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Abstract 
Visual Relation Detection is currently one of the most popu-
lar problems for visual understanding. Many deep-learning 
models are designed for relation detection on images and 
have achieved impressive results. However, deep-learning 
models have several serious problems, including poor train-
ing-efficiency and lack of understandability. Psychologists 
have ample evidence that analogy is central in human learn-
ing and reasoning, including visual reasoning. This paper in-
troduces a new hybrid system for visual relation detection 
combining deep-learning models and analogical generaliza-
tion. Object bounding boxes and masks are detected using 
deep-learning models and analogical generalization over 
qualitative representations is used for visual relation detec-
tion between object pairs. Experiments on the Visual Rela-
tion Detection dataset indicates that our hybrid system gets 
comparable results on the task and is more training-efficient 
and explainable than pure deep-learning models. 

 Introduction   
When performing visual understanding, people tend to en-
code relations between pairs of recognized objects. Visual 
relation detection is thus an important task for artificial in-
telligence and computer vision. Given an image, the goal of 
this task is to visually detect objects and predict relational 
predicates between them. Deep-learning models have 
achieved impressive results, mostly using two stages for this 
task: object detection followed by pairwise relation recogni-
tion. Most of the deep-learning models operate end-to-end, 
combining the two stages into one single neural network. 
They have broad coverage on the input data, especially on 
visual data. However, given the single neural network, mod-
els have some serious problems such as low training-effi-
ciency and lack of understandability. For example, (Ciresan 
et al., 2011) uses data-augmentation to increase the training 
samples to learn a classification model with many epochs on 
MNIST dataset. Many researchers have argued that neural 
networks are hard to trust because they lack explainability 
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(Samek, Wiegand, and Muller, 2017; Buhrmester, Munch, 
and Arens, 2019).  This paper introduces a new hybrid sys-
tem that combines deep learning models and analogical gen-
eralization to get the best features of both:  the broad cover-
age of deep learning models and the high training-efficiency 
and explainability of probabilistic symbolic representations 
produced by analogical generalization.  
 Cognitive psychology provides evidence that analogy 
plays important roles in human vision (Sagi et al., 2012; An-
derson et al., 2018). Moreover, computational models of 
analogy, combined with computational models of high-level 
vision using relational representations, have been successful 
in modeling a variety of psychological phenomena.  For ex-
ample, (Kandaswamy et al., 2014) showed that the Structure 
Mapping Engine (SME), an analogical matching model, can 
model learning forced-choice tasks with visual stimuli. Sim-
ilarly, (Lovett and Forbus, 2013) showed that CogSketch 
1(Forbus et al., 2011), a model of human visual perception 
that relies on analogical matching and relational structure, 
can solve mental rotation and paper folding tasks using 
SME, and performs better than most adult Americans on Ra-
ven’s Progressive Matrices (Lovett and Forbus, 2017). 
These models have been used in performance-oriented sys-
tems as well: Analogical generalization has been used to 
perform visual tasks such as object recognition (Chen et al., 
2019) and link plausibility (Liang & Forbus, 2015) to per-
form training-efficient learning with explainability. 
 Given an image, we use off-the-shelf deep-learning mod-
els to detect object categories, object bounding boxes and 
object masks. Object bounding boxes provide positional and 
spatial information. Object masks show the pose infor-
mation of objects. For most object pairs, the visual semantic 
relations can be recognized using the positional information, 
pose information and category information. Therefore, we 
encode these qualitative representations for each object pair. 
The qualitative representations of object pairs are passed to 
analogical generalization to learn and classify the possible 

1 CogSketch can be downloaded at https://www.qrg.northwestern.edu/soft-
ware/software_index.html. 
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visual relations between them. Our contributions are as fol-
lows. (1) We propose a new hybrid system that combines 
deep learning models and analogical generalization on the 
visual relation detection task. To our knowledge, this is the 
first system that combines deep learning and analogical 
learning. (2) We create a novel qualitative representation 
scheme for encoding pairwise information between pairs of 
objects. (3) Experiments and analysis show that our system 
has comparable results with several orders of magnitude 
fewer examples than pure deep-learning systems require, 
and the learned generalizations provide explainable models. 

Related Work 

Visual Relation Detection 
In recent years, many approaches have been proposed for 
visual relation detection and scene graph parsing. The visual 
relations between two objects are written as a triple < Sub-
ject, Relation, Object>, where the detected objects can either 
be the Object or the Subject in the triple. Most systems use 
a two-stage pipeline that detect objects from the image first 
and then classifies the relations between objects. In the first 
stage, almost all methods use deep learning detectors, either 
off-the-shelf detectors (Lu et al., 2016; Zhuang et al., 2017; 
Dai et al., 2017) or fine-tuning with the relationship datasets 
(Li et al., 2017; Xu et al., 2017). In the second stage, the 
visual relation task is usually regarded as a classification 
task and a relation is predicted for each pair. Various archi-
tectures have been used for encoding and classification.  For 
example, (Zellers et al., 2018) uses stacks of LSTMs to 
encode the features of object pairs. (Yang et al., 2018) uses 
an attentional graph convolutional network for encoding the 
context information of objects. (Tang et al., 2018) applied 
tree structure encoding and decoding for scene graph 
generation. 

 However, these deep-learning models require multiple 
epochs for training and produce results that are hard to un-
derstand. Our approach combines the deep learning models 
and analogical learning, to improve understandability and 
training cost. Following the two-stage scheme, our approach 
uses analogical generalization to classify relations over 
symbolic qualitative representations for each pair of objects 
in the second stage. Thus, the learned generalizations for 
each type of relation can be easily explored and explained 
and in the second stage, our approach requires fewer exam-
ples for training, more like humans. 

Analogical Learning 
Analogy is one of the essential capabilities in human learn-
ing (Gentner 2003).  Analogical learning involves three core 
processes: analogical matching, analogical retrieval, and an-
alogical generalization.  This analogy stack, described in 
more detail below, provides analogical learning capabilities 
that have been used in multiple tasks, including visual tasks 
(Chen et al., 2019; Chen and Forbus, 2018). However, the 
automatic visual encoding processes used in prior experi-
ments lacked breadth: They handled simple images, as 
found in visual problem-solving tasks, or Kinect data.  Here 
we use deep learning to do some of the initial encoding, in a 
way that takes advantage of its broad coverage, while main-
taining the training efficiency and explainability of analogi-
cal learning. 

Approach 
Our system uses a two-stage pipeline of object detection fol-
lowed by pairwise relation detection. The overview of the 
pipeline is depicted in Figure 1.  Given an image, object de-
tection uses deep learning models to detect bounding boxes, 
instance segmentations and their categories of objects. 

 
 

Figure 1: The pipeline overview to learn visual relation classification. Given an image, our system uses Faster-RCNN and 
Mask-RCNN to detect bounding boxes, instance segmentations, and categories of objects. Then, detection results are im-
ported into CogSketch. CogSketch computes qualitative representations for each pair of objects based on a novel encoding 
scheme, including object encodings and pair encodings. Generated qualitative representations are added into targeted gener-
alization pools in our analogical generalization model, SAGE. SAGE learns probabilistic relational generalizations, which 
are used for classification. 
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Object bounding boxes provide positional information, ob-
ject masks give pose information and object categories pro-
vide the semantic category of objects. The second stage au-
tomatically computes qualitative visual representations 
based on our novel encoding scheme for pairs of objects. 
During training, analogical generalization is used to learn 
analogical models for the semantic relations, and during 
testing, analogical retrieval is used to classify the relation-
ship for each pair of objects.  We discuss each stage in turn 
next. 

Object Detection 
In the first stage, we need to detect objects from images. To 
classify the visual relations in the second stage, the bound-
ing box, mask, and category of each object are generated to 
provide enough information for encoding object pairs. We 
use Faster-RCNN (Ren et al., 2015) with VGG16 backbone 
to detect the object bounding boxes and categories. Faster-
RCNN has two modules for object detection. The first mod-
ule is a deep fully convolutional neural network that pro-
poses regions, and the second module is the Faster-RCNN 
detector that uses regions for object detection. Given an im-
age, Faster-RCNN generates a set of bounding boxes. Each 
box has an object prediction label and confidence score. The 
bounding boxes are filtered with a threshold to generate the 
final set. In our experiments, Faster-RCNN is pre-trained on 
COCO dataset (Lin et al., 2014) and trained on targeted vis-
ual relation datasets.  
 To detect object masks, we utilize Mask-RCNN model 
(He et al., 2018) with Resnet-50 as the backbone for instance 
segmentation. Mask-RCNN also has two modules. The first 
module is similar to Faster-RCNN, proposing regions for 
objects. The second module uses proposed regions to gener-
ate instance segmentation masks for objects. As most of the 
visual relation datasets do not have instance segmentation 
annotations, we directly detect object masks using a Mask-
RCNN trained on COCO dataset.  
 During testing, Faster-RCNN detects the object bounding 
boxes and their categories. Mask-RCNN detects the object 
segmentations and the bounding boxes of corresponding 
segments. For each detected object from Faster-RCNN, we 
computed the intersection of union (IoU) between the 

 
2 NextKB can be downloaded at https://www.qrg.northwest-
ern.edu/nextkb/index.html. 

bounding boxes from Faster-RCNN and Mask-RCNN. If the 
IoU is larger than 0.7, the corresponding instance segments 
from Mask-RCNN are assigned to the object. Otherwise, we 
regard the bounding boxes as the masks of the objects. In 
the next stage, we describe how the detection results are 
used for pairwise relation detection. 

Pairwise Relation Detection 
During training, we use the ground truth triples, i.e. <Object, 
Relation, Subject>, as training data for analogical generali-
zation. Given the detected bounding boxes, categories, and 
segmentations of the Object and Subject of the triple, our 
system is trained to learn analogical models of the Relation, 
based on automatically constructed qualitative visual repre-
sentation. During inference, analogical retrieval is used to 
identify the relation with highest probability for each pair of 
entities detected from detection stage. To model the infor-
mation between two detected objects, we first describe our 
visual encoding scheme for generating the symbolic repre-
sentations. Then we describe how analogical learning per-
forms relation detection training. Finally, the inference pro-
cess is presented. 
Symbolic representations for object pairs: For each pair 
of objects, we build symbolic representations to represent 
the details of each object and spatial information between 
them. We use the off-the-shelf CogSketch system (Forbus et 
al. 2011) to help compute spatial information and relational 
predicates. CogSketch is a model of human visual percep-
tion that relies on analogical matching and relational struc-
ture. CogSketch uses NextKB2, an off-the-shelf open-source 
broad coverage knowledge base.  NextKB includes a large-
scale lexicon that maps words to OpenCyc and FrameNet 
concepts. We use this lexicon to map labels produced by 
deep learning modules into concepts.   
 We divide the symbolic representations of object pairs 
into two parts: Obj-reps and Spa-reps. Obj-reps consists of 
facts for each object generated from their masks and catego-
ries. Spa-reps consist of the spatial relations between the 
pair of objects generated from their bounding boxes. 
 In Obj-reps, object category and pose are encoded. The 
semantic category is produced by using lexical lookup from 
the word produced as the category label to map that into the 

 
Attribute Description Example 

Cross-sectional curvature Whether the edges of the shape are straight or curved. (allCurved EC-1) 
Edge concavity Whether the shape has concave edges. (hasConcavedEdge EC-1) 

Shape Estimation The simple geometric shape that is closest to the shape. (ellipseSystemShape EC-1) 
Rectangularity How much the shape looks like a rectangle. (highRectangularity EC-1) 

Table 1: Detailed description of four attributes that describe geon shapes. 
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OpenCyc ontology. We use the predicate isa from OpenCyc 
to describe an object’s category, for example, 

(isa Object-1 Person) 
indicates that the object Object-1 is an instance of the cate-
gory Person.  
 For object pose, we use the encoding approach from 
(Chen et al., 2019) to generate a geon representation. The 
encoding approach is inspired from recognition-by-compo-
nent theory (Biederman, 1987), that people seem to encode 
visual input as a combination of simple shapes. In this en-
coding scheme, object masks imported into CogSketch are 
segmented into a set of edge cycles (Forbus et al., 2011), 
which are closed simple shapes. CogSketch computes the 
medial axis transform on the shape and generates concave 
closures, which are pairs of points on the object contour 
where the object is concave. A segmentation line is added to 
each concave closure to generate the set of segments repre-
sented as edge cycles. Each segment is described using four 
different attributes: cross-sectional curvature, edge concav-
ity, shape estimation, rectangularity. Table 1 shows the de-
tails of each attribute. The connection relation and positional 
relation are described between each pair of segments. For 
each segment in an object, we use a predicate isSegment to 
indicate that the segment is part of the object, for example,  

(isSegment Edge-Cycle-1 Object-1) 
Figure 2 shows an object mask labeled as Person, the geon-
segmentation and its corresponding Obj-reps. Obj-reps are 
computed for both Object and Subject of a triple. 
 
For each pair of objects, each has a role in a relation triple, 
either Object or Subject. We use the unary predicates 
isObject and isSubject to indicate the roles for each object, 
for example,  

(isObject Object-1) 

 
3 SME version 4 can be downloaded at https://www.qrg.northwest-
ern.edu/software/sme4/index.html. 

 Spa-reps encode three types of spatial information be-
tween the pair of bounding boxes: RCC8 information 
(Cohn, 1996), positional information, and size information. 
RCC8 is widely used in qualitative spatial reasoning to de-
scribe topological relationships between regions. For exam-
ple, if the bounding box of the tie is completely inside the 
bounding box for a person, this would be expressed as 

(rcc8-NTPPi Tie Person) 
We use six positional relations: above, rightOf, en-
closesHorizontally, enclosesVertically, centerAbove and 
centerRightOf. The first four predicates describe the posi-
tional information on bounding boxes and the last two de-
scribe the positional information for their center points.  
 Size information is encoded with four predicates: areaT-
iny, areaSmall, areaMedium and areaLarge. The larger box 
in the pair is encoded as areaLarge and the smaller box is 
encoded based on the size relative to the larger box. If the 
area of smaller box is less than ¼ the area of the larger box, 
it is encoded as areaTiny. If the area of smaller box is be-
tween the ¼ and ½ the area of the larger box, it is encoded 
as areaSmall. Similarly, if it is between ½ and ¾ the area of 
larger box, it is encoded as areaMedium and above ¾ is en-
coded as areaLarge. The size predicates are unary, for ex-
ample, 

(areaLarge Object-1) 
Combining the Obj-reps and Spa-reps, a relational represen-
tation is created for an object pair. Next, we describe how 
the relational representations of object pairs are used in an-
alogical learning. 
Analogical Learning: Our analogy stack uses three pro-
cesses.  Analogical matching is handled by the structure 
mapping engine (SME3) (Forbus et al., 2017) for analogical 
matching, analogical retrieval by MAC/FAC (Forbus et al., 
1995), and generalization is performed by the Sequential 
Analogical Generalization Engine (SAGE) (McLure et al., 
2015).  We summarize each in turn. 
 SME is a computational model of analogical matching 
and similarity based on Structure Mapping Theory (Gentner, 
1983). Given two cases consisting of structured, relational 
representations, called the base and target, SME computes 
a mapping between them. A mapping includes a set of cor-
respondences that align entities and relations in the base and 
target, a similarity score that indicates how similar the base 
and the target are, and candidate inference, which are pro-
jections of unaligned structure from one case to the other, 
based on the correspondences. Here SME is used as a simi-
larity metric and a means of combining cases into generali-
zations, as described below. 
 The MAC/FAC algorithm models analogical retrieval. 
Given a probe (a case) and a library of cases, MAC/FAC 
retrieves a highly similar case to the probe from that library.  

 
 

Figure 2: (a) the mask of a Person object. (b) the geon-seg-
mentation of the mask (c) Obj-reps for the object. 
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When cases are added to the library, a content vector is au-
tomatically constructed from the case, where each dimen-
sion represents the number of occurrences of a predicate in 
that case.  The dot product of two content vectors provides 
a rough estimate of what SME would compute for a similar-
ity score for the corresponding structured cases.  Thus, the 
first stage, MAC, is a map/reduce operation, with content 
vector dot product of the probe with all the cases followed 
by accumulating the best N results.  (In these experiments, 
N = 5.) The FAC stage is also map/reduce but using SME to 
compare the probe with the cases returned by MAC, return-
ing the most similar case as a reminding.  MAC provides 
scalability, while FAC provides the sensitivity to structure 
that human remindings exhibit. MAC/FAC is used for re-
trieval during both training and testing. 
 SAGE models analogical generalization. Each concept to 
be learned is represented by a generalization pool (aka 
gpool), which, given an incremental stream of examples, 
constructs a set of probabilistic generalizations and outliers 
that constitute an analogical model of that concept.  Each 
item in a gpool is a disjunct in the model. There are two 
basic operations: adding an example and classifying an ex-
ample. 
 When adding a training example to a gpool, MAC/FAC 
is used to retrieve the most similar item, treating the gpool 
as a case library.  An assimilation threshold is used to deter-
mine whether an example is sufficiently similar to be 
merged.  If the similarity is below this threshold, the new 
example is added to the gpool as an outlier.  Otherwise, if 
the reminding is another example, then a new generalization 
is formed.  This involves replacing non-identical aligned en-
tities with new unique symbols (i.e. skolems) and taking the 
union of the statements involved. A probability is calculated 
for each statement, 1.0 if it is aligned in the match, and 0.5 
otherwise. If the reminding is a generalization, it is updated 
by adding new statements, and perhaps new skolems, and 
updating the probability for each statement. Thus, a state-
ment’s probability reflects the frequency with which the ex-
amples assimilated into it contained an expression that 
mapped to that statement. Statements whose probability gets 
too low are eventually deleted. Since SAGE can accumulate 
multiple generalizations and outliers, it is like k-means with 
outliers, except that there is no a priori determination of how 
many clusters are needed: SAGE automatically derives that 
from the data. 
 For visual relation detection, the model needs to classify 
a relation category for a pair of objects. As the geon repre-
sentations have many facts when object contours are com-
plicated and each gpool has many cases, we use two-step 
process for relation classification to speed up the retrieval 
and scope relations to improve performance. In the first step, 
only object categories in Obj-reps and Spa-reps are used to 
provide a rough estimation for relations. We call this the 
rough case for an example.  In the second step, full Obj-reps 

and Spa-reps are combined to predict the final relation from 
the estimated relations in first step. We call this the full case 
for an example.  For every relation, there are two gpools, 
one for rough cases and one for full cases.  During training, 
each relation triple has its rough and full cases computed, 
which are added to the appropriate gpools.   
Relation Detection: Given a pair of objects detected in an 
image by the first stage, our algorithm builds its rough case 
and full case, as per above.  The rough case is used as a probe 
to MAC/FAC, with all gpools for rough cases serving as the 
case library.  The relations corresponding to the top five re-
trievals are used as filters for retrieval over full cases.  That 
is, the full case is used as a probe with MAC/FAC over the 
union of all full-case gpools whose relations were retrieved 
in the prior step.  The relation associated with the highest 
similarity score retrieved by MAC/FAC is assigned to the 
pair of entities as its classification.  This process is run over 
every pair of detected objects in the image. 

Experiments 
We evaluate our hybrid system on the Visual Relationship 
Dataset (VRD) (Lu et al., 2016). We show that our model 
can get competitive results with lower training cost. Detect-
ing a visual relational tuple involves classifying both object 
entities, the predicate between them, and the bounding 
boxes of both entities. Consequently, the performance of 
models relies on both the accuracy of object entity detectors 
and the visual relationship classifiers.  
 Following (Lu et al., 2016), we measure two conditions 
to evaluate the performance of our model. The first condi-
tion is predicate detection (PREDT). In PREDT, the input is 
an image, a set of localized objects in the image and their 
labels. The task is to predict a set of possible predicates be-
tween pairs of objects. This condition shows how relation 
detection via analogical learning performs on ground truth 

 
Models Re-

call@50 
Re-

call@100 
VRD (Lu et al., 2016) 47.87 47.87 

VTransE (Zhang et al., 
2017) 

44.76 44.76 

Zoom-Net (Yin et al., 
2018) 

50.69 50.69 

LK (Yu et al., 2017) 55.16 55.16 

CAI+SCA-M 
 (Yin et al., 2018) 

55.98 55.98 

MMLFM-LC  
(Ma et al., 2019) 

56.65 56.65 

Ours 52.38 52.38 

Table 2: Results of PREDT condition on VRD dataset. 
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inputs. The second condition is relationship detection 
(RELDT). In RELDT, the input is only an image. The task 
is to output a set of triples <Object, Relation, Subject> and 
localize both entities in the image having at least 0.5 overlap 
with their ground truth boxes simultaneously. This condition 
evaluates how the whole pipeline performs on visual rela-
tion detection. We use the same evaluation metrices Re-
call@50 and Recall@100 as in (Zhang et al., 2019). The de-
tails of VRD dataset and implementations are introduced be-
low. 

Visual Relationship Detection Dataset 
This dataset contains 5,000 images with 100 object catego-
ries and 70 predicates. There are 37,993 triple combinations 
total. We follow the popular train/test split, using 4,000 im-
ages for training and the other 1,000 images for testing. We 
trained the Faster-RCNN model using the method from 
(Zhang et al., 2019). For Mask-RCNN, since the VRD da-
taset lacks instance segmentation annotations, we directly 
use the checkpoint pre-trained on COCO dataset4. In SAGE, 
we use 0.8 for the assimilation threshold and 0.2 for the cut-
off threshold (which eliminates low-probability facts from a 
generalization). Table 2 shows the results on PREDT task 
comparing with (Lu et al., 2016). Table 3 shows the results 
comparing with other state-of-art models on RELDT dataset. 
Besides the results in the two tables, we also compute Re-
call@1 of our model. Our system achieves 32.26 for Re-
call@1 in PREDT task and 8.91 in RELDT task. 

Discussion 
In Table 2, we compare our system with several existing 
models. From the results, our system outperforms three 
baseline models. In PREDT task, the ground truth object 
bounding boxes and categories are passed into model. The 
results show that our hybrid system has good performance 
when the object detection results are good. In Table 3, our 
results are better than VTransE and SA-Full. In RELDT task, 

 
4 We use the pre-trained model from https://github.com/facebookre-
search/detectron2. 

detected object bounding boxes and categories from object 
detection model are used. Thus, the relation predication re-
sults depend on both the performance of object detections 
and relation classification. The results prove that our hybrid 
system has reasonable adaptation on noisy object detection 
results.  
 Indeed, although our model does not outperform all base-
lines, we use much less training cost to achieve this perfor-
mance. Firstly, all baselines use the pre-trained object detec-
tor models in their first stage, which has similar cost as our 
model. However, using analogical learning, our model 
learns the generalization pools in the second stage with only 
one epoch on the whole training dataset. All other deep 
learning baselines require 7 to 30 epochs on the whole train-
ing dataset to converge. Thus, our model uses less training 
time to achieve the results. Also, analogical learning does 
not require to use expensive hardware resources such as 
GPUs, but all deep learning baselines need to use GPUs to 
speed up the training process. Besides less training cost, an-
alogical learning is easier to understand than deep learning 
models. In the next section, we discuss the explainability of 
our model. 

Explainability 
The use of analogical learning for relation detection pro-
vides strong explainability.  The contents of SAGE general-
ization pools consist of schema-like descriptions which can 
be easily understood by people. For example, Figure 3 
shows the descriptions of the largest generalizations in 
Above and Wears gpools. In the generalization of Above, 
(centerAbove O1 O2) has probability score 1.0. O1 and O2 
are the skolems for two different objects.  This fact shows 
that, in many cases for this relation, the center of one object 
bounding boxes is above the center of the other object. Also, 
this generalization reveals information about common ob-
ject types, e.g.  that objects of type Sky have the relation 
Above with objects of types Building, Tree, Mountain, etc. 

 
Models Recall@50 Recall@100 

VTransE (Zhang et al., 2017) 14.07 15.20 
SA-Full (Peyre et al., 2017) 15.80 17.10 
Zoom-Net (Yin et al., 2018) 21.37 27.30 

CAI+SCA-M (Yin et al., 2018) 22.34 28.52 
KL (Yu et al., 2017) 22.68 31.89 

Large-Scale VLU (Zhang et al., 2019) 26.98 32.63 
Ours 16.12 18.41 

Table 3: Results of RELDT condition on VRD dataset. 
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Similarly, objects of type Sky tend to have (areaLarge O-1) 
and all other objects have (areaTiny O-2), which means Sky 
is much larger than other objects. In the generalization of 
Wears, one of the objects is Person and the other object is 
clothes for lower body, such as Pants, Jeans or Shorts. 
Therefore, Person has large area and cloth objects have 
small area. The RCC8 relation PO has high score in this gen-
eralization, which means the two objects have intersection 
with each other.  These probabilistic generalizations provide 
new insights, including possibly into dataset bias.  Moreo-
ver, one interesting possibility is tuning learned knowledge, 
via trainers manually editing facts, something which is dif-
ficult for deep learning models. 

Conclusion 
We present a hybrid system combining deep learning mod-
els and analogical learning on visual relation detection using 
object information and spatial information between objects. 
Results on the PREDT task indicate that given accurate ob-
ject detections, analogical learning is a promising approach 
to detect relations in images. Furthermore, analogical learn-
ing is more efficient for training than deep learning and has 
better explainability. People can easily explore the learned 
generalizations to understand the high-probability generali-
zations and outliers, which provides a more solid foundation 
for building reliable and human-like visual systems. Results 
on RELDT also shows that analogical learning is flexible 
enough to combine with other methods.   
 We see two important lines of future work.  The first is to 
examine performance with other deep-learning modules in 
the first encoding stage.  The second is to explore doing 
richer encoding of object shapes, moving beyond bounding 
boxes and including part information about objects. 
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