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Abstract

Deep Metric Learning (DML) has been more attractive and
widely applied in many computer vision tasks, in which a dis-
criminative embedding is requested such that the image fea-
tures belonging to the same class are gathered together and
the ones belonging to different classes are pushed apart. Most
existing works insist to learn this discriminative embedding
by either devising powerful pair-based loss functions or hard-
sample mining strategies. However, in this paper, we start
from another perspective and propose Deep Consistent Graph
Metric Learning (CGML) framework to enhance the discrim-
ination of the learned embedding. It is mainly achieved by
rethinking the conventional distance constraints as a graph
regularization and then introducing a Graph Consistency reg-
ularization term, which intends to optimize the feature distri-
bution from a global graph perspective. Inspired by the char-
acteristic of our defined ’Discriminative Graph’, which re-
gards DML from another novel perspective, the Graph Con-
sistency regularization term encourages the sub-graphs ran-
domly sampled from the training set to be consistent. We
show that our CGML indeed serves as an efficient technique
for learning towards discriminative embedding and is appli-
cable to various popular metric objectives, e.g. Triplet, N-Pair
and Binomial losses. This paper empirically and experimen-
tally demonstrates the effectiveness of our graph regulariza-
tion idea, achieving competitive results on the popular CUB,
CARS, Stanford Online Products and In-Shop datasets.

Introduction
In the context of end-to-end feature learning framework of
deep convolutional neural network where the convolutional
neural network actually is a powerful non-linear mapping
function and can be arbitrarily modeled by loss functions
to some extend, Deep Metric Learning (DML) focuses on
the design of discriminative objective loss function, so as
to constrain the learned embedding to be more discrimi-
native. By reason of the powerful representation ability of
the learned embedding, Deep Metric Learning (DML) has
been widely explored and applied in many computer vision
tasks, such as image retrieval (Gordo et al. 2017; Noh et al.
2017), face recognition (Schroff, Kalenichenko, and Philbin
2015; Wen et al. 2016), person re-identification (Hermans,
Beyer, and Leibe 2017; Chen et al. 2017), zero-shot learning
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Figure 1: Graph Consistency. The circles indicate the data
points, green/red/blue color represent three classes, resp. For
the left two sub-figures, the highlighted colors means the
current sampled data. From the left two sub-figures, one can
observe that since the overall feature representations are not
discriminative enough, i.e. with large intra-class variations
and relatively small inter-class margins, the randomly sam-
pled graphs are different with each other. Then by regulariz-
ing them to be consistent, in other words, aligning them to
be the same, the intra-class distance can be decreased and
the inter-class margin can be enlarged to some extend, re-
sulting in the more discriminative representation space than
before.

(Oh Song et al. 2016), visual tracking (Leal-Taixé, Canton-
Ferrer, and Schindler 2016; Tao, Gavves, and Smeulders
2016) and cross-modal retrieval (Deng et al. 2018).

Deep Metric Learning (DML) is generally achieved by
learning feature representations for the input images such
that the instances from the same class are mapped to the
small vicinity in the low-dimensional representation space
while the samples from different classes are placed rela-
tively apart. The representations are learned under an end-
to-end optimization framework where the objective func-
tion utilizes the loss terms to impose the desired intra-class
and inter-class distance constraints in the feature space.
Thus, in order to obtain the discriminative feature repre-
sentations, most of the DML works dedicate to mining the
expressive instance pairs as many as possible. For exam-
ple, many research works focus on exploring the tuple-based
loss functions. such as contrastive loss (Sun et al. 2014), bi-
nomial deviance loss (Yi et al. 2014), triplet loss (Schroff,
Kalenichenko, and Philbin 2015) and quadruplet loss (Chen
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et al. 2017).
However, in these tuple-based methods, training instances

are grouped into pairs, triplets or quadruplets, resulting in
a quadric or cubical growth of training pairs which are of
high probability to be highly redundant and less informa-
tive. It gives rise to some key problems for tuple-based ap-
proaches, in which (1) the actually constructed pairs are fi-
nite and local such that they cannot utilize the global and
informative data structure, thus the optimized image rep-
resentations will not be discriminative enough, and (2) the
optimization of feature representation is dominated by the
margin constraints, in which case if the sampled pairs sat-
isfy the margin constraints, the losses will become zero
and the parameter update will be stopped, thus the actual
global feature distributions might be still not discriminative,
leading to inferior performances. Then, to learn compact
and separable features, some researchers try to seek help
from the technique of hard samples mining, such as (Wu
et al. 2017; Harwood et al. 2017; Schroff, Kalenichenko,
and Philbin 2015), however, in practice, the model train-
ing is usually very sensitive to the sampling strategy and
sampled pairs, resulting in bad local minimum and large
variations in performances. Moreover, some researchers pro-
pose to use global instance-relations for discriminative em-
bedding learning, such as Lifted(Oh Song et al. 2016), N-
Pair(Sohn 2016) and MS(Wang et al. 2019a), while due to
the Maximum-Domination problem1 behind SoftMax for-
mulation, the global constraints from these methods are not
enough. To this end, proposing more discriminative and ef-
ficient deep metric objective function remains important.

Considering the aforementioned problems, in this paper,
we propose the deep Consistent Graph Metric Learning
(CGML) framework, a novel loss constraint, to further en-
hance the discriminative leanring by regularizing the ran-
domly sampled graphs to be consistent during each train-
ing iteration. It is mainly achieved by introducing a Graph
Consistency (GC) regularization term that is ‘plug and play’
and can be generally applied to many existing deep met-
ric learning methods. Specifically, at each iteration, we first
randomly select m classes with n

m instances each class for
two times, then regard the instances as nodes and construct
two graphs according to instance-to-instance distances re-
spectively. Restraining these two randomly-sampled graphs
to be consistent is to satisfy the property of discriminative
representation distribution where compact intra-class distri-
butions and separable inter-class distances exist. As illus-
trated in Fig.1, at the beginning, the data representations are
not discriminative, and the sampled graphs have large di-
versities, after performing the consistency regularization on
these graphs, large inter-class distances and small intra-class
variations can be achieved, obtaining discriminative feature
space. To demonstrate our method, we provide mathemati-
cal proofs. Moreover, considering the numerical problem in
actual training, we further introduce an upper-bounded GC
term for ensuring the learning of discriminative embedding.

1Pay more attention to only the maximum similarity input, the
rest inputs might be ignored. Therefore, the strength of the global
constraint is weakened.

The main contributions of this work can be summarized as
follows:
• We propose the deep Consistent Graph Metric Learning

(CGML) framework, a novel graph-based view for learn-
ing discriminative feature representations, which is ‘plug
and play’ and can be applied to many existing deep metric
methods.

• CGML is achieved by introducing the Graph Consistency
(GC) term, which is to match the property of our de-
fined Discriminative Graph and has rigourous mathemat-
ical proofs. Then, to ensure the optimization of GC term,
an upper-bound of GC is considered.

• Extensive experiments have been performed on several
popular datasets for DML, including CARS (Krause et al.
2013), CUB, Stanford Online Products (Oh Song et al.
2016) and In-Shopes (Liu et al. 2016), achieving compet-
itive results.

Related Work
Graph Learning: Graph-based approaches have become at-
tentive in recent computer vision community and are shown
to be an efficient way of relation modeling. Constructing
graph over the image spatial positions and then propagat-
ing mass via random walk has been widely used for object
saliency detection (Harel, Koch, and Perona 2007). Graph
Convolution Network (GCN) (Kipf and Welling 2016) is
proposed on semi-supervised classification. It has been
adopted for capturing relations between objects in video
recognition tasks (Wang and Gupta 2018). IRG (Liu et al.
2019) employs the graph relation for knowledge distillation.
The graph knowledge is also used for visual query answer-
ing (Xiong et al. 2019).

However, different from these works, we aim at encour-
aging the discrimination of the learned deep embedding by
regularizing the randomly constructed sub-graphs over data
points to be consistent with each other, which is the obvious
property of our defined ‘Discriminative Graph’ and discrim-
inative feature distribution.

Deep Metric Learning: DML intends to pull the in-
stances from the same class closer while push the ones
from different classes farther apart. The commonly used
Contrastive loss (Sun et al. 2014) and Triplet loss (Schroff,
Kalenichenko, and Philbin 2015) have been widely explored
and applied. Additionally, there are some other deep met-
ric learning methods: Smart-mining (Harwood et al. 2017)
combines the local triplet loss and the global loss to su-
pervise the learning of deep metric by hard-example min-
ing. Sampling Matters (Wu et al. 2017) proposes distance
weighted sampling strategy. Angular loss (Wang et al. 2017)
optimizes a triangle based angular function. Proxy-NCA
(Movshovitz-Attias et al. 2017) explains why popular clas-
sification loss works from a proxy-agent view, and its im-
plementation is very similar to Softmax. N-Pair loss (Sohn
2016) proposes to use N-Pair tuples for training discrim-
inative embedding, and ALMN (Chen and Deng 2019a)
proposes the adaptive large margin N-pair loss by gener-
ating geometrical virtual negative point instead of employ-
ing hard-sample mining for learning more discriminative
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embedding. SNR (Yuan et al. 2019) employs the idea of
Signal-to-Noise Ratio on the deep metric objective and ob-
tains the robust feature embedding, HDC (Yuan, Yang, and
Zhang 2017) employs the cascaded models and selects hard-
samples from different levels and models. BIER loss (Opitz
et al. 2017, 2018) adopts the online gradients boosting meth-
ods. DeML (Chen and Deng 2019b) employs the ensemble
metrics learned from the hybrid attention proposals. These
methods try to improve the performances by resorting to the
ensemble idea.

However, different from the above methods that are based
on instance-pairs construction, samples mining or metric en-
semble, we target the informative graph structure behind
data points distribution for learning discriminative embed-
ding. It is a novel view for introducing global constraints.

Proposed Approach
In this section, we will first give the problem background of
less-discriminative embedding learning in Section 3.1, and
then introduce our defined Discriminative Graph and its
corresponding property, inspired by this property we have
our Graph Consistency (GC) regularization as in Section
3.2, to further ensure the optimization of graph consistency
we consider an upper-bounded GC term in Section 3.3, fi-
nally we propose the deep Consistent Graph Metric Learn-
ing (CGML) framework in Section 3.4.

Problem Background
Most of the DML works are designed to optimize the relative
distances between positive pairs and negative pairs such that
the margin constraints can be achieved, such as Contrastive
loss (Sun et al. 2014), Triplet loss (Schroff, Kalenichenko,
and Philbin 2015) and Quadruplet loss (Chen et al. 2017).
However, satisfying these distance margin constraints be-
tween instance pairs actually is not equivalent to the learn-
ing of discriminative feature representations. Specifically,
we take Triplet loss as a toy example as illustrated in Fig. 2.
One can observe that after satisfying the margin constraint,
the constructed pairs will propose zero losses and contribute
little to the update of feature embedding and model param-
eters. As a result, the data points in feature space will stop
moving towards the more discriminative places. Therefore,
in order to obtain the compact intra-class distributions and
separable inter-class distances, we recast the problem of dis-
tance constraint as the graph regularization, which takes the
informative graph structure behind data points in feature
space into consideration.

Graph Consistency Regularization
In this paper, we rethink the discriminative distance opti-
mization from another novel perspective, i.e. graph opti-
mization. The ultimate target thus turns to learning towards
Discriminative Graph. Now, we first give the definition of
Discriminative Graph as below:

Definition 1. Given large scale data representations X =
[x1, · · · , xN ], where xi ∈ Rd, N is the data number and
they are uniformly coming fromC classes. For the c-th class,
its biggest intra-class Euclidean distance is αc and distance

an

an

ap

ap

margin constraint: ap+m<an 

m

Figure 2: Toy example of the weakness of Triplet loss, where
different colors indicate different classes, ap and an mean
the positive and negative pair distances respectively. Al-
though the margin constraint has been achieved, the intra-
class distribution has large variations, and the inter-class dis-
tribution are not separable enough (i.e. has the same magni-
tude level with intra-class distance).

from its center to the nearest negative class center is βc. If
αc � βc, ∀c ∈ [1, · · · , C], we call a graph G based on these
data nodes as Discriminative Graph.

For briefness, the instances in X are ordered by category,
i.e. X is constructed by first assigning all the instances be-
longing to the first class at the beginning several columns
and then assigning the second class instances right behind
2, etc. And without loss of generality, the graph is based
on adjacent matrix S with the commonly used RBF func-
tion, where the element sij indicates the weight of con-
necting edge between node i and node j on graph G, and
sij = exp(−‖xi−xj‖

2
2

σ ). From Definition. 1, one can ob-
serve that learning towards Discriminative Graph is consis-
tent with the goal of DML. However, in actual, due to the
complex structure of G and complex relations among nodes,
it is technically not easy to directly optimize such a ideal
discriminative graph.

To this end, we instead propose to regularize the consis-
tency between two sub-graphs G

′
and G

′′
randomly sam-

pled from G, i.e. to regularize the corresponding adjacent
matrixes (S

′ ≈ S
′′

) 3, which is an obvious property of our
defined Discriminative Graph.

Proposition 1. Given Discriminative Graph G, randomly
and independently sample n data points from each class two
times and thus obtain two data batches X

′
, X

′′ ∈ Rd×nC
respectively, then construct the sub-graphs G

′
, G
′′

along
with adjacent matrixes S

′
, S
′′

. We will have that S
′ ≈ S

′′

is the necessary and sufficient condition of Discriminative
Graph.

Proof. For paper length limit, here we just provide the proof
of necessary condition, Please see the supplementary file for
sufficient condition.

(1) For the intra-class connected nodes (without loss of
generality, we take for example the c-th class). Since exp

2If not specified, in this paper, all the data-batches will be con-
structed by this way, including the randomly sampled data-bathes
which will be used later.

3If not specified, we use superscript ′and ′′ to represent the sam-
pling.
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function is convex, from Jensen Inequality, we have:

1 ≥ E[sij ] ≥ e−
E[‖xi−xj‖

2
2]

σ ≥ e−
α2
c
σ

Then, we compute

E[(s
′

ij − s
′′

ij)
2] =E[((s

′

ij − E[sij ])− (s
′′

ij − E[sij ]))
2]

=E[(s
′

ij − E[sij ])
2 + (s

′′

ij − E[sij ])
2

− 2(s
′

ij − E[sij ])(s
′′

ij − E[sij ])]

since the data points are i.i.d, E[sij ] = E[s
′

ij ] = E[s
′′

ij ] and
E[sij − E[sij ]] = 0, thus

= 2E[(sij − E[sij ])
2] = 2V ar(sij) = 2(E[s2

ij ]− E2[sij ])

≤ 2(1− e−
2α2
c
σ )

Notice that the upper bound 2(1 − e−
2α2
c
σ ) is proportional

to αc, showing that the differences between s
′

ij and s
′′

ij are
consistent with the intra-class compactness. Additionally,

since limαc→0
2(1−e−

2α2
c
σ )

αc
= 0 and αc is a small value,

the expected squared difference between s
′

ij and s
′′

ij , i.e.
E[(s

′

ij − s
′′

ij)
2], thus will be bounded by a much smaller

value 2(1− e−
2α2
c
σ ), in other words, s

′

ij ≈ s
′′

ij .
(2) For the inter-class connected nodes, where xi, xj are

sampled from different classes (without loss of generality,
we take classes c and k), then we have αc � βc < π
and αk � βk < π, where π is the distance between
the c-th class center and k-th class center. Then sij ∈
[exp(− (αc+αk+2π)2

4σ ), exp(− (2π−αc−αk)2

4σ )]. And from the
Hoeffding’s Inequality, we have:

Pr{|sij − E[sij ]| ≥ t} ≤ 2e
− 2t2

(b−a)2

where a = exp(− (αc+αk+2π)2

4σ ), b = exp(− (2π−αc−αk)2

4σ )
Pr{z} indicates the probability of z. Then, setting RHS as
δ/2, we have with probability at least 1− δ/2:

|sij − E(sij)| ≤ (b− a)

√
log (4/δ)

2

And as s
′

ij , s
′′

ij are i.i.d, E[sij ] = E[s
′

ij ] = E[s
′′

ij ], we have

|s
′

ij − s
′′

ij | = |(s
′

ij − E[s
′

ij ])− (s
′′

ij − E[s
′′

ij ])|

≤ |(s
′

ij − E[s
′

ij ])|+ |(s
′′

ij − E[s
′′

ij ])|

≤ 2(b− a)

√
log (4/δ)

2

From the above inequality, we have that the absolute dif-
ference between s

′

ij and s
′′

ij is also bounded by value 2(b −

a)
√

log (4/δ)
2 , and this upper bound is proportional to αc, αk

(intra-class compactness) while inversely proportional to π
(inter-class separability).

In summary, for both intra and inter class connections,
the difference between s

′

ij and s
′′

ij are bounded, and the up-
per bounds are proportional/inversely proportional to the the
intra-class compactness/inter-class separability. For a Dis-
criminative Graph, the upper bounds are much smaller val-
ues and thus we have s

′

ij ≈ s
′′

ij , i.e. S
′ ≈ S

′′
. The proof is

completed.

Based on the above observation, in order to learn discrim-
inative feature distributions by graph optimization, one in-
tuitive way is to make the randomly sampled sub-graphs
G
′
, G

′′
to be as similar as possible, so as to ensure

Discriminative Graph, intensifying intra-class compactness
and inter-class separability within the learned embedding.
Therefore, our Graph Consistency (GC) regularization term
can be formulated as:

Lgc = ‖S
′
− S

′′
‖2F (1)

This regularization term encourages the currently optimiz-
ing graph to have the similar property as Discriminative
Graph, producing large inter-class margins and compact
intra-class distributions.

Upper-Bound of Graph Consistency Term
Consider a fact that, practically minimizing ‖S′ − S

′′‖F
doesn’t means S

′
is very close to S

′′
due to the numerical

problem in training phase. To this end, this paper introduces
an upper-bound of the GC term, so as to try the best to ensure
the minimization of ‖S′ − S′′‖F :

‖S
′
X
′T
− S

′′
X
′′T
‖F ‖X

′T †
‖F + ‖S

′′
‖F ‖ξ‖F ‖X

′T †
‖F

≥ ‖S
′
− S

′′
‖F
(2)

where X
′
, X

′′ ∈ Rd×nc are the sampled two mini-batch
data batches , each containing the same c classes and n ran-
dom instances per class, and these batches are constructed in
the same category-order, e.g. the first n columns of both X

′

and X
′′

are from the same class, and the next n columns are
from another same class. ξ = (X

′′ − X ′)T is the residual
between two sampled batches. † is the generalized inverse.

Proof.

S
′
X
′T
− S

′′
X
′′T

= S
′
X
′T
− S

′′
X
′T

+ S
′′
X
′T
− S

′′
X
′′T

= (S
′
− S

′′
)X
′T
− S

′′
(X
′′
−X

′
)T

= (S
′
− S

′′
)X
′T
− S

′′
ξ

⇒ S
′
X
′T
− S

′′
X
′′T

+ S
′′
ξ = (S

′
− S

′′
)X
′T

⇒ ‖(S
′
X
′T
− S

′′
X
′′T

+ S
′′
ξ)X

′†T
‖ = ‖S

′
− S

′′
‖F

⇒ ‖S
′
− S

′′
‖F ≤ ‖S

′
X
′T
− S

′′
X
′′T
‖F ‖X

′T †
‖F

+ ‖S
′′
‖F ‖ξ‖F ‖X

′T †
‖F
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Iterations
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

‖X ′‖2F 1.26 1.14 1.06 1.11 1.02 0.98 0.95 0.98 1.02 0.97

Table 1: Changing of the norm of features during the training phase. It can be observed that the norm is relatively stable and
can not be increased.

Before minimizing this upper-bound, observing Eq. 2,
we notice that there are several sub-terms that can be re-
moved. (1) First, minimizing this upper-bound is to min-

imize ‖S′′‖F ‖ξ‖F ‖X
′T †‖F . This might lead to the mini-

mization of S
′′

and thus lead to the decrease of intra-class
similarity s

′′

ij (which is the similarity between samples from
the same class), i.e. to enlarge the intra-class distances. This
violates the basic discrimination criterion of DML and thus
isn’t what we want. (2) Second, minimizing this upper-

bound is to minimize the ‖S′X ′
T
− S′′X ′′

T
‖F ‖X

′T †‖F .

This might lead to the minimization of ‖X ′
T †
‖F . Since

‖X ′
T †
‖2F =

∑
1
σ2
i
, ‖X ′

T
‖2F =

∑
σ2
i , where σi is singular

values of matrix X
′T

, minimizing ‖X ′
T †
‖F means to in-

crease ‖X ′
T
‖F . However, the norm of the features can not

be arbitrarily increased and its convergence level are actually
limited and stable as shown in Tab. 1. Because, for a sin-
gle linear layer Y = WTX , the output feature norm ‖Y ‖F
is bounded by ‖W‖F ‖X‖F , and in practical we will L2-
regularize ‖W‖F , thus the output feature norm will be re-
stricted to a stable level 4, furthermore, as the deep model is
cascaded model, i.e. Y = ψ(· · ·ψ(WT

2 ψ(WT
1 X))) where ψ

is the piecewise linear activation function, then this restric-
tion is much stronger due to the cascaded L2-regularization,
thus the final output feature norm will be more stable and
can not be easily increased.

To this end, by removing the unwanted or stable subterms,
the minimization of the upper-bound term then becomes the
minimization of that as follows:

Lgc = ‖S
′
X
′T
− S

′′
X
′′T
‖F (3)

and we employ it as our final Graph Consistency regulariza-
tion term.

Remark: Leaving the above analysis, we interpret it from
another perspective. From Lgc, one can observe that both

S
′
X
′T

and S
′′
X
′′T

have similar formulation with random
walk propagation (without probability normalization), in
other words, S

′
X
′T

and S
′′
X
′′T

can be regarded as the
new generated node representations by linearly weighting
the original node features XT by the weights S. In this pro-
cess, the original node will be mapped to a new place in
the same feature space by considering its distances to all the
other nodes. Therefore, minimizing ‖S′X ′

T
− S′′X ′′

T
‖F

means to maintain the consistency between the generated

4Using bias also has the similar conclusion since the bias is still
L2 regularized. Here, for simplicity, the bias is omitted.

new nodes, implicitly regularize the consistency between the
original two sub-graphs.

In summary, minimizingLgc which comes from an upper-
bound is to ensure the learning of Discriminative-Graph.

Deep Consistent Graph Metric Learning
In this paper, the main idea is to regularize the randomly
sampled sub-graphs to be consistent so as to match the prop-
erty of Discriminative Graph which is of compact intra-
class distributions and separable inter-class margins. Thus,
the framework of CGML can be generally applied to sev-
eral popular metric learning objective functions, where we
simultaneously train our Graph Consistency term Lgc and
the distance metric term Lm as follows:

min
θf

L = Lm + λLgc (4)

where θf is the model parameters to be optimized and λ is
the trade-off hyper-parameter. In order to demonstrate the ef-
fectiveness of the proposed CGML framework, we develop
various widely used deep metric learning objective functions
here, i.e. Lm:

CGML (Tri): For triplet-tuple and Euclidean distance
measurement, we employ (Schroff, Kalenichenko, and
Philbin 2015):

Lm =
N∑
i

[‖xi − xi+‖22 − ‖xi − xi−‖22 +m]+ (5)

where this loss function constrains the distances of negative
pairs to be larger than that of the positive pairs by margin m
and the feature representations xi are assumed to be on the
unit sphere. In experiments, we find m = 0.1 performs best.

CGML (N-Pair): For N-tuple and inner-product similar-
ity , we employ (Sohn 2016):

Lm =
N∑
i=1

log(1 +
N∑

j=1,yj 6=yi

exp(xTi xj − xTi xi+)) (6)

where this loss function constrains the inner-products of ev-
ery negative pair xTi xj to be smaller than that of the positive
pair xTi xi+ .

CGML (Binomial): For contrastive-tuple and cosine sim-
ilarity, we employ (Yi et al. 2014):

Lm =
∑
i,j

log(1 + e−(2sij−1)α(Dij−β)ηij ) (7)

where sij = 1 when xi, xj are from the same class, other-
wise sij = 0. α = 2, β = 0.5 are the scaling and translation
parameters respectively, ηij is the penalty coefficient and is
set to 1 if sij = 1, otherwise ηij = 25, the cosine similarity

Dij =
xTi xj
‖xi‖‖xj‖ .
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Experiments
Implementation: For fair comparison, we choose to use two
different backbone models when comparing with different
methods: First, following many previous works, e.g. Lifted
(Oh Song et al. 2016), Angular Loss (Wang et al. 2017),
ALMN (Chen and Deng 2019a), DAML (Duan et al. 2018),
DAMLRRM (Xu et al. 2019), we choose the pretrained In-
ceptionV1 (Szegedy et al. 2015) as our bedrock CNN and
randomly initialized an added fully connected layer; Sec-
ond, for comparison with recently proposed methods, such
MS(Wang et al. 2019a) and RLL(Wang et al. 2019b), we
choose the pretrained InceptionBN model as our bedrock
CNN. If not specified, we set the embedding size as 512
throughout our experiments. We also adopt exactly the same
data preprocessing method (Oh Song et al. 2016) so as to
make fair comparisons with other works 5. For training, the
optimizer is Adam (Kingma and Ba 2014) with learning rate
1e− 5 and weight decay 2e− 4. The training iterations are
5k (CUB), 10k (CARS), 20k (Stanford Online Products and
In-Shop), respectively. The new fc-layer is optimized with
10 times learning rate for fast convergence. Moreover, for
fair comparison, we use minibatch of size n = 130 through-
out our experiments, which is composed of m = 13 random
selected classes with 10 instances each class. Our work is
implemented by caffe.

Evaluation: For fair comparison, following many other
works, the retrieval performance is evaluated by Recall@K
metric. And following (Oh Song et al. 2016), we evaluate
the clustering performances via normalized mutual informa-
tion(NMI) and F1 metrics. The input of NMI is a set of
clusters Ω = {ω1, . . . , ωK} and the ground truth classes
C = {c1, . . . , cK}, where ωi represents the samples that
belong to the ith cluster, and cj is the set of samples with
label j. NMI is defined as the ratio of mutual informa-
tion and the mean entropy of clusters and the ground truth,
NMI(Ω,C)= 2I(Ω,C)

H(Ω)+H(C) , and F1 metric is the harmonic
mean of precision and recall as follows F1 = 2PR

P+R .
Datasets: Then our CGML is evaluated over the widely

used benchmarks:

1. CARS contains 16,185 car images from 196 classes. We
split the first 98 classes for training (8,054 images) and
the rest 98 classes for testing (8,131 images).

2. CUB includes 11,788 bird images from 200 classes.We
use the first 100 classes for training (5,864 images) and
the rest 100 classes for testing (5,924 images).

3. Stanford Online Products has 11,318 classes for training
(59,551 images) and the other 11,316 classes for testing
(60,502 images).

4. In-Shop contains 3,997 classes for training(25,882 im-
ages) and the resting 3,985 classes for testing(28,760 im-
ages). The test set is partitioned into the query set of 3,985
classes(14,218 images) and the retrieval database set of
3,985 classes(12,612 images).
5Only the images in CARS dataset are preprocessed differently,

since we find our preprocessing method can lightly improve the
performances, see the detail underneath Tab.2

Ablation Experiments
Comparison with Other Works
To highlight the significance of our CGML framework,
we compare with the aforementioned corresponding base-
line methods, i.e. the widely used Triplet (Schroff,
Kalenichenko, and Philbin 2015), N-Pair (Sohn 2016) and
Binomial (Yi et al. 2014), moreover, we also compare our
CGML with some other popular DML methods, such as
Inception-based methods: Lifted (Oh Song et al. 2016), An-
gular Loss (Wang et al. 2017), ALMN (Chen and Deng
2019a), DAML (Duan et al. 2018), DAMLRRM (Xu et al.
2019). 6

The experimental results over CUB, CARS (Krause et al.
2013), Stanford Online Products (Oh Song et al. 2016)
and In-shop (Liu et al. 2016) are in Tab.2-Tab.4 respec-
tively, bold number indicates the improvements over base-
line methods. From these tables, one can observe that our
CGML consistently improves the performances of the orig-
inal deep metric learning methods (i.e. Triplet, N-Pair and
Binomial losses) on all the benchmark datasets by a large
margin, demonstrating the necessity of explicitly enhancing
the discrimination ability of the learned metric and validat-
ing the universality and effectiveness of our CGML. Fur-
thermore, our CGML (Binomial) also surpasses almost all
the listed approaches.

In summary, learning towards discriminative embeddings
by graph regularization is effective and important, which is
achieved by regularizing the randomly sampled graphs to be
consistent such that the property of Discriminative Graph
can be obtained.

Relations with Global Optimization Methods
Recently, there are some other works targeting at using
global constraints, such as Lifted(Oh Song et al. 2016),N-
Pair(Sohn 2016),MS(Wang et al. 2019a). However, we em-
phasize that their formulations /implementations actually in-
fluence and limit their global constraints, even if they have
similar target, i.e. using the global structure, as ours. For ex-
ample, Lifted/N-Pair/MS are all based on Softmax-function.
While SoftMax-function has a Maximum-Domination prob-
lem, i.e. paying more attention to the maximum input; in
other words, it will only focus and magnify the influence of
the pair with the biggest similarity, but ignore influences of
the rest pairs, thus weakening the actual constraints on the
global structure. On the contrary, Our CGML treats all the
pairs equally without discrimination. And From the above
experimental comparisons, we can observe that our CGML
can further improve the N-Pair/MS results, showing that the
global constraints from N-Pair/MS indeed are not enough.
In summary, this paper propose a novel regularization term
from graph perspective for global structure optimization.

6As a common knowledge, the performances of ensemble
model are actually indeed better than single model. Therefore,
in this paper, the ensemble methods such as HDC(Yuan, Yang,
and Zhang 2017), BIER(Opitz et al. 2017, 2018), ABE(Kim
et al. 2018), DeML(Chen and Deng 2019b) and Divide&Conquer
(Sanakoyeu et al. 2019) are not listed in tables.
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CARS Stanford Online Products
Method R@1 R@2 R@4 R@8 NMI F1 R@1 R@10 R@100 R@1000 NMI F1
Lifted 49.0 60.3 72.1 81.5 55.1 21.5 62.1 79.8 91.3 97.4 87.4 24.7
Clustering 58.1 70.6 80.3 87.8 59.0 - 67.0 83.7 93.2 - 89.5 -
Angular 71.3 80.7 87.0 91.8 62.4 31.8 70.9 85.0 93.5 98.0 87.8 26.5
ALMN 71.6 81.3 88.2 93.4 62.0 29.4 69.9 84.8 92.8 - - -
DAML 75.1 83.8 89.7 93.5 66.0 36.4 68.4 83.5 92.3 - 89.4 32.4
DAMLRRM 73.5 82.6 89.1 93.5 64.2 33.5 69.7 85.2 93.2 - 88.2 30.5
Triplet 68.1 78.8 86.4 92.0 59.1 26.7 57.6 75.5 88.3 96.2 86.4 20.6
CGML(Tri) 75.8 84.7 90.9 95.2 63.5 32.9 64.1 79.5 90.2 96.8 87.1 23.2
N-Pair 74.4 83.6 89.8 93.8 61.8 29.9 67.8 83.9 93.1 97.8 87.7 25.6
CGML(N-Pair) 75.8 84.4 90.5 94.4 62.6 31.0 68.4 84.3 93.2 97.8 88.1 27.0
Binomial 73.1 82.3 88.3 92.7 61.7 28.4 68.2 84.0 93.1 97.7 88.5 29.9
CGML(Binomial) 79.3 86.9 91.5 94.7 65.4 33.9 70.8 85.4 93.3 97.8 89.7 32.3

Table 2: Comparisons(%) with other works on CARS (Krause et al. 2013) and Stanford Online Products (Oh Song et al. 2016).
λ for CGML(Tri, N-Pair, Binomial) are {0.001, 0.002, 0.002} resp. Here, the images are directly resized to 256x256, which are
different from (Oh Song et al. 2016), then a 227x227 random region is cropped.

CUB
Method R@1 R@2 R@4 R@8 NMI F1
Lifted 47.2 58.9 70.2 80.2 56.2 22.7
Clustering 48.2 61.4 71.8 81.9 59.2 -
Angular 53.6 65.0 75.3 83.7 61.0 30.2
ALMN 52.4 64.8 75.4 84.3 60.7 28.5
DAML 52.7 65.4 75.5 84.3 61.3 29.5
Triplet 49.4 61.8 73.0 82.1 57.2 24.3
CGML(Tri) 53.3 64.9 75.7 84.5 60.2 27.0
N-Pair 50.5 63.2 74.2 83.1 59.2 26.3
CGML(N-Pair) 52.1 64.2 75.4 84.5 60.4 28.5
Binomial 52.5 64.1 74.8 84.0 59.2 26.9
CGML(Binomial) 54.8 66.2 76.2 84.5 61.6 30.7

Table 3: Comparisons(%) with other works on CUB. λ for CGML (Tri, N-Pair, Binomial) are {0.001, 0.002, 0.002} resp.

In-Shop
Method R@1 R@10 R@20 R@30 R@40 R@50
FashionNet 53.0 73.0 76.0 77.0 79.0 80.0
HDC 62.1 84.9 89.0 91.2 92.3 93.1
BIER 76.9 92.8 95.2 96.2 96.7 97.1
HTL 80.9 94.3 95.8 97.2 97.4 97.8
Triplet 63.8 86.8 91.0 92.6 93.9 94.8
CGML(Tri) 67.5 89.7 93.2 94.8 95.7 96.2
N-Pair 78.3 94.1 95.8 96.7 97.4 97.7
CGML(N-Pair) 78.9 94.3 95.9 96.8 97.4 97.7
Binomial 81.8 94.1 96.3 97.2 97.6 97.9
CGML(Binomial) 82.6 94.4 96.5 97.3 97.7 97.9

Table 4: Comparisons(%) with other works on In-shop (Liu et al. 2016). λ for CGML (Tri, N-Pair, Binomial) are
{0.001, 0.002, 0.002} resp.

Conclusion

In this paper, we propose the deep Consistent Graph Met-
ric Learning framework, a generally applicable technique to
various conventional deep metric learning approaches. The
major idea is to explicitly intensify the intra-class compact-

ness and inter-class separability within the learned embed-
ding with the help of our Graph Consistency regulariza-
tion term. Extensive experiments on the popular benchmarks
(i.e. CUB, CARS, Stanford Online Products and In-Shop)
demonstrate the significance and necessity of our idea of
learning discriminative metric by graph optimization.
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