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Abstract

Modeling non-linear data as symmetric positive definite
(SPD) matrices on Riemannian manifolds has attracted much
attention for various classification tasks. In the context of
deep learning, SPD matrix-based Riemannian networks have
been shown to be a promising solution for classifying elec-
troencephalogram (EEG) signals, capturing the Riemannian
geometry within their structured 2D feature representation.
However, existing approaches usually learn spatial-temporal
structures in an embedding space for all available EEG sig-
nals, and their optimization procedures rely on computation-
ally expensive iterations. Furthermore, these approaches of-
ten struggle to encode all of the various types of relation-
ships into a single distance metric, resulting in a loss of gen-
erality. To address the above limitations, we propose a Rie-
mannian Embedding Banks method, which divides the prob-
lem of common spatial patterns learning in an entire em-
bedding space into K-subproblems and builds one model
for each subproblem, to be combined with SPD neural net-
works. By leveraging the concept of the “separate-to-learn”
technology on a Riemannian manifold, REB divides the data
and the embedding space into K non-overlapping subsets
and learns K separate distance metrics in a Riemannian ge-
ometric space instead of the vector space. Then, the learned
K non-overlapping subsets are grouped into neurons in the
SPD neural network’s embedding layer. Experimental results
on public EEG datasets demonstrate the superiority of the
proposed approach for learning common spatial patterns of
EEG signals despite their non-stationary nature, increasing
the convergence speed while maintaining generalization.

Introduction
Covariance-based SPD matrices have been widely used to
classify time-series data in various applications (Pennec,
Sommer, and Fletcher 2019; Congedo, Barachant, and Bha-
tia 2017), exploiting the second-order statistics to capture
and represent the temporal fluctuations of different data
lengths. By taking the advances on the higher-order statistics
in SPD matrices, recent EEG signal processing techniques
have increasingly carried out practical computations on
Riemannian manifolds in feature representation (Barachant
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et al. 2011; Olias et al. 2019; Rodrigues, Jutten, and Con-
gedo 2018).

However, these successful applications suffer from the
computational efficiency of distance or similarity on a Rie-
mannian manifold (Cherian et al. 2013). Since the data
points on the SPD manifold are geodesics along the mani-
fold’s curvature, computing the geodesics increases compu-
tational costs due to the non-existence of closed-form solu-
tions. Besides, applying existing Euclidean-based distance
measure directly to SPD matrices often results in undesir-
able effects. i.e., swelling of the diffusion tensors (Pennec,
Fillard, and Ayache 2006). Several approaches have been
presented to properly encode the Riemannian geometry of
SPD manifolds by typically flattening the SPD manifolds
through a tangent space approximation with the matrix log-
arithm computation (Pennec, Sommer, and Fletcher 2019;
Arsigny et al. 2007; Congedo, Barachant, and Bhatia 2017).
Then, Euclidean classifiers such as SVM or kNN have been
used to learn features represented in the space (Barachant
et al. 2011). However, these shallow learning schemes of
the matrix logarithm computation for a flatten vector rep-
resentation have often led to poor performance, leading to
sub-optimal solutions on the non-linear manifolds.

In light of the recent success in metric learning algo-
rithms with deep neural networks (DML), several methods
have been proposed to interpolate, restore, and classify SPD
matrices on a Riemannian manifold (Sra 2012; Liu et al.
2019b). Existing approaches in DML leans a single dis-
tance metric for all samples from the given data distribu-
tion. The method usually pulls similar samples closer while
pushing different samples further away to learn the seman-
tic distance. However, this strategy can not be directly ap-
plied to learning EEG data because of its non-linear, non-
uniformly distributed, and complex data structure (Kim and
Jo 2020; Alarcao and Fonseca 2019). This limitation ex-
hibits inter- and intra-class variability problems for learn-
ing high-dimensional neural activities in the brain. In con-
sequence, using DML algorithms to learn a single distance
metric between EEG-based SPD matrices becomes a chal-
lenging issue because the level of relative similarity in each
training pairs or triplet determines how fast the network
learns correctly.

To overcome this limitation, we aim to develop a cost-
efficient metric learning algorithm on SPD manifolds mo-
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tivated by the separate-to-learn (SL) technique, which par-
titions the problem of classification into sub-problems and
builds one model to solve each sub-problem. The Filter Bank
Common Spatial Pattern (FBCSP) (Ang et al. 2008) and the
Riemannian potato field (Barthélemy et al. 2019) algorithms
are the case for SL-based EEG frequency bank algorithms.
They divide frequencies decomposed from EEG signals into
K bands and learn common patterns of each band individ-
ually. The selected spatial features from the K bands are
used to classify motor imagery (MI) related tasks in brain-
computer interfaces (BCI). Recently, SL-based algorithms
have been integrated into deep neural networks (DNN) to
perform various Euclidean-based tasks (Liu et al. 2019a;
Sanakoyeu et al. 2019). However, applying the SL strategy
into deep Riemannian networks is 1) intractable due to SPD
constraints, which also leads 2) the difficulty in optimiza-
tion.

To solve the above problems, we propose a new SL-based
model to embed SPD matrices under a non-linear frame-
work named Riemannian Embedding Banks (REB). The
proposed model aims to solve the common spatial pattern
problem with respect to the embedding learning problem in
DNNs to be combined with Riemannian networks. REB di-
vides the spatial patterns in an entire Riemannian embed-
ding space into K-subproblems and build one model for
each sub-problem, focusing on only considering the samples
assigned to the corresponding cluster. Without loss of gen-
erality in embedding learning, all models share the underly-
ing feature representation. Then the final embedding space
is seamlessly composed by concatenating the solutions on
each of the non-overlapping sub-spaces.

We use the Riemannian SPD Matrix Network
(SPDNet) (Huang and Van Gool 2017) as a baseline
SPD neural network. Given SPD matrices as inputs,
SPDNet learns the matrix characteristics, preserving the
SPD structure across their proposed layers, named BiMap,
ReEig, and LogEig to be non-linearly mapped into latent
space where the matrix features are transformed to a
Euclidean space for further classification. Same as other
variants of SPDNet (Liu et al. 2019b; Brooks et al. 2019),
REB takes SPD matrices as inputs and uses a sequence of
BiMap and ReEig for extracting SPD matrix features, which
can be learned jointly through matrix back-propagation
with stochastic gradient descent (SGD) (Ionescu, Vantzos,
and Sminchisescu 2015). Our approach can be replacement
of the fully-connected (FC) layer for learning embeddings
in the existing DML approaches, regardless of the loss
function used for training.

Preliminaries
Riemannian Geometry of SPD Matrices
We denote X as a Nc × Nc symmetric positive definite
(SPD) matrix, where x ∈ RNc×Ns indicates the EEG mul-
tivariate time-series signals (x > 0) and Nc and Ns are the
numbers of channels and samples, respectively. The set of
all SPD matrices lies in a differentiable Riemannian mani-
foldM, which is portrayed as a surface with a non-positive
curvature. Between any two SPD matrices X1, X2 ∈ M,

a unique curve, called a geodesic, is determined by min-
imizing the length of the curve between the two points.
Several metrics have been presented to capture the non-
linearity (Pennec, Fillard, and Ayache 2006; Arsigny et al.
2006; Sra 2012; Kulis, Sustik, and Dhillon 2006; Cichocki,
Cruces, and Amari 2015). Among them, the affine-invariant
Riemannian metric (AIRM) has found great popularity in
geometry-aware algorithms for the processing of SPD matri-
ces (Barachant et al. 2011; Rodrigues, Jutten, and Congedo
2018; Yair, Ben-Chen, and Talmon 2019). AIRM is defined
as follows:

δR(X1,X2) = ‖Log(X−1/21 X2X
−1/2
1 )‖F

= (
C∑
c=1

log2λc)
1/2,

(1)

where ‖ · ‖F is the Frobenius norm, Log(·) is the matrix
logarithm, and λc, c = 1, . . . , C are the real eigenvalues of
X−1/2X2X

−1/2
1 . In this this study, we refer to the Rieman-

nian distance on the manifoldM as AIRM.

Riemannian SPD Matrix Network (SPDNet)
SPDNet exploits the Riemannian geometry across their pro-
posed layers for more compact and discriminative SPD ma-
trix features, preserving the manifold structure. Let Xs−1,
Ws, and Xs be the SPD matrix, transformation matrix, and
resulting matrix in the s-th layer, respectively. We summa-
rizes the BiMap and ReEig layers of SPDNet as follows:

• The BiMap layer f (s)m aims to generate more discrimina-
tive and compact SPD matrix features by transforming the
inputs into low-dimensional SPD matrices through bilin-
ear mapping:

Xk = f (s)m (Xs;Xs−1) = WsXs−1W
ᵀ
s , (2)

where the transformation Ws should be constrained to a
raw full-rank matrix to output Xs in the form of an SPD
matrix.

• The ReEig layer f (s)r is similar to the ReLU layer (Nair
and Hinton 2010). The layer utilizes a non-linear activa-
tion to improve the discrimination by rectifying the SPD
matrices with their small positive eigenvalues:

Xs = f (s)r (Xs−1) = Us−1 max(εI,Σs−1)U
ᵀ
s−1, (3)

where max(·, ·) is the maximum function, Us−1 and
Σs−1 are learned by the eigenvalue decomposition of
Xs−1 = Us−1Σs−1U

ᵀ
s−1, ε is a threshold parameter, and

I is the identity matrix.
SPDNet suggests a classification scheme with classical neu-
ral network layers, such as a FC layer fu and a softmax layer
fs. For further classification, the two layers can be inserted
after the LogEig layer, which projects the vectorization of
the output SPD feature manifold to a Euclidean space.

Deep Metric Learning
Developing efficient DML functions has been a crucial fac-
tor in improving the performance of learned features (Roth
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et al. 2020). Facility Location (Song et al. 2017) learns a
cluster quality metric, Histogram Loss (Ustinova and Lem-
pitsky 2016) minimizes the overlap between the distance
distribution of positive and negative samples.

Despite their advances, only a small portion is informative
and provides a learning signal. Hence, designing a suitable
sampling strategy also matters. Although some works (Roth
et al. 2020) presented hard and semi-hard negative mining
strategies that offer faster convergence by retrieving samples
in the high-variance region, this approach often leads to col-
lapsed models. For further details, refer to the below section.
A lot of recent research efforts have been devoted to devis-
ing new sampling strategies. RankMI (Kemertas et al. 2020)
maximizes the mutual information among same-category
items and leans low proximity for items from different cat-
egories. RLL (Wang et al. 2019) forces the positive pair-
wise distance smaller than a threshold, which is the diam-
eter of each class’s hypersphere. DSML (Yuan et al. 2019)
proposed a Signal-to-Noise Ratio (SNR) distance metric that
measures the level of anchor features compared to other cat-
egorical features. DWL (Wu et al. 2017) presented a new
sampling strategy, where samples are distributed uniformly
according to their relative distance from neighbors.

However, existing sampling approaches either require
running an expensive preprocessing step on the entire
dataset for every epoch (Harwood et al. 2017; Liu et al.
2019b) or suffer a lack of global information because a sin-
gle randomly-drawn mini-batch from an embedding space
provides only a local view on the entire dataset.

Our approach is orthogonal to these methods by provid-
ing 1) a framework for learning a distance metric indepen-
dent on the choice of a particular loss function and 2) in-
dependent learners assigned to the specific sub-space, in-
cluding the corresponding portion of the data. Each learner
reduces the training complexity in a single model without
extra parameters. This is the major difference to the exist-
ing ensemble learning methods that train multiple learners
inside a single framework in combination with proper loss
functions (Opitz et al. 2020; Yuan, Yang, and Zhang 2017).

Riemannian Embedding Banks
Our configuration of SPDNet comprises a block sequence of
BiMap and ReEig layers. From the SPD matrix features re-
sulted from the baseline SPDNet, the proposed REB aims to
1) split the entire embedding dimensions into multiple clus-
ters along with the SPD matrix features and learn the char-
acteristics independently in each cluster. 2) Then, the clas-
sification tasks are conducted by merging a consequence of
individual solutions (Figure 1).

SPD Separate-to-Learn Layer
Separating SPD embeddings: We denote X̃i ∈ Sym+

d
as the i-th resulting SPD matrix feature extracted from the
baseline SPDNet with the input SPD matrix Xi ∈ Sym+

m.
Let K be the the number of sub-space. This layer group all
features in the embedding space into K clusters. The output
of the layer can be defined by a nonlinear function fp as:

Ck = fp(X̃i), (4)

Figure 1: The overview of the proposed REB with SPDNet.
SPD matrix features extracted from SPDNet are separated
into K clusters.

where Ck ∈ C = {C1, C2, . . . , CK} is k-th resulting clus-
ter where X̃i is assigned. Typically, the K-means clus-
tering algorithm has been taken to determine the group
of C (Sanakoyeu et al. 2019). However, the conventional
Euclidean-based clustering algorithm can not be applica-
ble because the input features of this layer are SPD ma-
trices. Some unsupervised clustering algorithms have been
presented based on Riemannian manifolds (Stanitsas et al.
2017; Zheng, Qiu, and Huang 2018). However, they cannot
be utilized because iterative updates of candidate centroids
on Riemannian spaces require intensive calculation, leading
to sub-optimal problems when applying them to DNNs.

To overcome this problem, we devise an objective func-
tion to optimize the function fp considering class relation-
ships between triplets (anchor, positive, and negative sam-
ples) in each cluster. While useful clustering algorithms try
to make only homogeneous samples near each other, we aim
to partition a set of points into K sets such that the samples
are informative for learning both homogeneous and hetero-
geneous aspects of triplets in metric learning. Assuming all
clusters have an equal amount of data,
• We first intend to gather a set of samples in the same clus-

ter are closer to each other than to those in other clusters
as follows:

LA(X̃i; fp) =
∑

X̃j∈fp(X̃i)

δ2R(X̃i, X̃j). (5)

This function ensures hard negatives within a cluster have
a chance of being sampled naturally without explicitly
performing a hard negative mining procedure.

• To provide more informative positive samples, they
should be dissociated, so that such samples can best
present the diversity of the training data. To this end, the
target is to maximize the pair-wise distance between two
input SPD matrices with the same label,

LP(X̃i, yi; fp) = −
∑

X̃j∈fp(X̃i),yj=yi

δ2R(X̃i, X̃j), (6)
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Figure 2: Empirical pairwise-distance distributions for neg-
ative pairs on DEAP, EEGBCI, and BCICIV.

where yi is the class label associated with i-th resulting
SPD matrix feature, X̃i and X̃j are positive relationship.

• Sampling informative negative examples have been a
critical issue. (Semi-) hard negative mining strategy has
contributed to accelerating convergence, providing non-
trivial triplets under well-designed batch selection. How-
ever, the mining strategy severely leads to collapsed EEG-
based models because the non-stationary property of the
data influences high intra-class variation, which causes
negative effects on sampling triplets. Under this unfavor-
able condition, hard negative mining yields noisy gradi-
ents with low SNR in the high variance area and cannot
push two examples apart. Along with the same line, semi-
hard negative mining might converge quickly at the be-
ginning, finding a narrow set in between. However, the
network will stop making progress since there might be
no examples left within the embedding. To overcome this
issue, inspired by the study in (Wu et al. 2017), we aim
to design that negative samples are spread out according
to distance by following the distribution of pairwise dis-
tances D(·, ·) asymptotically as follows:

q(D) ∝ Q(D) = Dn−2[1− 1

4
D2]

n−3
2

, (7)

where the learned Riemannian embeddings are to con-
strained to uniformly distributed on the n-dimensional
unit sphere Sn−1 for large n (Lee 2006; Wu et al. 2017).
Our empirical analysis of pairwise distance distributions
for negative pairs on the embeddings (Figure 2) justi-
fies our motivation of designing a clustering strategy. The
bell-shaped curves give a chance to examples to be sam-
pled according to their distance in a cluster. Thus, we de-
vise a loss function to impose a penalty when negative
samples are not uniformly distributed according to their
distance with an anchor.

LN (X̃i; fp) =∑
X̃m∈fp(X̃i),ym 6=yi

log(min(10−4,Q(D(X̃i, X̃m))), (8)

where Xi and Xm are negative relationship. D(X̃i, X̃m)

= ‖ Log(X̃i)− Log(X̃m) ‖F , where Log(·) is the matrix
and ‖ · ‖F is the Frobenius norm of the matrix logarithm.
The function offers each cluster can contain a wide range
of negative examples, and thus steadily produce informa-
tive examples while controlling the variance.

In sum, optimizing the function fp can be achieved to mini-
mize the following the loss function:

LCk(X̃i; fp) =

LA(X̃i; fp) + LP(X̃i; fp) + LN (X̃i; fp), (9)

where LCk(X̃i; fp) determines the clustering quality of Ck.
Given the K number of clusters, we also decompose the
function f̂(·; θf̂ ) : Sym+

m → Sym+
d into K functions

{f̂1, f̂2, . . . f̂K}, where each f̂k maps the input into the
d/K-dimensional sub-space of the original d-dimensional
embedding space: f̂k(·; θf̂k) : Sym+

m → Sym+
d/K .

Learning separated SPD embeddings: All of the sepa-
rated learners associated with their clusters are trained in-
dependently. That is, only one of the learners is updated
in each training iteration. We uniformly sample a cluster
Ck, 1 ≤ k ≤ K and draw a random mini-batch B from it
(B ⊂ Ck). Then, a learner f̂k(·; θf̂k) aims to minimize the
following function:

Lf̂kk (X̃i; f̂k) =
∑
X̃i∈B

[fd(X̃i; f̂k)], (10)

where the function fd(X̃i; f̂k) discriminates inter- and intra-
class features assigned to a learner f̂k in metric learn-
ing. There can be several alternative metric learning algo-
rithms (Roth et al. 2020). In order to realize the layer, we
selected two deep metric learning structures, including Mar-
gin loss (Wu et al. 2017) and Triplet loss (Song et al. 2017).
For instance, the function fd(X̃i; f̂k) with Triplet loss can
be defined as

f triplet
d (X̃i; f̂m) =

[δ2R(X̃i, X̃j)− δ2R(X̃i, X̃m) + α]+, (11)

where X̃j , X̃m ∈ B. X̃j is a positive neighbor and X̃m is
a negative neighbor with X̃i. δR(·, ·) is the Riemannian dis-
tance measured by the AIRM in (1) and α is the margin.
We note that each backward pass for (10) updates the shared
parameters θφ of the baseline SPDNet associated with the
only parameters of θf̂k . Later, for the final classification, the
full embedding is configured simply by concatenating theK
sub-embeddings produced by the individual learners.

SPD Classification Layer
The layer aims to classify SPD matrix features as a con-
sequence of individual learners’ solution. This process is
done by concatenating the embeddings associated with the
K learners as follows:

f̂ = [fd(X̃i; f̂1), fd(X̃i; f̂2), · · · , fd(X̃i; f̂K)]. (12)

Hence, the output of REB can be learned by minimizing the
following loss function for each cluster:

Lk = λ1
∑

X̃i∈Ck

LCk(X̃i; fp)+λ2
∑

X̃i∈Ck

Lf̂kk (X̃i; f̂k). (13)
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Algorithm 1 Riemannian Embedding Banks

Input: Training SPD matrices {X, y}, initialized layer pa-
rameters θφ and weights θf̂ , and the learning rate lr for
the losses.

Output: The parameters θφ, θf̂
1: X̃← SPDNet output (X→ fb → fr → X̃)
2: epoch← 0
3: while not converge do
4: C = {C1, · · · , CK} ← Separate X̃ in f̂ into K

groups
5: f̂ = {f̂1, · · · , f̂K} ← Assign a learner f̂k to Ck
6: Compute the loss LCk of each cluster Ck in (9)
7: repeat
8: B ← Draw a mini-batch from Ck

9: Compute Lf̂kk of each learner f̂k with B in (10)
10: Compute Lk in (13)
11: Compute backprogagation error ∂Lk

∂Ck
in (14)

12: Update weights θφ, θf̂k with lr and Lk
13: until Epoch completed
14: epoch← epoch+ 1
15: end while
16: f̂ ← Concatenate all f̂k
17: θφ, θf̂ ← Fine-tune with X̃, θφ, θf̂ , f̂
18: return θφ, θf̂

Learning with REB
The proposed model integrated with SPDNet can be written
as a series of non-linear function compositions. For training
each layer, we exploit the matrix back-propagation (Ionescu,
Vantzos, and Sminchisescu 2015) with stochastic gradient
descent for computing the gradients in ReEig and LogEig
layers where the eigenvalue decomposition of SPD matrices
is involved. For updating the weights in BiMap layers, we
update them on Stiefel manifolds. For more details of com-
puting the gradients of the involved data in the three layers,
readers are referred to (Huang and Van Gool 2017).

For the gradients of the proposed REB, the updating
schemes are achieved by the following the chain rule:

∂Lk
∂Ck

= (
∂LCk
∂fp

+
∂Lf̂kk
∂fd

· ∂fd
∂fp

) · ∂fp
∂X̃i

. (14)

While we have different distance metrics, all methods mea-
sure the Riemannian distance using the AIRM, in which the
gradient is computed by (Harandi, Salzmann, and Hartley
2018). The proposed REB is summarized in Algorithm 1.

Experiments
Comparison of other State-of-the-art Methods
We compared our approach to a series of state-of-the-art
methods: Facility Location, Histogram Loss, RLL, RankMI,
BoMS, DSML, and DWL. All methods are described in
the above section. To verify the efficiency of SPD neu-
ral networks, we also compared with two shallow Rie-
mannian methods: MDM (Barachant et al. 2011) and Fg-

Methods Dataset
BCICIV EEGBCI DEAP-4 DEAP-9

MDM 24.4 55.8 38.0 21.2
FgMDM 30.6 55.3 48.7 33.1
Facility Location 46.9 65.1 55.3 37.4
Histogram Loss 48.0 63.3 54.8 38.5
RLL 49.5 70.3 55.7 40.1
RankMI 46.3 71.6 54.8 40.5
BoMS 46.8 73.8 53.6 39.8

Triplet

Semihard 32.5 51.5 42.5 37.2
Random 31.5 53.7 44.6 38.1
DSML 44.4 74.2 53.6 41.8
DWL 47.3 75.1 52.5 42.5
REB 46.2 73.5 55.4 48.7

Margin

Random 32.2 56.7 47.5 39.9
DSML 45.9 73.8 55.6 42.5
DWL 48.8 74.4 56.4 42.9
REB 51.2 73.2 59.2 50.4

Table 1: Comparison of mAP results against the state-of-the-
art methods on BCICIV, EEGBCI, and DEAP.

MDM (Barachant et al. 2013). For the methods, we use
authors’ published source codes and tune the parameters
according to the original works. If necessary, we empiri-
cally set the best parameters with the highest accuracy based
on the original study. For instance, we set λ1 = 1.3 and
λ2 = 0.7 for evaluating BoMS.

Datasets
We evaluated REB on different tasks during EEG classifi-
cation: emotion recognition, and motor imagery tasks us-
ing three EEG datasets. The two motor imagery datasets
were imported from an open-source repository1 (Jayaram
and Barachant 2018).

• BCICIV (Tangermann et al. 2012): The BCI competition
IV Database-Dataset IIa (BCICIV) contains 22-channeled
EEG signals at 250 Hz gathered from nine subjects. They
were asked to imagine four different motor imagery tasks
during 6 s. Each participant conducted 6 runs of 48 trials
from 2 sessions.

• EEGBCI (Schalk et al. 2004): The EEG Motor Move-
ment/Imagery Dataset using the BCI2000 system (EEG-
BCI) contains 64 channeled EEG signals at 160 Hz over
1500 1- and 2-min recordings from 109 participants. We
fetched motor imagery data for classifying two classes
from left and right hands, hands and feet-related tasks.

• DEAP (Koelstra et al. 2011): The Database for Emo-
tion Analysis Using Physiological Signals (DEAP) is a
large-scale EEG-based emotion dataset, which contains
32-channel EEG signals recorded from 32 participants;
each participant watched 40 1-minute-long excerpts of
music videos excerpts, annotating continuous valence and
arousal ratings on scales from 1 to 9. We grouped pairs of

1The repository is called Mother of all BCI Benchmark
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Figure 3: Four common spatial patterns discovered by the
six (K = 6) learners and their corresponding sub-spaces on
the dataset EEGBCI.

continuous labels on the valence and arousal into k dis-
crete states, denoted as DEAP-k. For instance, DEAP-9
comprises nine combinations of negative (1 − 3), neutral
(4−6), and positive (7−9) valence ratings and low (1−3),
mid (4− 6), and high (7− 9) arousal ratings.

Experimental Setup
EEG Preprocessing All EEG signals for each channel
are first band-pass filtered with a bandwidth of 4 − 47Hz
for DEAP and 7 − 30Hz for BCICIV and EEGBCI. Then,
we standardize the continuous EEG data by computing the
electrode-wise exponential moving means and variances. In
consequence, each EEG signal is represented by a channel×
channel SPD matrix, which is estimated by a second-order
statistics with a shrinkage estimator (Chen et al. 2010).

Training, Validation, and Testing Datasets EEG seg-
ments were extracted with a sliding time with a width 10
s for DEAP and 2 s from -0.5 to 3.5 s for BCICIV and
EEGBCI after cues. Except for the BCICIV dataset, we con-
ducted a 5-fold cross validation, which splits the full datasets
into fifths for testing. From the remaining data (four-fifths
of the total data), we used one-fifth of the remaining data
for validation and four-fifths for training. Because BCI-
CIV already separates the training and testing sessions, the
training session was split into fifths for validation. The re-
maining data (four-fifths) were used as a training set. Note
that the training, validation, and testing data were subject-
independent. We report mean average precision (mAP) re-
sults from all participants.

Network Configuration and Parameter Settings For a
fair comparison, all methods applied a batch size, learn-
ing rate, weight decay, and momentum of 32, 10−2, 10−3,
and 0.9, respectively, as the training parameters. The initial
weights were set to random semi-orthogonal matrices, and
the rectification threshold ε was set to 10−4. The separation
procedure was initialized randomly with a same amount of
data in every Ck. Early-stopping during validation with a

fixed patience size was adopted to prevent an overfitting in
learning the deep features. All methods including REB have
a simplified configuration, which is a block pair of BiMap
and ReEig layers (fm → fr). The sizes of the transforma-
tion matrices are set to 32 × 26, 22 × 18, and 64 × 56 for
DEAP, BCICIV, and EEGBCI, respectively.

Comparative Results
Table 1 reports the comparative performance on the three
public datasets. The results from ours with Triplet and Mar-
gin loss outperform existing the state-of-the-art methods.
This confirms that our approach is universal and can be ap-
plied to a variety of metric learning loss functions. Intu-
itively, all methods combined with the proposed REB have
average 14.2% accuracy improvements against the methods
under the entire embeddings with random sampling. The
triplet loss functions on the datasets had great improvement
when it comes with REB. This result supports the signifi-
cance of mining positive and negative samples within an em-
bedding space. The level of relative similarity in each train-
ing triplet determines to generate discriminative features for
classifying non-stationary EEG data. The poor performance
of the metric learning methods under the entire embedding
space implies that the loss may waste a gradient update on
SPD matrices far from the decision boundary. DWL yielded
the second-best performance in most cases. This observation
partially supports the efficacy of sampling negative exam-
ples uniformly based on their distances. However, the model
had similar performance with other state-of-the-art methods
when experimented on the DEAP dataset. The method could
not prevail over the inter- and intra-subject variability prob-
lem in light of the imbalanced and problematic data distri-
bution.

The results on DEAP-4 and DEAP-9 demonstrate the su-
periority of REB on unbalanced datasets. Most methods had
significant difficulty in learning spatial patterns commonly
used to represent SPD features of each class. When the im-
balance of data distribution between classes was increased
(DEAP-4 vs. DEAP-9), the performance of the state-of-the-
art methods was decreased by about 14.86%. On the other
hand, the proposed model had small decrements in perfor-
mance about 7.75%. This result implies that our separate-to-
learn strategy provides more efficient structures to retrieve
informative samples by dividing the entire embedding into
multiple groups. The multiple isolated K-assignments pre-
vents the model from being collapsed by low SNR.

Qualitative Results
In addition to the quantitative results, we also demonstrate
our model’s efficacy in Figure 3, which shows the four com-
mon spatial patterns discovered by true positive results from
the proposed REB with Margin loss on EEGBCI. We used
the CSP algorithm and visualized the patterns using an open-
source software2. This result indicates that every learner has
its own abstract “spatial specialization” on different brain
lobes. For instance, the learner 3 and 4 focus on discovering
latent spatial factors over the left-right centro-parietal lobes.

2https://mne.tools
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Figure 4: Effect of the Separate-to-Learn strategy on DEAP-9. (a) mAP results on the different number of clusters. (b) Inter-
and intra- cluster distance of different samples. (c) mAP results on different hyper-parameter λ1 and λ2. (d) mAP convergence
curves on different epochs.

This observation partially supports existing neuroscientific
studies that revealed spatial patterns commonly involved in
MI tasks (Wolpaw and Wolpaw 2012).

Discussion
We conduct an ablation study to demonstrate the proposed
method’s effectiveness and evaluate the different compo-
nents of our contribution. We compare the mAP results with
the existing K-means method (Sanakoyeu et al. 2019) on
the DEAP-9 validation dataset with Margin loss during 150
epochs.

Effect of the Separate-to-Learn Strategy
The effect of the number of K: The correct number of
trainers can improve the performance of the EEG classifica-
tion. As shown in Figure 4a, we observed that as many iso-
lated search areas the model has, the model efficiently learns
discriminative features, enhancing the classification perfor-
mance. Unlike the K-means method’s performance has been
degraded rapidly after the best setting, our REB had small
decrements less than 2%. This observation resonates with
the benefits of our clustering selection strategy in the num-
ber of trainers.

The effect of the isolation: The separate-to-learn strat-
egy yielded better performance than the sampling methods
with a unified trainer in Table 1. This observation resonates
with the fact that retrieving mini-batches from the individ-
ual clusters yields more informative training samples than
mini-batches from the entire dataset. Furthermore, Figure 4b
shows the efficacy of our isolating approach on the inter- and
intra- cluster distance between negative samples compared
with the K-means method. Whereas the K-means method
focuses on gathering only hard negative samples distributed
in a narrow space, our approach contributes to scatter the
negative samples more uniformly. This offers a wide range
of negative samples in each cluster, and thus steadily pro-
duce informative examples while keeping high SNR in SPD
matrices. Hence, this isolation enables individuals to learn
discriminative features in their way, reducing the complex-
ity of the non-linear learning task.

The effect of the hyper-parameters: The λ variables de-
termine the balance of the cluster and the structures in dis-

criminative feature learning. As shown in Figure 4c, increas-
ing the parameter λ1 during training would improve the
classification performance with the value of λ2. The per-
formance remains largely stable across a wide range of the
parameter λ1, reducing its fluctuation caused by increasing
the parameter λ2. This observation implies that informative
and sound samples, constrained efficiently by mutually non-
intervened groups, boost the distinction in metric learning.

Runtime Complexity Separating the full d-dimensional
embedding space into d/K-dimensional sub-spaces and as-
signing the embeddings into K independent trainers can re-
duce the time required for a single forward and backward
propagation. As shown in Figure 4d, the proposed model
exhibits a steeper curve compared with others. For the same
number of iterations, not only REB takes less overall time,
but it also reaches better accuracy much faster3. We note that
the clustering procedure depends on the number of K, sam-
ples, and iterations, but this can be negligible compared to
the time required for a full reciprocal step of all signals in
datasets as in (Sanakoyeu et al. 2019).

Conclusion
We proposed a separate-to-learn method, which partitions
and optimizes EEG signals in K clusters and assigns them
to individual trainers. The independent learning in multiple
trainers is then completed by combining the partial solutions
into the final entire embedding. REB can be easily combined
with SPD-based neural networks, replacing any last linear
embedding layers independent of the loss function’s choice.
The experimental results on public datasets demonstrated
the superiority of REB for discovering common spatial pat-
terns of EEG signals despite their non-stationary nature, in-
creasing the convergence speed while maintaining general-
ization.
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