finetune the
model on X(2), X(3), · · · , and get Θ(2),Θ(3), · · · . At the t-
th task (t > 1), the output layer is expanded for new classes
by adding |C(t)| output neurons.

Our goal is to learn a new set of tasks while preserving
the model performance on the old tasks. To address this pur-
pose, we proposed the ERDIL framework. First, a novel se-
lection mechanism based on the degree is proposed to con-
struct the exemplar relation graph (ERG). ERG is made up
of those selected exemplars, which are the most typical ex-
emplars for characterizing the feature space of old tasks, and
the edges, which are weighted by the direction between the
chosen exemplars. Moreover, we design an exemplar rela-
tion loss function to transfer the comprehensive relational
information embedded in the ERG for new task learning. Fi-
nally, the feature map’s plasticity is maintained by the met-
ric learning loss term. Let Gt denote the exemplar relation
graph constructed by old class exemplars. The overall loss
function at the new task (t+ 1) is defined as:

`(X(t+1), G(t); Θ(t+1)) = `CE(X(t+1); Θ(t+1)) +

λ1`ERL(G(t); Θt,Θ(t+1)) + λ2`ML(X(t+1), G(t); Θ(t+1)),
(1)

The `CE is the standard cross-entropy loss in the classifica-
tion task. `ERL is the exemplar relation loss term applied to
G(t) and `ML is applied for X(t+1) and G(t) to enhance
the plasticity of model for training new task. The hyper-
parameter λ1 and λ2 are used for balancing the strength of
two loss terms. We elaborate our approach in the following
subsections.

Exemplar Selection for Exemplar Relation Graph
Generally, a main component for knowledge distillation
methods is randomly selected a set of exemplars from the old
classes to store and compute the distillation loss by these ex-
emplars. However, the randomly-selected exemplars can not
well represent data of different classes from the old network
in the FSCIL scenarios. Instead, we represent knowledge by
constructing the exemplar relation graph (ERG).

To construct the ERG, we first select the exemplars from
the base class training set as the vertices. Therefore, we pro-
pose a selection mechanism based on the degree. For each
class of the base class, we generate a nxn two-dimensional
matrix P where n is the number of exemplars and the P is
initialized to 0 at first.

Given the number of selected exemplars K. First, update
matrix P : The P (p, q) is set to 1 if vector p,q are k-nearest
neighbors to each other, or 0 otherwise. Second, degree se-
lection: Calculate the degree of all vertexes in the matrix,
dp =

∑w
q=1 P (p, q) where w is current total number of ex-

emplars. We assume that the neighbor exemplars with the
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same degree are similar so that if dp = dq and P (p, q) = 1,
delete the vertex p. The remaining exemplars form a new
matrix and repeat the above steps several times until the
number of exemplars is K.

As a result, each class only contains theK most represen-
tative exemplars to represent the class feature space. Com-
pared with randomly selection, we also removed similar re-
dundant exemplars. Then all these exemplars construct the
directed exemplar relation graph G = 〈V,E〉 where each
vertex vp ∈ V is the feature vector of an exemplar and the
edge epq is define as:

epq =
vp − vq
‖vp − vq‖2

. (2)

For the new class of exemplars, directly become the ERG’s
vertexes, and calculate the edges for them. Then we use Gt

in computing the relation loss as described in the following
sections.

Distilling Knowledge in Exemplar Relation Graph
In popular incremental learning approaches (Rebuffi et al.
2017; Castro et al. 2018; Hou et al. 2019; Tao et al. 2020b),
often store a certain amount of old class exemplars to con-
strain the training of Θ. There is a certain relation between
these old exemplars, even between the new task’s data. For
example, after learning about cats’ knowledge, it should be
easier to learn about dogs.

Given an exemplar relation graph Gt, we believe that the
relation knowledge distillation can transfer structural knowl-
edge using mutual relations of exemplars in the original’s
output presentation. The structural knowledge in Gt can be
divided into two categories, absolute relations, and relative
relations. The absolute relations is the distance formed by
the double vertexes in Gt and the relative relations is the an-
gle formed by the triplet vertexes (a pair edges) in Gt. In
incremental learning, we tend to maintain the relationship
between angle more than distance relations. First, the angle
relations are more flexible because when the angle relation-
ship remains unchanged, the overall scaling of the distance
will not destroy the integral feature space. Second, excessive
constraints on distance relations can influence the plasticity
of feature space which will limit the learning of new classes.
As a result, In our ERDIL framework, we will explore the
angle relations knowledge in Gt.
Exemplar Relation Loss: In the incremental problem set,
we have the feature extractor f(·; θ) and the original model
Θt. At each new task, we train the new task model Θt+1

on Xt+1. Given a triplet of vertexes in Gt, exemplar rela-
tion measures the angle formed by the three exemplars in
the output representation space. Those are used to compose
an exemplar relation function, A(Θt) for the original model
and A(Θt+1) for the new task model.

The original model A(Θt) is defined as:

A(p, q, z; Θt) = 〈epq,ezq〉, p, q, z ⊂ Gt

where epq =
vp − vq
‖vp − vq‖2

, ezq =
vz − vq
‖vz − vq‖2

, (3)

and similarly for A(Θt+1) as:

A(p, q, z; Θt+1) = 〈epq,ezq〉, p, q, z ⊂ Gt

where epq =
vp − vq
‖vp − vq‖2

, ezq =
vz − vq
‖vz − vq‖2

, (4)

〈·〉 is the inner product of two vectors. Exemplar rela-
tion function reflects the angular relationship of the feature
space, we hope this will remain unchanged in the new task
of model learning. For this we define a loss, called exem-
plar relation Loss (`ERL) which is the `p norm between two
relation function. The loss `ERL is given by

`ERL(Gt; Θt,Θt+1) = |A(Θt)−A(Θt+1)|p. (5)

The exemplar relation loss and exemplar relation graph
provide a strong learning signal for training the new network
without forgetting the original classes.

Metric Learning for Plasticity
As a commonly used technique, metric learning is widely
used in incremental learning methods (Tao et al. 2020b; Hou
et al. 2019; Yu et al. 2020). In this paper, we apply the
modified margin ranking loss for FSCIL problem to better
distinguish between old exemplars G(t) and new exemplars
X(t+1):

`ML(X(t+1), G(t);Θ(t+1)) =
∑

(x,y)∈X∪G

K∑
k=1

max(0,−f(x) + fk(x) + κ), (6)

where κ is the margin threshold, f(x) is the feature of x,
fk(x) is one of top-K the old class features chosen as hard
negatives for x.

Optimization
ERDIL integrates a CNN model and an exemplars relation
graph Gt, where Gt is used to preserve the CNN’s fea-
ture space manifold. Our CNN model is trained with the
minibatch stochastic gradient descent (minibatch SGD) al-
gorithm. It is less efficient to update the vertices of Gt at
each iteration, as the features obtained at intermediate train-
ing sessions have not been fully optimized. Therefore, we
update Gt after the training of CNN’s parameters Θt. Gt is
then used for the next new task (t+ 1).

Comparison with Individual Knowledge
Distillation Methods
In general, most of CIL (Li and Hoiem 2018; Rebuffi et al.
2017; Wu et al. 2019; Castro et al. 2018; Hou et al. 2019;
Tao et al. 2020b) works are to mitigate forgetting through
individual knowledge distillation.

For example, the work of iCaRL (Rebuffi et al. 2017; Cas-
tro et al. 2018) uses pre-softmax outputs (logits) for ot and
ot+1, which is the logits-based Knowledge, and puts soft-
max (with temperature τ ) to penalize the difference:
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`IKD1
(X,M) =

∑
(x,y)∈X∪M

n∑
k=1

−softmax(
ot(x)

τ
)

log (softmax(
ot+1(x)

τ
). (7)

CIL methods also utilize feature-based knowledge for
knowledge transfer (Hou et al. 2019). These approaches use
feature maps as the knowledge for f t and f t+1 to supervise
the training of the new task. For example, the feature-based
distillation loss can be summarized as:
`IKD2

(X,M) =
∑

(x,y)∈X∪M

(1− f t(x)T f t+1(x)). (8)

In the formulas 7 and 8, X is the training data of the current
t-th task and M is the stored exemplars come form original
tasks. The n =

∑t−1
i=1 |C(i)| is number of the old classes.

The t is the original model training on the parameter Θt

while t + 1 is the new task model training on the parame-
ter Θt+1, and τ is the distillation temperature (e.g., τ= 2).

The individual knowledge approach faces critical prob-
lems when applied to FSCIL. In addition to ignoring re-
lational knowledge, another problem is the contradiction
to balance the contribution between `DL and `CE , which
may result in a self-contradictory trade-off effect. Generally,
learning few-shot new tasks requires sufficient learning rate
and iteration times to minimize the `CE term, while a large
learning rate finetuning will damage the stability of the pre-
softmax outputs(logits) and cause the difficulty to minimize
`DL.

Based on the above considerations, our ERDIL abandons
the last output layer distillation term and adopt relation-
based knowledge methods to manipulate the knowledge
contained CNN’s feature space. The detailed experimental
comparisons are described in the following section.

Experiments
Experimental Setups
We conduct experiments on there image classification
datasets CIFAR100 (Krizhevsky and Hinton 2009),miniIma-
geNet (Vinyals et al. 2016a) and CUB200 (Wah et al. 2011).
These datasets are very popular in incremental learning (Re-
buffi et al. 2017; Tao et al. 2020b) and few-shot learning
(Vinyals et al. 2016b).
CIFAR100 dataset. CIFAR100 is labeled as a subset
of 80 million tiny image datasets collected by Alex
Krizhevsky (Krizhevsky and Hinton 2009). It contains
60,000 RGB images over 100 classes, with 500 images per
class for training and 100 images per class for testing. Each
image has a size of 32× 32.
miniImageNet dataset. The miniImageNet dataset is the
subset of ImageNet-1k (Deng et al. 2009) which contains
60,000 color images in 100 categories. Each class has 500
images for training and 100 images for testing. Each image
has a size of 84× 84. Compared with CIFAR100, the Mini-
Imagenet dataset is more complex and more suitable for pro-
totyping so that is often used by few-shot learning (Vinyals
et al. 2016b).

CUB200 dataset. CUB200 is a fine-grained dataset pro-
posed by California Institute of Technology in 2010 (Wah
et al. 2011), and is also the current benchmark dataset
for fine-grained classification and recognition research. It
contains 11788 bird images, including 200 bird categories,
among which there are 5994 images for training and 5794
images for testing. During training, the images are resized
to 256× 256 and then random cropped to 244× 224.
Evaluation protocol: We follow the evaluation protocols in
(Tao et al. 2020b) to process these datasets. For CIFAR100
and miniImageNet datasets, 60 classes as the base classes,
and the other 40 classes are equally divided for incremental
learning. We adopt the 5-way 5-shot setting so that we have
9 training tasks in total. While for the CUB200 dataset, we
adopt the 10-way 5-shot setting, by picking 100 classes as a
base class and choosing the other classes into 10 new learn-
ing tasks. For all datasets, we randomly pick 5 samples per
class from the original dataset for training set. At the same
time, the testing set still uses the original one, which is large
enough to ensure that generalization performance is evalu-
ated to prevent over-fitting.
Training details: All our models are implemented through
PyTorch and use ResNet18 or ResNet20 as our backbone
network. For CIFAR100 and miniImageNet, we trained the
basic model for 160 epochs using minibatch SGD with a
minibatch size of 128. The learning rate is initialized to 0.1,
and decreases to 0.01 and 0.001 at the 80 and 120 periods,
respectively. For the CUB200 dataset, we use pre-trained
ResNet18 and train the basic model with an initial learning
rate of 0.05. After 15 epochs, we reduce the learning rate to
0.005 and stop training in the period 20. For each new task,
we finetune our model with a learning rate of 1e−4 for 50
epochs for all three datasets. In the FSCIL setting, since the
new task contains very few training samples, we use them
all to construct mini-batches for incremental learning. For
data augmentation, we perform standard random cropping
and flipping as in (He et al. 2015; Hou et al. 2019) for all the
methods and add ColorJitter on miniImageNet.
Exemplars details: As for the strategy to preserve the sam-
ples for base classes, there are two usually ways. The first
way is considering a memory space with a fixed capacity.
For example, BOCL (Tao et al. 2020c) learns a fixed som
network notes for the base class and incrementally updates
it during the new tasks. The second way is storing a con-
stant number of samples for each class, and thus the size
of memory space grows with the number of the classes.
In this paper, we adopt the latter way for our experiments
(e.g Nper = 20 vs. Ntotal = 1400 on CIFAR100 and
miniImageNet,Nper = 5 vs. Ntotal = 1000 on CUB200).
Comparison details: For comparative experiments, we run
the representative CIL and FSCIL approaches in our FSCIL
setting, including the classics KD method: iCaRL (Rebuffi
et al. 2017) and state of the art FKD methods: LUCIR (Hou
et al. 2019) and TOPIC (Tao et al. 2020b). We compare our
method with them and report these results of CNN predic-
tions. While for FSC (Zhao et al. 2020), we found that is
a multi-model method and uses nearest-mean-of-exemplars
classification. We will compare their methods separately af-
ter the ablation study. To show the effectiveness of alleviat-
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ing forgetting, we directly finetune the CNN model for new
tasks without any less-forgetting techniques and we denote
it as ”Ft-CNN”. For the ”Joint-CNN”, we retrain the CNN
model at each task on a joint set of all encountered classes.
We use the abbreviation ”ours-ERL”,”ours-ERL++” to indi-
cate the applied loss terms during the incremental learning.

Comparison Results
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Figure 2: Comparison of the accuracies on CIFAR100 with
ResNet20 and miniImageNet with ResNet18.

We compare the proposed ERDIL framework with the state
of the arts on CIFAR100, miniImageNet, and CUB200 on
the FSCIL setting. As the 5-shot training samples are ran-
domly picked, we run all methods for 5 times and report
the average accuracies. The CIFR100 and miniImageNet
datasets’ results are shown in Figure 2. Besides, Table 1 re-
ports the test accuracies on CUB200. It can be summarized
as follows:
• On three datasets, our ERDIL outperforms all other meth-

ods and even surpasses the ”Joint-CNN” methods, which
is defined as the upper bound in (Tao et al. 2020b). Our
method is very stable and has a continuous superiority on
each new task.
1Noting that the results of comparative methods are higher than

those reported in (Tao et al. 2020b), as we use more exemplars and
different hyper-parameters settings.

• Our EKDIL methods based on relation knowledge distil-
lation better maintains the substructure in the ERG. ”our-
ERL” method is average 4.86% and 4.88% better than
the KD and FKD methods on the three datasets at end.

• On CIFAR100, EKDIL achieves the final accuracy
of 48.23%. In comparison, the iCaRL* and LUCIR*
achieves the accuracy of 41.22% and 42.88%. ERDIL
outperforms the two IKD methods by 7.01% and of
5.35%.

• On miniImageNet, EKDIL achieves the accuracy of
40.79% at end of the task while the IKD methods
achieves the accuracy of 38.99% and 38.46%. ERDIL
outperforms the second best one, iCaRL*, by up to
1.80%.

• On CUB200, ERDIL achieves the accuracy of
52.28% at end, which outperforms the KD methods
iCaRL*(41.43%) and FKD method LUCIR*(40.26%)
by up to 10.85% and 12.02%.

Ablation Study
The effect of different loss terms: We conduct ablation
studies to investigate each term’s contribution to the end
result gain. The experiments are performed on CIFAR100.
We research the impact brought by distillation loss (DL),
feature distillation loss (FDL) and our exemplars relation
loss (ERL). Besides, for ”ERL++”, as it consist of the met-
ric learning (ML) and new class exemplars (NCE) terms,
we evaluate the each terms’ performance separately. Table 2
reports the comparison results of different terms. We sum-
marize it as follows:

• The ”ERL” terms achieves the final accuracy, exceeding
”FDL” by up to 3.45% and ”DL” by up to 5.11%.

• For ”NCE” term, which uses all the few-shot exemplars
that have been trained in the previous tasks for training
the current task.

• Both ”ERL-ML” and ”ERL-NCE” improve the perfor-
mance of ”ERL”, and the combined form ”ERL++”
achieves our best accuracy 48.23%, which exceeds
”ERL” by up to 1.90%.

Feature Space Composition with Nearest Class Mean
Classification: SDC (Yu et al. 2020) proposed that soft-
max classifier has several fundamental drawbacks which
might limit its application to class-incremental learning.
For example, whenever new classes are added, the classi-
fier’s structural require to change. They adopted the embed-
ding networks with a semantic drift compensation method
and evaluate it for image classification by using the near-
est class mean (NCM) (Mensink et al. 2013) which gets
a considerable performance on CIL problem. Base on that
work, FSC (Zhao et al. 2020) proposed a novel multi-model
FSCIL method based on a composite representation space.
The composite representation space is generated by integrat-
ing two space components, base knowledge space and new
task knowledge space. Base the idea of multi-model feature
space composition and we replace the regularization term
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Method
sessions Average F. Acc.

1 2 3 4 5 6 7 8 9 10 11 Acc impro.
Ft-CNN 73.52 57.89 58.44 49.67 48.78 44.99 43.02 40.50 37.51 35.19 30.90 47.31 +21.38
Joint-CNN 73.52 69.04 64.34 59.88 55.68 51.57 49.04 45.98 43.39 41.25 40.20 53.99 +12.08
LUCIR* 73.52 63.01 53.29 47.78 47.35 47.46 45.93 44.12 43.95 42.13 40.26 49.89 +12.02
iCaRL* 73.52 63.32 54.93 48.85 46.89 47.74 44.99 43.67 44.17 42.84 41.43 50.21 +10.85
TOPIC* 73.52 66.88 61.25 56.61 52.38 48.76 45.58 42.94 41.54 39.35 37.44 51.48 +14.84
Ours-ERL 73.52 70.12 65.12 62.01 58.56 57.99 56.77 56.52 55.01 53.68 50.01 59.93 +2.27
Ours-ERL++ 73.52 71.09 66.13 63.25 59.49 59.89 58.64 57.72 56.15 54.75 52.28 61.18

Table 1: Comparison results1on CUB200 with ResNet18 using the 10-way 5-shot FSCIL setting.

Method CE DL RL ML
sessions Average

1 2 3 4 5 6 7 8 9 Acc
DL X X 73.62 66.48 62.44 58.52 54.45 50.59 46.97 44.45 41.22 55.41
FDL X X 73.62 66.72 62.94 59.75 55.15 51.43 48.10 45.78 42.88 56.26
ERL X X 73.62 66.79 63.67 60.54 56.98 53.63 50.92 48.73 46.33 57.91
ERL-ML X X X 73.62 67.40 64.98 61.01 57.66 54.87 52.33 49.59 47.43 58.76
ERL-NCE X X 73.62 66.82 64.12 60.76 57.89 55.21 51.89 49.49 47.62 58.60
ERL++ X X X 73.62 68.22 65.14 61.84 58.35 55.54 52.51 50.16 48.23 59.29

Table 2: Comparison results of combining different loss terms on cifar100 with ResNet20.

with our ERDIL framework. Figure 3 shows the compara-
tive result on CIFAR100 and our ERDIL* outperforms their
work on average 1.36%.
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Figure 3: Comparison results under NCM classifier, evalu-
ated on CIFAR100 dateset with ResNet18.

Comparison of Different Methods for Constructing Re-
lation Graph: We compare different methods for construct-
ing a relational graph on CIFAR100, Table 3 reports the
accuracy achieved by using different exemplars selection
methods, the random exemplars, SOM methods (Tao et al.
2020c) and our exemplar relation graph. We can obverse
that constructing a relational graph affects the efficiency of
knowledge transfer. Exemplars relation graph method out-
performs random selection by up to 0.47% after the final

task.

Name. of methods Random SOM ERG
Final Acc. (%) 47.76 47.96 48.23

Table 3: Classification accuracies w.r.t. different methods for
constructing relational graph after learning all tasks

Conclusion
We focus on the few-shot class-incremental learning task
and propose a framework, called ERDIL, to leverage the re-
lation knowledge contained in CNN’s feature space. ERDIL
constructs the relation graph formed by different classes. We
design an exemplars relation loss function to preserve and
transfer the relation knowledge between different classes. A
large number of experiments show that our method signif-
icantly outperforms other CIL and FSCIL methods on CI-
FAR100, miniImageNet, and CUB200 datasets.

It is somehow surprising to find that our ERDIL exceeded
the Joint-CNN, which was alleged to be an empirical up-
per bound of few-shot incremental learning approaches (Tao
et al. 2020b). The reason probably lies in that Joint-CNN is
not balanced enough to treat the old and the new tasks. The
models trained by the Joint-CNN protocol are inclined to
overfit to the old class training samples and can hardly learn
new ones in FSCIL. As a result, it is more appropriate to re-
gard Joint-CNN as an upper bound for regular CIL, as there
are enough and relatively balanced samples for both old and
new classes, rather than FSCIL. Thus what the upper bound
is will be a fruitful topic for future FSCIL research.
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