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Abstract

Existing image segmentation networks mainly leverage large-
scale labeled datasets to attain high accuracy. However, la-
beling medical images is very expensive since it requires so-
phisticated expert knowledge. Thus, it is more desirable to
employ only a few labeled data in pursuing high segmenta-
tion performance. In this paper, we develop a data augmen-
tation method for one-shot brain magnetic resonance imag-
ing (MRI) image segmentation which exploits only one la-
beled MRI image (named atlas) and a few unlabeled im-
ages. In particular, we propose to learn the probability dis-
tributions of deformations (including shapes and intensi-
ties) of different unlabeled MRI images with respect to
the atlas via 3D variational autoencoders (VAEs). In this
manner, our method is able to exploit the learned dis-
tributions of image deformations to generate new authen-
tic brain MRI images, and the number of generated sam-
ples will be sufficient to train a deep segmentation net-
work. Furthermore, we introduce a new standard segmenta-
tion benchmark to evaluate the generalization performance
of a segmentation network through a cross-dataset setting
(collected from different sources). Extensive experiments
demonstrate that our method outperforms the state-of-the-
art one-shot medical segmentation methods. Our code has
been released at https://github.com/dyh127/Modeling-the-
Probabilistic-Distribution-of-Unlabeled-Data.

Introduction
Medical image segmentation aims to partition medical
images, such as magnetic resonance imaging (MRI) im-
age, into different anatomic regions. It plays an impor-
tant role in many medical analysis applications, such as
computer-assisted diagnosis and treatment planning. In re-
cent years, benefiting from deep convolution neural net-
works (CNNs), fully supervised medical image segmenta-
tion methods (Zhou et al. 2018; Chen et al. 2019) have been
extensively studied and achieved promising progress. How-
ever, labeling anatomic regions for large-scale 3D images re-
quires a huge amount of time and expert knowledge. Hence,
obtaining sufficient labelled data often becomes the bottle-
neck of fully supervised segmentation methods.
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Figure 1: Illustration of our generated diverse deformations.
From top to bottom: intensity offsets, shape deformations,
synthesized images using the corresponding deformations
and segmentation labels. Red frames highlight variations.

One-shot medical image segmentation, also called sin-
gle atlas-based segmentation, has been proposed to reduce
the demand for copious labeled data. Hand-crafted data
augmentations (Ronneberger, Fischer, and Brox 2015; Mil-
letari, Navab, and Ahmadi 2016; Roth et al. 2015; Pereira
et al. 2016), such as random elastic deformations, generate
new labeled images to improve segmentation performance.
However, those methods often generate non-realistic images
since they do not take the distribution of real images into
account. Thus, their learned segmentation networks may not
generalize well on real data. Recently, deep learning based
data augmentation methods (Zhao et al. 2019; Xu and Ni-
ethammer 2019; Chaitanya et al. 2019; Wang et al. 2020;
Zhu et al. 2020) have been exploited. Those methods of-
ten leverage image registration to obtain profile and intensity
differences between the atlas and other MR images, and then
combine the profiles and intensities to generate new images
for segmentation.

Considering the domain gap and insufficient variations of
synthesized data by previous methods, we aim to develop
a novel medical image (i.e., MRI) augmentation method to
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address one-shot medical image segmentation tasks. To this
end, we propose probabilistic data augmentation approach
to generate sufficient training images while ensuring them
to follow the distribution of real MRI images in terms of
brain shapes and MRI intensities, as shown in Fig 1. Thus,
our segmentation network trained on our synthesized data
will be robustly adapted to real MRI images.

In this work, we firstly employ image registration to ob-
tain the shape deformations and intensity changes between
an unlabeled MRI image and the atlas. However, since reg-
istration errors might occur in the registration procedure,
directly classifying the registered images will lead to erro-
neous segmentation results. The prior art (Zhao et al. 2019)
combines the registered deformation fields and intensity
changes to produce new images (with segmentation masks)
and exploits them to train a segmentation network, thus mit-
igating registration errors. However, Zhao et al. (2019) can-
not provide new deformation fields and intensity changes.
Therefore, the variety of generated images is still limited.

In contrast to prior works, we propose to exploit two vari-
ational autoencoders (VAEs) to capture the probabilistic dis-
tributions of deformation fields and intensity offsets with
respect to the atlas. After that, our VAEs are employed to
generate various profile deformations and intensity changes.
The generative deformation fields and intensity variations
are used to synthesize new MRI images. In this manner, our
synthesized training data is not only abundant and diverse
but also authentic to the real MRIs. Hence, using our aug-
mented data, we improve the performance of our segmenta-
tion network significantly and achieve superior performance
compared with the state-of-the-art.

Since different MRI machines (i.e., imaging sources) may
lead to different characteristics in MRI images, such as in-
tensity changes and signal-to-noise ratio, we also conduct
experiments on unseen MRI sources to evaluate the robust-
ness of our method. Thus, we propose a more challenging
benchmark with an additional unseen test set. Benefiting
from our generated diverse training data, our segmentation
network also performs better than the state-of-the-art on un-
seen MRI sources, thus demonstrating the superiority of our
presented probabilistic augmentation method.

Overall, our contributions are threefold:
• We propose a novel probabilistic data augmentation

method based on VAEs to generate diverse and realistic
training images for the downstream segmentation task.

• We propose a new challenging segmentation benchmark
to evaluate the performance of our proposed method and
competing methods. It contains 3D brain MRI images
from different sources. Thus, we can also test the gen-
eralization ability of the methods on unseen MRI sources.

• Taking advantage of our generated images, our method
outperforms the state-of-the-art one-shot segmentation al-
gorithms on both seen and unseen image sources.

Related Work
Atlas-based Segmentation
Atlas-based segmentation methods (Klein et al. 2005; Heck-
emann et al. 2006) aim to segment target images by explor-

ing knowledge from single or multiple labeled atlas images
as well as a few unlabeled training images. Because only
a few labeled images are required, atlas-based segmenta-
tion methods are more desirable but challenging compared
to fully supervised methods.

Single atlas-based segmentation methods (Wang et al.
2020; Dinsdale, Jenkinson, and Namburete 2019) leverage
a registration model to learn shape deformations by align-
ing an atlas to target images, and then transfer the atlas label
to the unlabeled ones as target labels. On the other hand,
multi-atlas-based segmentation methods mainly focus on at-
las selection (Yang et al. 2018) and label fusion (Yang et al.
2018; Ding, Han, and Niethammer 2019). Since our work
belongs to the category of single atlas-based methods, we
mainly review methods of this category as follows:

Wang et al. (2020) introduce a forward-backward consis-
tency scheme into a registration network to obtain segmenta-
tion labels for unlabeled images. However, registration net-
works may suffer misalignment errors, thus leading to in-
ferior segmentation results. Instead of directly transferring
segmentation labels to a target image, some works have been
proposed to warp the atlas image and its label to generate
new images. Then, the generated data are used to train a seg-
mentation network. For example, Zhao et al. (2019) leverage
image registration to learn shape and intensity deformations
between target images and the atlas. Then, new images syn-
thesized by the learned deformations are exploited to train
their segmentation network. The works (Xu and Nietham-
mer 2019; Zhu et al. 2020) jointly learn image segmenta-
tion and registration simultaneously. Since the deformations
learned from the unlabeled data are deterministic and only a
few, the diversity of generated images is limited.

In contrast, our proposed method is able to arbitrarily gen-
erate various shape and intensity deformations that even do
not exhibit in any provided images. Moreover, our gener-
ated deformations are sampled from the distribution of the
deformations between unlabeled images and the atlas via
two VAEs. Hence, our synthesized MRI images are not only
abundant but also authentic to real ones, thus facilitating the
training of our segmentation network.

Medical Image Data Augmentation
Data augmentation is one of the most effective techniques
for reducing over-fitting and improving the capability of net-
works. In medical image analyses, a large number of data
augmentation methods have been introduced due to the ab-
sence of large-scale labeled training data.

Traditional hand-crafted data augmentation methods are
designed to deform medical images in terms of qualities, ap-
pearance or shapes. Christ et al. (2016) augment CT images
with Gaussian noise while Sirinukunwattana et al. (2017)
apply Gaussian blur to augment images for gland segmenta-
tion. Dong et al. (2017) enrich the training set by randomly
enhancing the brightness of MRI images. The works (Ron-
neberger, Fischer, and Brox 2015; Çiçek et al. 2016) exploit
random elastic deformations to generate annotated images.

Generative adversarial networks (GANs) have been em-
ployed to synthesize new images (Mahapatra et al. 2018;
Jin et al. 2018; Fu et al. 2018). Fu et al. (2018); Cao et al.
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(2020) adopt CycleGANs (Zhu et al. 2017) to generate 3D
microscopy images while Mahapatra et al. (2018) use con-
ditional GANs to synthesize realistic chest X-ray images.
Chaitanya et al. (2019) exploit conditional GANs to gener-
ate deformations of brain MRI images. However, when only
one labeled example and only a few unlabeled ones (less
than 100 MRI images) are available, GAN based augmenta-
tion methods, in this case, might suffer mode collapse, such
as outputting all zeros for shape and intensity deformations.

Proposed Method
In this work, we leverage an image registration network
and two VAEs to generate diverse and authentic brain MRI
training samples. The generative samples are then employed
to improve our segmentation network. Here, we introduce
the procedure of image registration as well as modeling
the probabilistic distributions of those deformations via our
shape and intensity 3D VAEs, respectively.

After obtaining the models of the deformations, we ran-
domly sample from the distributions of the deformations and
then construct new MRI images with the atlas image. The
newly synthesized MRI images with their labels will be used
to train our segmentation network.

Learning Deformations from Image Registration
Image registration (Miao et al. 2018; Zitova and Flusser
2003) aims to align an image to a template one, called at-
las, by learning shape deformations between them. Most ex-
isting registration-based segmentation methods (Wang et al.
2020; Xu and Niethammer 2019; Zhu et al. 2020) only con-
sider the structure differences between two images. How-
ever, due to different patients, scan machines and operations,
image intensities also vary. Therefore, we model both shape
and intensity deformations.

First, as shown in Fig. 2, we leverage a Unet-based
(Ronneberger, Fischer, and Brox 2015) registration network
(named shape registration network) to learn 3D shape defor-
mations. Denote an atlas image and its segmentation mask
as (xa, ya) and N unlabeled images as {xu1 , xu2 , · · ·, xuN}.
Taking the atlas image xa and an unlabeled training image
xui as the input, the registration network is trained to prop-
agate the atlas image xa to an unlabeled image xui by esti-
mating a shape deformation Si. In other words, Si is opti-
mized to warp xa to xui : xui ← xa ◦Si, where ◦ represents a
warping operation implemented by a differentiable bilinear
interpolation-based spatial transformer layer (Balakrishnan
et al. 2018). Following the work (Balakrishnan et al. 2019),
we employ a local cross-correlation (CC) lossLCC and a de-
formation smoothness regularization Lreg

S to train our shape
registration network in an unsupervised manner and its ob-
jective Lsrn is formulated as:

LCC =
∑
i

∑
p∈Ω

g(xui , [x
a ◦ Si], p)

2

g(xui , x
u
i , p)g([xa ◦ Si], [xa ◦ Si], p)

,

Lreg
S =

∑
i
‖∇Si‖2,

Lsrn =−LCC + Lreg
S ,

(1)

where g(a, b, p) denotes the correlation between local
patches a and b on voxel p: g(a, b, p) =

∑
pj

(a(pj) −
a(p))(b(pj) − b(p)), and a(p) indicates the mean of local
patch intensities on p: a(p) = 1

‖p‖1
∑

pj
a(pj). p represents

a n3 cube in a 3D image Ω and pj denotes the pixels in
the cube. We set n to 9 similar to prior methods (Balakr-
ishnan et al. 2019). LCC encourages the structure similar-
ities between two images regardless of the intensity varia-
tions while Lreg

S aims to constrain shape deformations to be
smooth.∇Si denotes the spatial gradients of the shape vari-
ations.

Similar to learning shape deformations, we also use a
Unet-based network, called intensity alignment network, to
align 3D intensity deformations. As visible in Fig. 2, the net-
work takes the atlas image xa and the inverse-warped image
x̂ui as input to measure the intensity deformations Ii. x̂ui is
generated by aligning xui to xa, and thus x̂ui and xa share
similar profile structure. Similar to (Zhao et al. 2019), we
exploit a pixel-wise reconstruction loss Lsim between xa

and xui and an intensity smoothness regularization Lreg
I to

train our intensity alignment network. The objective func-
tion Lirn is expressed as:

Lsim =
∑

i
‖(xa + Ii) ◦ Si − xui ‖2,

Lreg
I =

∑
i

∑
qj

(1− ca(pj))|∇Ii(pj)|,

Lirn =Lsim + λLreg
I .

(2)

Here, Lreg
I is designed to prevent dramatic changes of the

Ii in the same brain area. ∇Ii(pj) denotes the gradients of
Ii at pj . ca denotes the mask of contours across different
areas. λ is a trade-off weight and set to 0.02, following the
work (Zhao et al. 2019).

Diverse Image Generation via VAEs
After image registration, we obtain N shape deformations
and N intensity changes from the atlas and N unlabeled im-
ages. In the work (Zhao et al. 2019), these variations are
directly combined to generate new labeled training images
for segmentation. However, only N kinds of shape and in-
tensity transformations are involved during training, and the
diversity of the samples is not rich enough to train an ac-
curate segmentation network. Chaitanya et al. (2019) em-
ploy GANs to generate new deformations but their method
requires a large number of unlabeled data to train GANs.
However, we only have less than 100 unlabeled images and
their method will suffer mode collapse and is not applicable
in our case.

Different from previous methods, we adopt a 3D shape
VAE and a 3D intensity VAE to learn the probabilistic dis-
tributions of the variations with respect to the atlas sepa-
rately, since VAE does not suffer mode collapse. Further-
more, inspired by beta-VAE (Higgins et al. 2017; Burgess
et al. 2018), we reduce impacts of the Kullback-Leibler (KL)
divergence in a conventional VAE to increase the diversity
of generated samples. Doing so is also driven by the insuf-
ficiency of the training samples. After training, we sample
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Figure 2: The framework of our proposed method: (i) image deformations are obtained by two Unet-based registration networks;
(ii) our shape and intensity VAEs are proposed to learn the variation distributions and generate new deformations; (iii) new
training samples are synthesized by applying the generated deformations to the atlas image and our segmentation network is
trained on these samples.

deformations from our shape and intensity VAEs, and then
generate a large number of various training images.

As illustrated in Fig. 2, our shape VAE first uses an en-
coder to project an input shape deformation into a latent
vector z = ES(Si) and then decodes z to the image domain,
i.e., a reconstructed shape deformation Si = DS(z). During
training, three objectives, including KL divergence Lkl

S and
pixel-wise reconstruction losses on the deformations Ld

S and
image intensities Li

S , are employed to train our shape VAE,
written as:

Lkl
S =

∑
i
Dkl(q(z|Si)||p(z)),

Ld
S =

∑
i
‖Si − Si‖2,

Li
S =

∑
i
‖(xa ◦ Si)− (xa ◦ Si)‖2,

LS = (Ld
S + Li

S) + βLkl
S ,

(3)

where Lkl
S forces the distribution of latent vector z to be a

standard normal distribution, (i.e., z ∼ N (0, 1)), q(z|·) de-
notes the posterior distribution, p(z) denotes the Gaussian
prior distribution modeled by a standard normal distribution,
and β is a hyper-parameter controlling rigidity of the distri-
butions of the latent variable z and the quality of reconstruc-
tion. Here, we not only compare the decoded shape defor-
mations with the input ones but also measure the differences
between the warped images by the input shape deformations
and reconstructed ones.

Smaller β indicates less attention is paid to the KL di-
vergence loss during training and will result in a larger KL
divergence between the posterior and prior distributions. As
suggested by Burgess et al. (2018), larger KL divergence al-
lows a latent vector to reside in a large space. In other words,
smaller β allows our VAE to preserve variations of input im-
ages especially when the training samples are scarce. There-

fore, using a small β is more preferable when the number of
training samples is limited. Moreover, since the latent space
has been enlarged, more variations can be generated from
this latent vector space via our decoder in the testing phase.
Therefore, we set β to a small value (i.e., 0.1) for all the
experiments.

It is worth noting that we employ both Ld
S and Li

S as the
reconstruction loss for our shape VAE instead of only re-
constructing network inputs by Ld

S as in the original VAE.
When Ld

S is only employed, image structure information
is neglected. In particular, shape deformations should pay
attention to the consistency of image contour movements.
However, Ld

S treats the movement of each pixel individually
and thus may not perform consistent movements along the
contour regions. On the contrary, the reconstruction loss Li

S
is sensitive to the movements of image contours because im-
age intensities around contours change dramatically. In other
words, small reconstruction errors in the deformations of the
contours will lead to large intensity differences between two
warped images. On the other hand, since Li

S only measures
intensity similarities, it may not preserve boundary informa-
tion when two areas have similar intensities. Therefore, we
leverage both Li

S and Ld
S as the reconstruction loss in learn-

ing our shape VAE.
Similar to our shape VAE, we employ a VAE to model

the distribution of the intensity variations with respect to the
atlas. Here, we adopt the standard KL divergence loss and
a pixel-wise reconstruction loss to train our intensity defor-
mation VAE, expressed as:

Lkl
I =

∑
i
Dkl(q(z|Ii)||p(z)),

Ld
I =

∑
i
‖Ii − Ii‖2,

LI = Ld
I + βLkl

I ,

(4)
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where Ii is the intensity deformation reconstructed from Ii.
After modeling the deformation distributions, our shape

and intensity VAEs are exploited to generate diverse vari-
ations by random sampling. Specifically, in the process of
the generation, the decoders DS and DI take random la-
tent vectors sampled from a Gaussian distribution N (0, σ)
as input and output various shape deformations Sg and inten-
sity changes Ig , respectively. Then, our synthesized labeled
training images are constructed as:

xg = (xa + Ig) ◦ Sg, yg = ya ◦ Sg, (5)

where xg and yg represent the synthesized images and
their corresponding segmentation masks. Note that, differ-
ent from MRI images, segmentation masks are warped by a
nearest-neighbor interpolation-based 3D spatial transformer
layer (Balakrishnan et al. 2018).

Segmentation Network
Once augmented training samples are obtained, we can train
our segmentation network on those samples. In order to
conduct fair comparisons to the state-of-the-art (Zhao et al.
2019), we employ the same 2D Unet with a five-layer en-
coder and a five-layer decoder to segment each slice of 3D
images individually. In the encoder and decoder, we use 3x3
2D convolutional operations followed by LeakyReLU lay-
ers. 2x2 Max-pooling layers are used to reduce the feature
resolution while upsampling layers are used to increase res-
olution by a factor of 2.

In each training iteration, we randomly sample slices from
3D images to construct a batch. The standard cross-entropy
loss is employed as follows:

LCE = −
W∑
i=1

H∑
j=1

1

H ·W
log

exp(yp[i, j, yg(i, j)])∑K
k=1 exp(yp[i, j, k])

, (6)

where yp is the predicted mask from our segmentation net-
work g (i.e., yp = g(xg; θ)) and θ denotes the parameters of
the segmentation network. W and H denote the width and
height of a 2D slice, respectively. K indicates the number
of anatomical components in an MRI image. Similar to the
training process, every 3D image is split into 2D slices and
segmented in a slice-wise fashion in the testing phase.

Although we incorporate two VAEs to generate labeled
data, they are only used in the training phase. During test-
ing, only our segmentation network is exploited. Therefore,
our method does not increase the network parameters and
FLOPs during inference and thus can be deployed as easily
as previous works.

Implementation Details
We adopt the same network architecture for our shape and
intensity VAEs, and the VAEs are 3D VAEs since deforma-
tions should be consistent in 3D space. More details of the
network architecture are described in the supplementary ma-
terial. In the 3D VAE networks, group normalization (Wu
and He 2020) is employed. For the activation function, we
use LeakyReLU and ReLU for the encoder and the decoder,
respectively. The dimension of the latent vector is set to 512.

During training, Adam (Kingma and Ba 2015) optimizer
is used to train our VAEs, where β1 and β2 are set to 0.5
and 0.999, respectively. The batch size is set to 1 due to the
GPU memory limit. The learning rate is fixed to 1e−4 for the
whole 40k training iterations. The hyper-parameter β in both
two VAEs is set to 0.1. In generating deformations, the shape
VAE and the intensity VAE take latent vectors sampled from
N (0, 10) as input in order to achieve more diverse data.

For other networks (i.e., shape registration, intensity
alignment and segmentation networks), a default Adam with
1e−4 learning rate is employed. For the shape registration
and intensity alignment networks, the batch size is set to 1
and the networks are trained for 500 epochs. For the segmen-
tation network, the batch size is set to 16 and the network is
trained for 40k iterations. Our method is trained and tested
on an Nvidia Tesla V100 GPU and achieves similar results
on Keras with a TensorFlow backend and PaddlePaddle.

Note that, in training the 3D VAEs and segmentation net-
works, images are generated on-the-fly, and thus we train
these networks in terms of iterations. In training registration
and alignment networks, only 82 MRI images will be trans-
formed to the atlas, and thus we train the networks in terms
of epochs.

Experiments
In this section, we first compare our proposed method with
state-of-the-art one-shot based methods and then analyse
the contributions of each component in our method. For
fair comparisons, we conduct our experiments on the same
dataset as previous works (Balakrishnan et al. 2019; Zhao
et al. 2019; Wang et al. 2020). Moreover, we propose a more
challenging MRI benchmark to evaluate the generalization
performance of state-of-the-art one-shot based methods on
unseen MRI data.

Dataset and Evaluation Metric
Dataset: CANDI dataset (Kennedy et al. 2011) consists 103
T1-weighted brain MRI images from 57 males and 46 fe-
males. In this dataset, four types of diagnostic groups are
considered including healthy controls, schizophrenia spec-
trum, bipolar disorder with psychosis, and bipolar disorder
without psychosis. In the experiments, we use the same train
and test splits as in (Wang et al. 2020). To be specific, 20, 82
and 1 images are employed as the test set, unlabeled training
set and atlas, respectively. Following the work (Wang et al.
2020), we crop a 160×160×128 volume from the center of
an original MRI image. For segmentation, similar to (Wang
et al. 2020), we consider 28 primary brain anatomical areas.
Evaluation Metric: Dice coefficient (Dice 1945) is used to
measure the segmentation performance, written by:

Dice(Mk
yp
,Mk

ygth
) = 2 ·

Mk
yp

⋂
Mk

ygth

|Mk
yp
|+ |Mk

ygth
|
, (7)

where Mk
yp

and Mk
ygth

denote segmentation masks of the
anatomical region k with predicted labels yp and its corre-
sponding ground-truth ygth.

Larger Dice scores indicate more overlaps between pre-
dictions and ground-truth labels, and thus represent better
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Method Shape Intensity VAE Mean(std) Min Max
Registration based

(VoxelMorph) 76.0(9.7) 61.7 80.1

Segmentation
with data

augmentation

√
81.7(5.6) 65.4 87.4√ √
83.5(4.2) 71.1 87.8√ √
84.2(1.7) 79.7 86.5√ √ √
85.1(1.9) 80.2 87.8

Table 1: Ablation study on different types of data augmentation. Shape and Intensity denote that the shape and intensity defor-
mations are from registration. VAE indicates that the deformations are generated from our VAEs.

Method Mean(std) Min Max
Supervised learning 88.3(1.7) 83.5 90.3
VoxelMorph (Balakrishnan 2019) 76.0(9.7) 61.7 80.1
DataAug (Zhao 2019) 80.4(4.3) 73.8 84.0
LT-Net (Wang 2020) 82.3(2.5) 75.6 84.2
Ours 85.1(1.9) 80.2 87.8

Table 2: Comparison with the state-of-the-art on CANDI.
The performance of fully supervised segmentation is also
provided as an upper bound. The Dice score (%) is em-
ployed, and Mean(std) denotes the standard deviations. Min
and Max denote the minimum and maximum Dice scores in
the test set, respectively.

segmentation performance. To better demonstrate the per-
formance of each method, we report not only a mean Dice
score but also its corresponding standard variance, minimum
Dice score and maximum Dice score on the test set.

Comparison with State-of-the-art Methods
We mainly compare two state-of-the-art one-shot atlas based
method, namely DataAug (Zhao et al. 2019) and TL-
Net (Wang et al. 2020). In addition, one unsupervised regis-
tration method i.e., VoxelMorph (Balakrishnan et al. 2018)
is applied to one-shot medical image segmentation for com-
parison. VoxelMorph and TL-Net leverage a registration net-
work to align the input MRI images to the atlas and then
transfer the segmentation mask of the atlas to the input im-
ages as the segmentation results. DataAug employs image
registration to achieve shape and intensity transformation,
and then augment the atlas image with the attained trans-
formation to train a segmentation network. Note that these
state-of-the-art methods do not generate new deformations
while our method does.

As seen in Table 2 , we demonstrate the segmentation
performance of our method is superior to that of the state-
of-the-art. As indicated in Table 2, our method achieves su-
perior segmentation performance compared to the state-of-
the-art. In particular, our method improves the segmentation
performance by 2.8% on the Dice score in comparison to the
second best method LT-Net (Wang et al. 2020). Moreover,
our method also obtains the smallest variance, demonstrat-
ing that our method is more robust.

Ablation Study
To demonstrate the effectiveness of our VAEs, we compare
four different types of data augmentation in Table 1. As sim-

Method Mean(std) Min Max

Ld
S 81.3 (2.8) 74.4 85.0
Li

S 82.3(6.2) 63.9 87.7
Ld

S + Li
S 83.5(4.2) 71.1 87.8

Table 3: Ablation study on different reconstruction losses in
the shape VAE.

ply applying intensity offsets to the atlas does not change the
segmentation mask, synthesized images will have the same
segmentation labels, thus leading to a trivial segmentation
solution.

Effectiveness of our VAEs As indicated in Table 1, com-
pared with direct registration, data augmentation based seg-
mentation methods achieve better segmentation accuracy.
Note that all the augmentation methods learn the shape
deformations similar to VoxelMorph. Compared with the
data augmentation methods using deformations from image
registration, our VAEs can generate richer data for train-
ing a segmentation network, thus leading to better perfor-
mance. Moreover, we observe that intensity deformations
make great contributions to segmentation performance and
various intensity changes facilitate the generalization of our
segmentation network. In Table 1, we also notice that our
network employing registered shape and intensity deforma-
tions achieves better performance than DataAug. This is be-
cause DataAug pre-trains a segmentation network with an l2
loss and does not employ the atlas in training the segmenta-
tion network. Thus, using the atlas for training segmentation
networks is important.

Effectiveness of the Combined Reconstruction Loss To
demonstrate the effectiveness of our combined reconstruc-
tion loss i.e., Ld

S +Li
S , we train the shape VAEs with Ld

S , Li
S

and Ld
S +Li

S , respectively, and then apply them to augment
data. To avoid the influence of the intensity augmentation,
we do not use intensity augmentation and the segmentation
results are reported in Table 3. As indicated by Table 3, our
combined reconstruction loss is more suitable for the shape
deformation learning and generation.

Hyper-parameter β in Eq. (3) and Eq. (4), and σ for sam-
pling latent codes As aforementioned, a small β intro-
duces more diversity into the generated deformations, thus
improving the segmentation performance. Figure 3 mani-
fests that using a small β, we achieve better segmentation
accuracy. Thus, in all the experiments, β is set to 0.1. Fur-
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Method Seen Unseen
Mean(std) Min Max Mean(std) Min Max

Supervised learning 87.6(2.7) 79.3 91.1 85.9(1.7) 81.3 87.5
VoxelMorph 70.3(11.6) 33.1 82.5 62.9(13.2) 32.3 79.6
DataAug 69.6(9.02) 39.7 80.4 64.3(9.9) 35.0 77.2
Ours 76.7(7.4) 53.2 86.5 74.8(6.6) 54.1 83.3

Table 4: Comparison with the state-of-the-art methods on our newly proposed ABIDE benchmark.

85.1

84.6

84

84.5

85

85.5

0.1 1

Di
ce

 sc
or

e (
%

)

β

84.8

85.1 85.1

84

84.5

85

85.5

1 10 100

Di
ce

 sc
or

e(%
)

σ

Figure 3: Ablation study on hyper-parameter β and σ. β con-
trols the weight of the KL divergence and σ is the standard
deviation of a prior Gaussian distribution N (0, σ) in VAEs.

thermore, as illustrated in Fig. 3, the segmentation perfor-
mance degrades when the standard deviation σ for sampling
latent codes is set to 1. This is because we employ a small
β to enforce the KL divergence during training and the la-
tent vector space would deviate from the standard normal
distribution. Thus, we use a larger σ to sample latent codes.
Figure 3 shows the segmentation accuracy is similar when σ
is set to 10 and 100. Thus, σ is set to 10 for all the experi-
ments.

Our Proposed ABIDE Benchmark
Since the MRI images in CANDI are collected from only
one source, the variances (including shape and intensity)
mainly come from different individuals. However, differ-
ent MRI machines and operations may also lead to varia-
tions. Therefore, to validate the robustness of our method,
we propose a new standard segmentation benchmark, called
ABIDE benchmark, as visible in Fig. 4.

We sample T1-weighted MRI images from the autism
brain imaging data exchange (ABIDE) database (Di Mar-
tino et al. 2014), which are collected from 17 international
sites. We sample 190 images from ten imaging sources and
split them into 100, 30, 60 volumes for training, validation
and testing, respectively. These testing images form a seen
test set. As suggested by Balakrishnan et al. (2019), the most
similar image to the average volume is selected as the atlas.
We also sample 60 images from the rest imaging sources
as an unseen test set. All the volumes are resampled into a
256×256×256 with 1mm isotropic voxels and then cropped
to 160× 160× 192. 28 anatomical regions are annotated by
FreeSurfer (Fischl 2012).

As our benchmark contains images from multiple sites
and includes an unseen test setting, it is more challenging
and is also able to evaluate the robustness of a method.

We compare our method with VoxelMorph(Balakrishnan

Figure 4: Illustration of significant variances in our ABIDE
benchmark. The 96-th slices of ten 3D MRI images are
shown. (Top row: images from seen datasets; Bottom row:
images from unseen datasets.) More images are shown in
supplementary materials.

et al. 2019) and DataAug(Zhao et al. 2019) in Table 4. The
performance of the segmentation network trained with full
supervision is also reported. Compared with the other two
methods, we achieve superior performance on the seen and
unseen datasets, demonstrating the effectiveness of our data
augmentation method. In addition, our performance only de-
grades 1.9% on the unseen test dataset while the perfor-
mance of the competing methods decreases more than 5%.
This demonstrates that our method achieves a better gener-
alization ability with the help of our generated various de-
formations.

Conclusion
In this paper, we propose a 3D VAE based data augmenta-
tion scheme to generate realistic and diverse training sam-
ples for one-shot medical image segmentation. We present a
shape deformation VAE and an intensity deformation VAE
to learn the distributions of the deformations of unlabeled
real images with respect to an atlas one. With the help of
our learned VAEs, we can generate various deformations
rather than solely combining existing deformations from un-
labeled data, thus significantly enriching training data for
segmentation. To evaluate the segmentation performance on
unseen imaging sources, we collect and annotate MRI data
from different sources and construct a new benchmark. It
provides us a standard public testbed for one-shot or few-
shot based medical image segmentation methods. Extensive
experiments demonstrate that our method outperforms the
state-of-the-art on seen and unseen datasets.
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