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Abstract

Chest X-rays are an important and accessible clinical imag-
ing tool for the detection of many thoracic diseases. Over
the past decade, deep learning, with a focus on the convolu-
tional neural network (CNN), has become the most powerful
computer-aided diagnosis technology for improving disease
identification performance. However, training an effective
and robust deep CNN usually requires a large amount of data
with high annotation quality. For chest X-ray imaging, anno-
tating large-scale data requires professional domain knowl-
edge and is time-consuming. Thus, existing public chest X-
ray datasets usually adopt language pattern based methods
to automatically mine labels from reports. However, this re-
sults in label uncertainty and inconsistency. In this paper, we
propose many-to-one distribution learning (MODL) and K-
nearest neighbor smoothing (KNNS) methods from two per-
spectives to improve a single model’s disease identification
performance, rather than focusing on an ensemble of mod-
els. MODL integrates multiple models to obtain a soft la-
bel distribution for optimizing the single target model, which
can reduce the effects of original label uncertainty. Moreover,
KNNS aims to enhance the robustness of the target model to
provide consistent predictions on images with similar medi-
cal findings. Extensive experiments on the public NIH Chest
X-ray and CheXpert datasets show that our model achieves
consistent improvements over the state-of-the-art methods.

Introduction
Chest X-rays are one of the most common radiology ex-
ams. Hundreds of millions of such images are acquired
in hospitals and clinics all over the world, for identify-
ing a wide range of diseases. Advances in deep learning
present a powerful means of developing automated systems
to help radiologists interpret chest X-ray images. Recent ef-
forts have shown promise in improving the identification of
different chest lesions (Rajpurkar et al. 2017; Allaouzi and
Ahmed 2019), localization of their corresponding positions
and sizes (Li et al. 2018b; Liu et al. 2019), and generation
of human-readable diagnostic reports (Jing, Xie, and Xing
2018; Li et al. 2018a; Zhang et al. 2020). However, there
exist many drawbacks to chest X-rays, such as the lack of
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Figure 1: (a) An input image. (b) The ground-truth binary
labels automatically extracted from reports. (c) Random
smoothed labels proposed by (Pham et al. 2019). (d) Our
many-to-one soft label distribution. (e) The bounding boxes
of three different colors are annotated by three radiologists,
separately, in the left image. The right image is the heat map,
showing abnormal regions, obtained by our method.

3D information, inconsistent visual characteristics of var-
ious lesions, and label uncertainty, which still make auto-
mated chest X-ray diagnosis a very challenging task.

For chest X-ray images, large anonymized public datasets
are available to researchers, and have facilitated the devel-
opment of deep learning models. However, providing accu-
rate clinical labels for the very large image sets required for
training deep models is difficult and time-consuming. Most
datasets (Wang et al. 2017; Irvin et al. 2019) have applied
rule-based natural language processing (NLP) to radiology
reports to automatically mine the labels, but this often leads
to inconsistencies and noise for training. Although previous
efforts have tried to address this problem, for example, by
converting all the uncertain labels into positive or negative
(Irvin et al. 2019), or applying label smoothing regulariza-
tion (Pham et al. 2019), these methods are not quite effec-
tive and only bring a slight improvement. Moreover, most
efforts focus on model ensembles when pursuing a further
increase of accuracy, rather than enhancing a single model.
Combining multiple models, however, will largely increase
the computational costs and complexities. Therefore, in this
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paper, we aim to address these two challenges by exploring
label distributions to reduce the effects of uncertainty and
noise, and enhancing a single model’s ability rather than us-
ing a model ensemble. Figure 1 illustrates our motivation
and solutions.

To train deep learning models for identifying thoracic dis-
eases, multi-label supervision indicating different lesions is
usually adopted. The optimization of such models is treated
as an image classification problem that builds a mapping
from the instances to the labels via a Softmax cross-entropy
or binary cross-entropy loss for each label. However, binary
labels (positive or negative) cannot usually describe in de-
tail the severity of a certain disease in an image. As shown
in Figure 1 (e), even radiologists are unable to always pro-
vide consistent annotations. With the label uncertainty and
error further introduced by automatic label extraction, we
believe using soft labels of probabilities will contribute to
more reasonable training. Thus, in addition to multi-label
classification, we propose to optimize the Kullback-Leibler
divergence between the ground-truth soft label distribution
and the predicted one. Moreover, to obtain a single model
with competitive performance to model ensembles, we com-
pute K nearest neighbors using the soft label distributions
integrated from multiple models, and then constrain a single
target model to provide similar predictions to these scans,
which can enhance its robustness. Our main contributions
are highlighted as follows:

1. A many-to-one distribution learning (MODL) method
is proposed to exploit multiple reference models and inte-
grate their predictions as a soft label distribution to optimize
the target network, which can reduce the effects of label un-
certainty and ambiguity.

2. To enhance the robustness of a target model for pro-
viding consistent predictions on images with similar medi-
cal findings, we introduce a K-nearest neighbor smoothing
(KNNS) module as an auxiliary loss for optimization. The
local similarity score is adopted to enhance the learning of
the neighbor smoothing.

3. Extensive experiments are conducted to demonstrate
the effectiveness of the proposed MODL and KNNS. Con-
sistent improvements by our method are achieved on both
the NIH Chest X-ray and CheXpert datasets for thoracic dis-
ease identification, compared to state-of-the-art models. An-
other big advantage of our method is that our single target
model does not require additional computational resources
during the testing phase.

Related Work
Thoracic Disease Diagnosis
Recently, deep convolutional neural networks (CNNs) have
been extensively investigated for thoracic disease diagno-
sis (Litjens et al. 2017; Shin et al. 2016; Zhou et al. 2021;
Fan et al. 2020). The common tasks can be categorized into
multi-disease identification (Kumar, Grewal, and Srivastava
2018; Rajpurkar et al. 2017; Zhou, Li, and Wang 2018; Bal-
truschat et al. 2019), localization (Pesce et al. 2019; Yao
et al. 2018; Liu et al. 2019), and automatic report genera-
tion (Wang et al. 2018; Jing, Xie, and Xing 2018; Li et al.

2018a). To facilitate research into thoracic disease diagno-
sis, various public chest X-ray datasets (Wang et al. 2017;
Irvin et al. 2019; Johnson et al. 2019) have been released.
Several single- or multi-CNN models (Rajpurkar et al. 2017)
have been developed for disease classification, while weakly
supervised mechanisms using limited bounding-box annota-
tions are typically used for localization. Li et al. (Li et al.
2018b) proposed a patch slicing layer to resize CNN features
by max-pooling or bilinear interpolation and applied a fully
convolutional recognition network on these regions, to im-
prove identification and localization, simultaneously. More-
over, a contrast induced attention network was introduced
by (Liu et al. 2019) to exploit the highly structured property
of chest X-ray images for localizing diseases. In addition,
the automatic generation of medical image reports has also
been investigated; for example, (Jing, Xie, and Xing 2018)
exploited a co-attention mechanism to identify abnormal re-
gions and used a hierarchical LSTM to generate sentences.
However, while several previous works have mentioned is-
sues with label uncertainty and inconsistency of annotation,
but none have provided an effective solution.

Reducing Label Inconsistency and Ambiguity
Label inconsistency, uncertainty, and ambiguity are common
problems that affect the training of machine learning mod-
els in numerous areas. Several strategies, such as confident
learning (CL) (Northcutt, Jiang, and Chuang 2019), label
distribution learning (LDL) (Geng 2016; Gao et al. 2017;
Chen et al. 2020), label enhancement (LE) (Xu, Lv, and
Geng 2019; Xu, Tao, and Geng 2018), and active learning
(AL) (Wu et al. 2018), have been proposed in recent years
to mitigate these problems. CL is based on the principles
of pruning noisy data, counting to estimate noise, and rank-
ing examples to train with confidence. It can directly esti-
mate the joint distribution of noisy and true labels, and find
the label errors. LDL treats the labels representing the de-
gree to which each label describes the instance. It is a more
general learning framework of which single-label and multi-
label classification are special cases. LDL has been adopted
in many applications, including facial landmark detection
(Su and Geng 2019) and age estimation (Hou et al. 2017).
LE methods aim to solve the unavailability of label distri-
butions. For example, a partial label learning method was
presented by (Xu, Lv, and Geng 2019), in which label dis-
tributions are recovered by leveraging the topological infor-
mation of the feature space. Moreover, AL adopts a small
set of clean data, and decreases the noise of the training set
by re-labeling other uncertain samples.

Proposed Methods
Problem Formulation
First of all, the main notations used in this paper are de-
fined as follows. Given the i-th input X-ray image xi and
its corresponding binary ground truth labels yji , where j de-
notes the j-th disease label, we aim to optimize a single tar-
get network fT for thoracic disease identification. Due to
the uncertainty of the original binary labels, we train mul-
tiple reference models fn, n ∈ {1, 2, ..., N}, where N is
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Figure 2: Overview of the proposed method. Network-T is the single target network, which we aim to optimize. N reference
networks are pre-trained to compute soft label distributions for helping to optimize Network-T with a distribution learning loss,
which can reduce the uncertainty and ambiguity of the original binary labels. Moreover, K nearest neighbors are computed
based on the soft label distribution, and then used to constrain the Network-T to provide consistent predictions using an auxiliary
neighbor smoothing loss.

the number of networks, and integrate their pseudo prob-
ability predictions as the input image’s soft label distribu-
tion li = (ly1xi

, ly2xi
, ..., lyCxi

), where C is the number of label
classes. Thus, in addition to the standard multi-label classi-
fication loss Lcls, we propose a label distribution learning
loss Ldistri to better optimize the target fT for reducing the
effects of the label uncertainty. Moreover, we indicate the
input image as an anchor, and compute its K nearest neigh-
bors xki , k ∈ {1, 2, ...,K} based on the averaged soft label
predictions. An auxiliary neighbor smoothing loss Lneigh is
introduced to enhance the robustness of the target fT . There-
fore, the target model can be optimized by minimizing the
overall loss function as:

L =
∑
i,j

[Lcls(yji , fT (xi|θ)) + λLdistri(li, fT (xi|θ)) (1)

+ γ
∑
k

Lneigh(fT (xi|θ), fT (xki |θ))],

where θ is the parameter vector, and λ and γ balance the
weights of different losses. An overview of our proposed
method is illustrated in Figure 2.

Basic Multi-Label Classification and Label
Smoothing Regularization
The basic thoracic disease identification framework used in
most previous works (Wang et al. 2017; Rajpurkar et al.
2017), usually adopts a classic deep CNN (i.e. backbone)
and optimizes it with a binary cross-entropy (BCE) loss for
multi-label classification. DenseNet-121 (Huang et al. 2017)
is the most commonly used backbone for this task, since
it improves the flow of information and gradients through
the network, making the optimization of deep networks
tractable. Therefore, we select DenseNet-121 as our target
network fT for final evaluation, and use the BCE loss as
Lcls for training.

To deal with the label uncertainty caused by the ground-
truth labels not being annotated by human experts for im-
ages provided in the training dataset, several preliminary
studies have been conducted. For example, for the large-
scale public CheXpert (Irvin et al. 2019) dataset, uncertain
labels are often extracted due to the unavoidable ambigui-
ties in radiology reports. These labels can all be ignored
(U-Ignore), converted to positive labels (U-Ones), or con-
verted to negative labels (U-Zeros), proposed in (Irvin et al.
2019). Moreover, in (Pham et al. 2019), label smoothing reg-
ularization (LSR) was applied to better handle these uncer-
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tain labels, with the main goal of preventing the model from
training with overconfident labels that might contain mis-
classified data. Specifically, in the U-Ones setting, the un-
certainty labels are mapped to a random number close to
one, subject to a uniform distribution U(a, b), where a and b
are the hyper-parameters. In contrast, in the U-Zeros setting,
a similar process is used to convert the uncertainty labels
to a random number close to zero. Although these solutions
provide some improvements, they are based on too much on
brute-force to address the mislabeled data reasonably.

Many-to-One Distribution Learning
Incorporating the opinions of multiple radiologists is usu-
ally more reliable than only adopting a single diagnosis.
Similarly, although the target network fT based on the sin-
gle backbone DenseNet-121 can achieve satisfactory results,
model ensemble of several network architectures usually
further makes a big improvement on the mean accuracy. Ac-
cording to many observations from extensive experiments,
different network architectures, and even different epoch
checkpoints for one network architecture, provide inconsis-
tent predictions and have their own strengths on different
diseases. Thus, integrating probability predictions from mul-
tiple models can reduce the effects of the uncertainty and
ambiguity from the original binary labels. In this paper, we
propose a many-to-one distribution learning method to opti-
mize a single target network by taking the essence and dis-
carding the dregs of multiple networks, which can also avoid
the extra computational resources introduced by a model en-
semble in the testing phase.

To select a strong set of reference models, we follow
(Pham et al. 2019) and adopt six state-of-the-art CNNs (N =
6), including DenseNet-121, DenseNet-169, DenseNet-201
(Huang et al. 2017), Inception-ResNet-v2 (Szegedy et al.
2017), Xception (Chollet 2017), and NASNetLarge (Zoph
et al. 2018). Once the training is separately done for each
network, the probability predictions of all the trained net-
works are simply averaged, and can then be viewed as the
soft label distribution. By getting an average, those evident
lesions with high probabilities predicted by most of the ref-
erence networks still get positive-toward values, and healthy
scans still get negative-toward values. However, those le-
sions getting inconsistent predictions which have ambigui-
ties will be smoothed to reduce the effects of uncertainty.
Our label distribution smoothing tends to be a major vot-
ing manner, which is more reasonable than the random LSR
method. Therefore, this soft label distribution for each image
should be closer to the correct labels to indicate the ground
truths. We use the Kullback-Leibler (KL) divergence for the
distribution learning loss Ldistri and minimize it to optimize
the target network fT :

Ldistri = KL{li||fT (xi|θ)} =
∑
i

li log(
li

fT (xi|θ)
). (2)

Please note that all the reference networks fn are pre-
trained in advance. Their network parameters are fixed when
training the target network fT . Thus, the soft label distribu-

tion li is fixed to compute the KL divergence as the relative
entropy of li with respect to fT (xi|θ).

K-Nearest Neighbor Smoothing
Our second important concern is how to make the target net-
work as robust and competitive as the model ensemble. Ac-
cording to the smoothness assumption (Chapelle, Scholkopf,
and Zien 2009), we assume that if two samples are simi-
lar in the averaged label distribution space, they should also
be similar in the label space predicted by the target model.
Therefore, before training the target network, the K near-
est neighbors of an image (marked as the anchor image) are
pre-computed based on the fixed soft label distribution.

To make the disease predictions of the anchor image
fT (xi|θ) as close as the predictions of its corresponding k-
th neighbor fT (xki |θ), we generate a pool that contains K
neighbor images of each anchor during the training, for en-
hancing local similarity. Let k denote a sample in the pool.
Inspired by (Xu, Tao, and Geng 2018), we specify the local
similarity ski which is defined as:

ski =

{
exp(− ||li−l

k
i ||

2

2σ2 ) if k ∈ {1, ...,K}
0 otherwise,

(3)

where σ denotes the width parameter for similarity calcu-
lation, which is fixed as 1 in our settings. Thus, the more
similar li and lki are, the higher ski will be, which means
fT (xi|θ) and fT (x

k
i |θ) should be closer. We propose a

neighbor smoothing loss Lneigh as follows:

Lneigh =
∑
i,k

ski fT (x
k
i |θ) log

fT (x
k
i |θ)

fT (xi|θ)
. (4)

By optimizing Lneigh, the target model fT is constrained to
give similar predictions of neighboring images which have
similar abnormal findings. This enhances the robustness of
fT for more consistent identification performance.

Implementation Details
The training procedure of our proposed method consists of
two steps. In the first step, all the reference models based
on different backbones are pre-trained using the basic multi-
label classification loss Lcls. All the images are resized
into a standard size 256 × 256 and randomly cropped to
224×224 patches as inputs. The Adam optimizer is adopted
with an initial learning rate of 0.001 and default parame-
ters β1 = 0.9, β2 = 0.999. The network parameters are ini-
tialized with a model pre-trained on ImageNet (Deng et al.
2009). The mini-batch size is set to 32 for training over 10
epochs and the learning rate is reduced by a factor of 3 af-
ter every two epochs. Once all the reference models are well
trained, the soft label distribution of each image is computed
and used for training in the second step.

In the second step of the training phase, in addition to
Lcls, we add the proposed MODL loss Ldistri and KNNS
loss Lneigh for optimizing the single target model. For each
image in a training batch (we marked it as an anchor), its
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Methods Atel. Card. Effu. Infi. Mass Nod. Pne.1 Pne.2 Cos. Ede. Emp. Fibr. P.T. Hern Mean
(Wang et al. 2017) 70.03 81.00 75.85 66.14 69.33 66.87 65.80 79.93 70.32 80.52 83.30 78.59 68.35 87.17 74.51
(Yao et al. 2018) 73.30 85.80 80.60 67.50 72.70 77.80 69.00 80.50 71.70 80.60 84.20 75.70 72.40 82.40 76.73
(Yao et al. 2017) 77.20 90.40 85.90 69.50 79.20 71.70 71.30 84.10 78.80 88.20 82.90 76.70 76.50 91.40 80.30
(Li et al. 2018b) 80.00 81.00 87.00 70.00 83.00 75.00 67.00 87.00 80.00 88.00 91.00 78.00 79.00 77.00 80.21

(Rajpurkar et al. 2017) 80.94 92.48 86.38 73.45 86.76 78.02 76.80 88.87 79.01 88.78 93.71 80.47 80.62 91.64 84.13
Baseline (B) 82.42 89.80 89.68 68.46 86.84 80.34 75.31 85.34 80.37 91.62 90.82 84.60 80.64 93.97 84.30
B+MODL 83.91 91.66 91.58 72.84 88.68 81.65 76.73 89.32 82.19 93.72 93.83 86.51 82.92 95.69 86.52
B+KNNS 84.44 91.73 91.62 72.73 88.99 82.12 76.97 89.52 82.11 93.75 93.81 86.78 83.74 95.77 86.72

B+MODL+KNNS 85.20 92.24 92.09 73.01 89.74 82.94 78.30 90.46 83.04 94.42 94.32 87.64 84.26 95.28 87.35

Table 1: Identification results using AUC (%) metric on the NIH Chest X-ray dataset.

Methods Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
(Allaouzi and Ahmed 2019) LP 72.0 87.0 77.0 87.0 90.0 82.6
(Allaouzi and Ahmed 2019) BR 72.0 88.0 77.0 87.0 90.0 82.8
(Allaouzi and Ahmed 2019) CC 70.0 87.0 74.0 86.0 90.0 81.4

(Irvin et al. 2019) U-Zeros * 81.1 84.0 93.2 92.9 93.1 88.8
(Irvin et al. 2019) U-Ones * 85.8 83.2 89.9 94.1 93.4 89.3

(Pham et al. 2019) U-Zeros+CT+LSR 80.6 83.3 92.9 93.3 92.1 88.4
(Pham et al. 2019) U-Ones+CT+LSR 82.5 85.5 93.7 93.0 92.3 89.4

Baseline (B) 87.29 84.47 92.09 91.66 91.34 89.37
B+MODL 87.64 87.84 93.34 94.58 93.35 91.35
B+KNNS 89.15 88.24 92.40 94.92 92.67 91.48

B+MODL+KNNS 89.46 89.67 93.80 95.87 94.35 92.63

Table 2: Identification results using AUC (%) metric on the CheXpert dataset. * indicates that the result is obtained by the
ensemble of 30 checkpoints.

K neighbor images and the corresponding local similarity
scores ski are stored in a pool for optimizing Lneigh. The
different loss weights λ and γ in Eq. 1 are both set to 0.1
in the experiments. All other training settings in the second
step are the same as Step 1. Once the training is completed,
only the target model fT is deployed in the testing phase,
without any additional computation consumption introduced
by model ensemble.

Experiments and Results

Datasets

NIH Chest X-ray (Wang et al. 2017) is comprised of
112,120 X-ray images with disease labels from 30,805
unique patients, 51,708 of which contain one or more
pathologies, while the remaining images have no findings.
The 14 different labels are extracted using NLP to text-mine
disease classifications from the associated radiology reports,
but more than 10% of the annotations are incorrect. The
dataset split setting of experiments for our model follows
(Rajpurkar et al. 2017).

CheXpert (Irvin et al. 2019) consists of 224,316 chest ra-
diographs of 65,240 patients. The disease labels of the train-
ing set are labeled for the presence of 14 observations as pos-
itive, negative, uncertain, or unmentioned, which also con-
tain inconsistency and ambiguity. However, CheXpert re-
leases a separate validation set of 200 studies, which is anno-
tated by three board-certified radiologists for five diseases:
atelectasis, cardiomegaly, consolidation, edema, and pleural
effusion. The evaluation on this set is more convincing.

Comparison with State-of-the-Arts
To evaluate the multi-disease identification task, the area-
under-the-curve (AUC) of the receiver operating character-
istic (ROC) is usually adopted. Table 1 provides the identifi-
cation results on the NIH Chest X-ray dataset. Model (Wang
et al. 2017), using a ResNet-50 backbone and weighted bi-
nary cross-entropy loss, obtains a preliminary mean AUC
of 74.51% over 14 diseases. CheXnet (Rajpurkar et al.
2017) adopts DenseNet-121 and obtains a large improve-
ment, since DenseNets improve the flow of information and
gradients through the network, making the optimization of
deep networks tractable. In (Yao et al. 2017), a long short-
term memory (LSTM) architecture is used to model depen-
dencies among labels, but achieves poor results. For most
diseases, our method with many-to-one distribution learn-
ing andK-nearest neighbor smoothing obtains consistent in-
creases in identification performance, compared to the best-
performing method (Rajpurkar et al. 2017). The only excep-
tion is on cardiomegaly and infiltration. The mean AUC is
increased by 3.22%.

The results on CheXpert are compared in Table 2. Most
methods exploit ensembles of multiple models to pursue
higher scores. For example, an ensemble of 30 generated
checkpoints of DenseNet-121 (Irvin et al. 2019) achieves a
mean AUC of 89.3%. In this subsection, we mainly focus
on comparing the results achieved by single models. Binary
relevance (BR), label powerset (LP), and classifier chain
(CC) are explored in terms of label dependencies in (Al-
laouzi and Ahmed 2019), but no satisfactory performance
is achieved. Conditional training (CT) and label smooth-
ing regularization (LSR) are used to enhance the perfor-
mance of a single DenseNet with a small gain achieved. In
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Figure 3: ROC curves of different methods for the five pathologies on the CheXpert dataset.

Figure 4: Comparison of the mean AUC increase based on
different K in KNNS.

our implementation, the U-Ones setting is adopted to deal
with those uncertainty labels when training the Baseline (B)
(based on the backbone DenseNet-121), as well as when
training the reference models in the first training stage. Our
method B+MODL+KNNS without any ensemble operation
increases the mean AUC by 3.26%.

Ablation Studies
Effectiveness of MODL To evaluate the effectiveness of
the proposed many-to-one distribution learning, the soft la-
bel distribution obtained is only used to optimize the target
network through the auxiliary loss Ldistri. Clear improve-
ments in mean AUC 2.22% and 1.98% are achieved on NIH
Chest X-ray and CheXpert, respectively, compared to the
baselines. This illustrates that the soft label distribution can
represent the ground truths of a scan better than the original
automatically extracted binary labels which have uncertainty
and ambiguity.

Effectiveness of KNNS The K-nearest neighbor smooth-
ing is also separately validated. An anchor image and its K
neighbor images are passed forward to the target network,
which is updated by the neighbor smoothing loss Lneigh.
The results show that constraining the model to provide con-
sistent predictions for images with similar medical findings
also largely improves the performance. The mean AUC is

Methods Mean AUC Params.
DenseNet-121 (B) 89.66 7.98 M
B+MODL+KNNS 92.63 7.98 M
Model Ensemble 1 92.19 42.13 M
Model Ensemble 2 93.96 208.33 M

Table 3: Comparison with model ensembles on the CheXpert
dataset. M denotes million.

increased by 2.42% and 2.11% on NIH Chest X-ray and
CheXpert, respectively. Moreover, combining Ldistri and
Lneigh can further enhance the target model without re-
quiring any extra computational resources during the testing
phase. Figure 3 provides the ROC curves of different meth-
ods for the five pathologies on the CheXpert validation set.

Investigation of the Number K of KNNS Another con-
cern is to determine the best-performing K of KNNS. We
conduct an experiment on the CheXpert dataset, where K
is increased from 3 to 11 by a step of 2. The mean AUC
improvement in terms of K is shown in Figure 4. We ob-
serve that configuring three neighbor images to constrain
the model prediction consistency can already obtain a sig-
nificant increase in mean AUC of 1.14%. Improvements of
1.68% and 1.98% are achieved when we increase K to 5
and 7, respectively. However, with the further growth of
K, the increase rate becomes smaller and the method re-
quires much higher computational memory during the train-
ing phase. Therefore, considering the trade-off between per-
formance and computational costs, we set K as 9 in KNNS.

Comparison with Model Ensembles In addition to the
mitigation of label uncertainty and enhancement of model
robustness, another big advantage of our method is the zero-
increase in network complexity during the testing phase,
compared to model ensemble methods. To validate this
point, the mean AUC and number of network parameters
of some ensemble models are compared in Table 3. Model
Ensemble 1 is a combination of DenseNet-121, DenseNet-
169, and DenseNet-201. Model Ensemble 2 is an ensemble
of the six reference models used for learning the soft label
distribution in our method. As shown from the results, our
method B+MODL+KNNS outperforms Model Ensemble 1
by 0.44% of the mean AUC, with much fewer parameters.
Moreover, although Model Ensemble 2 obtains better identi-
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Figure 5: Heatmap visualization on the CheXpert dataset. Each row shows two cases of one disease. For each case, the left is
the input image with ground truths. The middle and right are the heatmaps obtained by the Baseline (B) and B+MODL+KNNS,
respectively. The value on the top-left of each heatmap is the predicted probability of the corresponding disease.

fication performance than ours, it has 26 times more param-
eters than our target model, making it too heavy to deploy in
practical applications.

Qualitative Results
To better visualize the model performance, we adopt the
probabilistic class activation map (PCAM) (Ye et al. 2020)
pooling to predict the lesion heatmaps with only image-
level supervision. As shown in Figure 5, we visualize the
heatmaps of the five pathologies in the CheXpert dataset. All
the examples do have the corresponding pathology and are
labeled positive. For each case, we compare the heatmaps
obtained by the Baseline (B) and B+MODL+KNNS. In ad-
dition to the improvements in identification results demon-
strated before, we observe that a more satisfactory localiza-
tion performance can also be achieved. For all the patholo-
gies, the lesion regions predicted by B+MODL+KNNS are
more precise in location and size than those predicted by
the Baseline (B). For example, the cardiomegaly heatmaps
predicted by the Baseline (B) usually have an abnor-
mal region around the location of the mediastinum, while
B+MODL+KNNS can better highlight the enlarged heart

shape region. To localize the position of pleural effusion,
B+MODL+KNNS can better identify the left heart border,
costophrenic angle and hemidiaphragm are obscured, and
slight blunting of the right costophrenic angle. Moreover,
as shown from the predicted probabilities in the top-left of
each heatmap, B+MODL+KNNS identifies the positive dis-
eases as true with higher confidence scores, compared to the
Baseline (B).

Conclusion
In this paper, we proposed a many-to-one distribution learn-
ing and a K-nearest neighbor smoothing method to improve
the performance of thoracic disease diagnosis. The methods
can reduce the effects of label uncertainty and ambiguity,
and also constrain the target model to provide consistent pre-
dictions on images with similar medical findings. Extensive
experiments demonstrated that our method is effective and
achieves significant improvements without requiring any ad-
ditional computational costs in the testing phase. In our fu-
ture work, we will explore visual attention methods to learn
better representations of thoracic diseases for improvements.
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