
Towards Efficient Selection of Activity Trajectories Based on Diversity and
Coverage

Chengcheng Yang1, Lisi Chen2, Hao Wang∗3, Shuo Shang∗2

1East China Normal University
2University of Electronic Science and Technology of China
3Nanjing University of Information Science and Technology

ychengc@mail.ustc.edu.cn, {chenlisi.cs, haowang.paper, jedi.shang}@gmail.com

Abstract

With the prevalence of location based services, activity tra-
jectories are being generated at a rapid pace. The activity tra-
jectory data enriches traditional trajectory data with semantic
activities of users, which not only shows where the users have
been, but also the preference of users. However, the large vol-
ume of data is expensive for people to explore. To address
this issue, we study the problem of Diversity-aware Activ-
ity Trajectory Selection (DaATS). Given a region of interest
for a user, it finds a small number of representative activity
trajectories that can provide the user with a broad coverage
of different aspects of the region. The problem is challeng-
ing in both the efficiency of trajectory similarity computation
and subset selection. To tackle the two challenges, we pro-
pose a novel solution by: (1) exploiting a deep metric learning
method to speedup the similarity computation; and (2) prov-
ing that DaATS is an NP-hard problem, and developing an
efficient approximation algorithm with performance guaran-
tees. Experiments on two real-world datasets show that our
proposal significantly outperforms state-of-the-art baselines.

Introduction
Numerous applications continuously generate massive

amounts of activity trajectory data [Zheng 2015; Zhang et al.
2019; Chen et al. 2020], which augments traditional trajec-
tory data with “activity” features. In this kind of data, each
location point is associated with a keyword that semanti-
cally describes the venue of a performed activity, e.g., shop,
restaurant, bank. From activity trajectory data, we can know
not only where users have been, but also the main prefer-
ences of users by looking over the semantic descriptions.
However, the availability of such large scale data makes
the information prohibitively expensive to explore. In many
real-world applications, it is of great significance to provide
support for users to perform data exploration on their in-
terested regions. For instance, users would like to browse a
small number of representative tourist routes when planning
trips to some tourism attractions.

Another example is the online map system [Ward, Grin-
stein, and Keim 2010]. For specified geographical area,
users want to get intuitive information on various type of

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

∗Hao Wang and Shuo Shang are corresponding authors.

activity patterns based on data visualization functions. They
would prefer receiving a small set of representative trajecto-
ries rather than being overwhelmed by a great many ones.

Based on above applications, we consider the problem
of Diversity-aware Activity Trajectory Selection (DaATS),
which aims to select a small set (denoted as k) of represen-
tative and diverse trajectories from the region that satisfies
user-specified conditions. The trajectories in the result set
are dissimilar to each other and should cover a maximum
number of other ones that locate in the region. Result di-
versification has been considered as a good way to increase
users’ satisfaction in web search and recommendation sys-
tems [Vee et al. 2008; He et al. 2012; Ashkan et al. 2015;
Parambath, Usunier, and Grandvalet 2016]. However, most
of previous approaches pick objects based on scoring func-
tions that are designed specifically for the underlying appli-
cations, and therefore do not apply to the DaATS problem.
In this paper, we propose to address diversity and coverage
in the perspective of similarity threshold. We consider two
trajectories τ1 and τ2 to be dissimilar if their similarity is
lower than a threshold θ. On the contrary, τ1 covers τ2 (and
vice versa) if their similarity exceeds θ.

Solving the DaATS problem faces two challenges. The
first is the high computation cost of trajectory similarity. Ex-
isting similarity measures [Shang et al. 2017; Chen et al.
2020] usually utilize a scan-and-align method to match the
sampled points in two trajectories, which incurs quadratic
time complexity. The second challenge is the efficiency of
the subset selection. One naive idea is to enumerate all their
subsets of size k and take the subset with maximum cover-
age as the result. However, there is a huge number of subsets
and it is prohibitively expensive to exhaustively compute the
coverage of each subset.

In this paper, we present a novel solution for the DaATS
problem. To address the first challenge, we leverage deep
metric learning to embed arbitrary-length trajectories into
fixed-size vectors, which is capable of computing the sim-
ilarity in linear time complexity. We propose to adopt the
bidirectional LSTMs (BiLSTM) with mean-pooling and
inter-trajectory attention (ITA) module to produce high-
quality embeddings. Specifically, the BiLSTM structure
captures the dependencies between adjacent points in each
trajectory. The ITA module utilizes the memory network,
trajectory clustering and attention mechanisms to acquire

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

689

the correlations between trajectories. To address the second
challenge, we define the problem formally and prove that
the problem is NP-hard. It indicates that obtaining the result
in polynomial time is non-trivial. Because of the hardness
of the problem, we propose a greedy based approximation
method with a suite of optimization techniques. We also pro-
vide lower bounds of the approximation ratio, which com-
pares the coverage of result produced by our method with
the optimal coverage. In summary, we make the following
contributions:
• We study the DaATS problem, and propose an efficient

and effective approximation solution by means of deep
metric learning and heuristic optimizations.

• We develop a deep metric learning method that considers
both intra- and inter-trajectory correlations.

• We devise an efficient algorithm for the subset selection.
It has theoretical guarantees on the approximation ratio.

• We conduct experiments on two real-world datasets. The
experimental results demonstrate the efficiency and effec-
tiveness of our proposal.

Related Work
Deep Metric Learning. Deep metric learning has been
successful in many applications. Mueller et al. [Mueller
and Thyagarajan 2016], Pei et al. [Pei, Tax, and Maaten
2016], Tolosana et al. [Tolosana et al. 2018], Coskun et
al. [Coskun et al. 2018], and Yao et al. [Yao et al. 2019]
utilize the Siamese recurrent networks to learn similarity
metrics for different tasks, e.g., sequence classifications and
spatial distance estimations. Liu et al. [Liu, Zhao, and Cong
2018] develop a metric learning method for comparing the
spatial-textual relevance between two regions. Li et al. [Li
et al. 2018] and Zhang et al. [Zhang et al. 2019] utilize the
Seq2Seq model to learn similarity metrics for trajectories
with low data quality. Yao et al. [Yao et al. 2019] add a spa-
tial gate to the LSTM cell for spatial trajectory distance esti-
mations. Wang et al. [Wang et al. 2019] employ metric learn-
ing to accelerate multi-trajectory similarity computation.
Result Diversification. The MaxMin and MaxSum diversi-
fication [Drosou and Pitoura 2014] select k out of a set of
n items such that the minimum or the average distance be-
tween the items are maximized. Drosou et al. [Drosou and
Pitoura 2012] introduce the dynamic diversification to sup-
port interactive operations. Guo et al. [Guo et al. 2018] con-
siders the visibility for visualized explorations on geospatial
data. Besides focusing on the diversity aspect, some studies
find a subset of items based on scoring functions that con-
sider both relevance and diversity [Angel and Koudas 2011;
Ashkan et al. 2015; Chen and Cong 2015].

Preliminaries

Activity Trajectory. The activity trajectory τ = 〈p1,
· · · , pn〉 is defined as a sequence of geo-textual points,
where pi = (li, ψi), with li = (xi, yi) being the location
of ith point and ψi being the keyword that describes the ac-
tivity venue.

Similarity Measures. We consider both spatial proximity
and semantic similarity when measuring trajectory similar-
ities, and use the symmetrical method proposed in [Shang
et al. 2017; Chen et al. 2020] to match point pairs continu-
ously. Given a geo-textual point p and an activity trajectory
τ , the spatio-textual relevance between them are defined as:

r(p, τ) = max
pi∈τ
{ST (p, pi)}

where ST (p, pi) denotes the similarity between p and pi,
which is computed by a linear combination of their spatial
proximity and textual (semantic) similarity [Lu et al. 2014]:

ST (pi, pj) = α · S(li, lj) + (1− α) · T (ψi, ψj).

where S(li, lj) denotes the normalized spatial proxim-
ity [Shang et al. 2017] between li and lj , which is inversely
proportional to their distance, and T (ψi, ψj) denotes the
normalized textual similarity between ψi and ψj . In this pa-
per, we use the cosine similarity of Glove word vectors to
measure the textual similarity. Finally, we define the simi-
larity between two trajectories τ1 and τ2 as follows:

Sim(τ1, τ2) =
1

2
(

∑
pi∈τ1 r(pi, τ2)

|τ1|
+

∑
pj∈τ2 r(pj , τ1)

|τ2|
)

Problem Definition. Given a user-specified region ζ, a
similarity threshold θ, and an integer k of the result size, let
S be a set of trajectories located in ζ. The DaATS problem
finds a subset R of S such that: (1) |R| = k; (2) ∀τi, τj ∈ R,
Sim(τi, τj) ≤ θ; and (3) the number of trajectories in S
covered by R is maximized. For any τ ∈ S, we consider R
covers τ if there exists a τ ′ ∈ R such that Sim(τ, τ ′) > θ.
Formally, we define the coverage of R for S as follows:

C(R,S) = |{τ |τ ∈ S ∧ ∃τ ′ ∈ R s.t. Sim(τ, τ ′) > θ}|

Trajectory Similarity Learning
In this section, we aim to learn a neural network that (1) cre-
ates simple vector representations for arbitrary-length trajec-
tories; and (2) well approximates the similarity measures.

Model
An overview of our proposed model is shown in Fig. 1. It

relies on two parts to model a trajectory: (1) Bidirectional
recurrent neural network. In many practical scenarios, ob-
jects usually move in spatial networks with certain struc-
tural characteristics. As a result, there exists some depen-
dency between adjacent points within one trajectory due to
the constraints of networks. To capture this dependency, we
propose to use the bidirectional LSTM (BiLSTM) structure
because it has a good grasp on the contextual information;
(2) Inter-trajectory attention (ITA) module. We cluster tra-
jectories according to their similarities and use memory ten-
sors to store their summary information over two directions.
Then, we exploit an attention based method to get the corre-
lations between trajectories.

690

1h 2h nh…

1h 2h …
nh

...

...

External Memory
(Positive Time

Direction)

External Memory
(Negative Time

Direction)

2p1p ... np

Mean Pooling

Retrieve/Update

Retrieve/Update

Figure 1: Structure of the trajectory embedding model.

Given a trajectory τ = 〈p1, · · · , pn〉, we use an ITA-
augmented BiLSTM to process it in two opposite directions:

−→
ht =

−−−−−−−−→
ITALSTM(pt,

−−→
ht−1);

←−
ht =

←−−−−−−−−
ITALSTM(pt,

←−−
ht+1).

We concatenate
−→
ht and

←−
ht to obtain the hidden state

ht = [
−→
ht ,
←−
ht]. To produce a fixed-size trajectory embed-

ding, we consider four ways of combing various number
of {ht}t=1,··· ,n, namely max-pooling, mean-pooling, self-
attention, and using the last hidden state of both directions.
The max-pooling selects the max value for each dimension
of {ht}t, while the mean-pooling summarizes the average
presence of the hidden states. The self-attention method ex-
tracts multiple views of the input trajectory, which repre-
sent different moving behaviors contained in it. Each view
is computed by a linear combination of the hidden states:

H = (h1, · · · , hn);

V = softmax(W2tanh(W1H
T))H

where W1 ∈ Rd′×2d, W2 ∈ Rµ×d′ , d is the hidden size for
each unidirectional LSTM, d′ is a hyperparameter, and µ is
the number of extracted views. The softmax function is exe-
cuted on the second dimension of the input data. In addition,
the final representation is the concatenation of all views.
In our experiment, we find that the mean-pooling gives the
highest accuracy of similarity approximation.

Next we introduce the ITA module. As Fig. 1 shows, at
each time step t, the goal of ITA module is to extract rele-
vant information from the similar neighbors of current tra-
jectory to help the encoding procedure. Inspired by the spa-
tial distance estimation method [Yao et al. 2019], we pro-
pose to use two memory tensors to store the encoded infor-
mation of all trajectories over two directions. One naive idea
is to store their encoded information of all time steps. How-
ever, it would lead to a huge amount of memory consump-
tion. To address this issue, we propose a trajectory cluster-
ing and segmentation based method. Specifically, we first
partition the spatial space into grid cells. Then, each trajec-
tory can be segmented by the boundary of grid cells. That is,
the segment number of a trajectory is exactly the number of
grid cells it has passed through. For each grid cell, we use
a greedy clustering algorithm [Zhang et al. 2017] to group
its trajectory segments based on the similarities between the

associated trajectories. We store two d-dimensional vector
representations for each group in the two memory tensors.
Each vector holds summary information of the group of tra-
jectories in one direction. In addition, to moderate the size
of memory tensors, we also define a parameter γ to restrict
the maximum number of groups in each grid cell.

More specifically, take the positive time direction as an
example, the state update of a LSTM unit [Hochreiter and
Schmidhuber 1997] are adapted as follows.

(ft, it, ot) = σ(Wg · pt + Ug · ht−1 +Ag · at + bg);

ct = ft · ct−1 + it · tanh(Wc · pt + Uc · ht−1 +Ac · at + bc);

ht = ot · tanh(ct)

where Wg ∈ R3d×(d′+2), Ug, Ag ∈ R3d×d, Wc ∈
Rd×(d′+2), Uc, Ac ∈ Rd×d. d is the hidden state size and d′
is the word embedding size. It is worth noting that ITA mod-
ule takes advantage of the attention vector at ∈ Rd to help
encode the trajectory. The attention mechanism adaptively
selects relevant information from other similar trajectories
to derive at. Specifically, at each time step t, we retrieve
K grid cells that are close to lt (recall that lt is the loca-
tion of pt) and get a set of vector representations Vt. Each
vi ∈ Vt corresponds to the vector representation of a trajec-
tory group that resides in the retrieved grid cells. Then, the
attention vector at is computed as a weighted sum of vi.

uit = mT tanh(Wa · pt + Ua · ht−1 +Qa · vi + ba);

βit =
exp(uit)∑|Vt|
j=1 exp(u

j
t)
; at =

|Vt|∑
i=1

βitvi

where mT , ba ∈ Rd, Wa ∈ Rd×(d′+2) and Ua, Qa ∈ Rd×d
are network parameters. The attention weight is jointly de-
termined by the previous hidden state ht−1, the input point
pt and the retrieved vector representation vi. This weight
represents the influence of each vi.

During the training process, we encode the information of
newly processed trajectory into the two representation vec-
tors after processing each point pt. Suppose pt is contained
in the group gi of trajectory segments and vi is the associated
vector representation of gi, we update vi as follows:

zt = σ(Wz · pt + Uz · ht−1 +Az · at + bz);

vnewi = (1− zt)voldi + ztht

where Wz ∈ Rd×(d′+2), Az, Uz ∈ Rd×d and bz ∈ Rd.
Complexity Analysis. The time complexity of directly com-
puting the trajectory similarity is O((d′ + 2)l̄2), where l̄ is
the average trajectory length. Our embedding based method
reduces the time complexity to O(d).

Training Methods
For any trajectories τ1 and τ2, our model independently

projects them into two vectors τE1 and τE2 . We learn net-
work parameters so that the distance between the generated
embeddings (D(τ1, τ2) = e−||τ

E
1 −τ

E
2 ||2) approximates the

similarity. However, it is computationally prohibitive to fit
the similarities between all trajectory pairs. Inspired by the
negative sampling [Mikolov et al. 2013], for each trajectory
τ , we sample η similar and dissimilar trajectories (denoted
as Ts and Td) from the training data to form positive and

691

negative pairs, respectively. Then, we set the loss function
as the weighted sum of mean squared errors (MSE) based
on the real similarity between sampled pairs.

L =
∑
τs∈Ts

Sim(τ, τs)(Sim(τ, τs)−D(τ, τs))
2+

∑
τd∈Td

Sim(τ, τd)(Sim(τ, τd)−D(τ, τd))
2

Diversity-Aware Activity Trajectory Selection
We first prove that the DaATS problem is NP-hard. Then,

we propose a greedy algorithm with a suite of optimizations.
Finally, we give the approximation ratio analysis.

NP-hardness of the DaATS Problem

Theorem 1. The DaATS problem is NP-hard.

Proof. We reduce the DaATS problem from the minimum
independent dominating set (MIDS) problem [Garey and
Johnson 1979], which finds a minimum subset D of V
for a graph G = (V,E) such that: (1) ∀vi, vj ∈ D,
vi /∈ Neighbors(vj); and (2) ∀vi ∈ V , vi ∈ D or
∃vj ∈ D s.t. vi ∈ Neighbors(vj). We build a DaATS
problem to solve the decision problem of MIDS, which an-
swers whether there exists a result set with the size no more
than k. Given a graph G and a set S of trajectories, we
map each τi ∈ S to a vertex vi ∈ V . If there exists an
edge between vi and vj , we set ||τEi − τEj ||2 < −lnθ (i.e.,

e−||τ
E
i −τ

E
j ||2 > θ). Otherwise, we set ||τEi −τEj ||2 ≥ −lnθ.

Let R = {τ1, · · · , τk} be the result of a given DaATS
instance, and D = {v1, · · · , vk} be the mapped vertices in
G. Suppose that we have C(R,S) = |S|, from preliminaries
section, we can infer that for any τ ∈ S, we have either τ ∈
R, or τ is covered by R (i.e., ∃τ ′ ∈ R s.t. ||τE − τ ′E ||2 <
−lnθ). On the other hand, considering the mapped graph G,
it’s obvious that for any vi, vj ∈ D, we have (vi, vj) /∈ E.
In addition, for any vi ∈ V , we have: (1) vi ∈ D; or (2)
∃vj ∈ D, (vi, vj) ∈ E. Thus, D is the result of the decision
problem of MIDS. Since MIDS is NP-hard, the theorem is
proved.

Greedy Based Algorithm
Since the DaATS problem is NP-hard, we resort to a greedy
heuristic. We consider two trajectories have a neighborhood
relationship if they are similar. Given a set S of trajecto-
ries, we iteratively finds the “best candidate” that has the
maximum number of uncovered neighbors. To meet the re-
quirements of diversity, after adding a new candidate τnew
to the result set R, we remove the uncovered neighbors that
are similar to τnew from S. Once we have found k results,
we terminate the algorithm. The main technical challenge
here is how to find the “best candidate” in each iteration. A
straight forward solution is to calculate the number of un-
covered neighbors for each τ ∈ S\R. However, the compu-
tation cost is prohibitively expensive. To address this issue,
we propose a suite of optimization techniques based on the
following lemma.

Lemma 1. Let M and N be two sets of trajectories where
M ⊆ N , and τnew is a new trajectory. Let M ′ denote M in-
serted with τnew and N ′ denote N inserted with τnew. Then
we have C(M ′, S)− C(M,S) ≥ C(N ′, S)− C(N,S).

Proof. Suppose that the coverage increases by l after in-
serting τnew into M , and L = {τ ′1, · · · , τ ′l} is the set of
newly covered trajectories. For any τ ∈ N\M , if it does not
cover any τ ′ ∈ L, then we have C(N ′, S) − C(N,S) =
C(M ′, S) − C(M,S) = l. Otherwise, some trajectories
in L have been covered by N , thus we have C(N ′, S) −
C(N,S) < C(M ′, S) − C(M,S) = l. Together, the lemma
is proved.

From Lemma 1, we can see that, given any trajectory, the
number of its uncovered neighbors will decrease when we
proceed the algorithm. This motivates us to design an upper
bound based pruning technique, which recalculates the num-
ber of uncovered neighbors for a few promising candidates
after adding a new result.
Upper Bound Based Pruning. We create a triple entry
〈τ, δ(τ), I(τ)〉 for each trajectory τ , where δ(τ) is the num-
ber of its uncovered neighbors, and I(τ) is the result size
when δ(τ) is computed. Note, according to Lemma 1, δ(τ)
can be regarded as the upper bound on the number of τ ’s
uncovered neighbors for |R| > I(τ). To find a candidate
with the maximum number of uncovered neighbors, we visit
the triple entries in descending order of δ(τ). A max-heap
H is used to manage all the entries and a “lazy” update strat-
egy [Zhou et al. 2013] is applied. When selecting a new can-
didate, we pop the heap to get a trajectory τ top with the glob-
ally largest δ(τ top). If I(τ top) < |R|, we recalculate δ(τ top)
by checking its neighbors. This is because δ(τ top) is evalu-
ated when the result size is I(τ top). Next, we set I(τ top) as
|R| and reinsert it to H. We repeat this until δ(τ top) is eval-
uated regarding current result set. Then, we add τ top to the
result set since it has a larger number of uncovered neigh-
bors than any of the remaining ones inH.
Data Partition. The heap based method needs to maintain
a triple entry for each τ ∈ S. Thus, the heap size is |S|,
which is relatively large and leads to high cost of heap ad-
justments (the time cost is log|S| for each heap adjustment).
To address this issue, we propose a partition based method.
Recall that the number of uncovered neighbors for all tra-
jectories will decrease as we proceed the algorithm, and we
are interested in a few candidates with the largest number of
uncovered neighbors in each iteration. Thus, we propose to
partition the candidates by the range of their recorded num-
ber of uncovered neighbors, and then process each range in
descending order. Let Imax and Imin be the maximum and
minimum number of uncovered neighbors for all trajecto-
ries in iteration 0. We partition the range [Imin, Imax] into
equal intervals. Specifically, we set the interval width as 1
and build an inverted list for each partition. That is, all en-
tries in an inverted list have the same recorded number of un-
covered neighbors. With this method, we can perform each
triple entry adjustment in O(1) time. Thus, the heap adjust-
ing cost is eliminated.

Algorithm 1 presents the implementation of our method.
We first build a graph G by mapping each τi ∈ S to a vertex

692

vi ∈ V and adding edges based on their similarities (Line 1).
Clearly, the coverage of a trajectory is exactly the degree of
the mapped vertex. For ease of presentation, we call a vertex
black if it is in the result set R or covered by R. Otherwise,
we call the vertex white. Initially, R is empty and all ver-
tices are white (Line 2). Then we partition the vertices (Line
3), build inverted lists for each partition (Line 4∼6), and se-
lect the subset iteratively (Line 7∼23). For each candidate
selection, we get an entry t out of the inverted list that has
the largest recorded number of white neighbors (Line 9). If
t.v is black, we directly drop it because it is similar to some
trajectories in R. If t.v is white, we check whether t.δ(v) is
computed regarding current result set (Line 12). If not, we
update it and reinsert t into the corresponding inverted list
(Line 13∼14). Otherwise, we add t.v to the result set and
color black all vertices covered by it (Line 16∼17). The iter-
ation is repeated until we have selected k diverse results or
all vertices have been colored black.
Complexity Analysis. The time complexity of building the
mapped graph is O(n2), where n = |S|. The time com-
plexity of the subset selection is O(ns · ni), where ns is the
average neighborhood size and ni is the total number of tra-
jectories whose uncovered neighbors are computed. Note,
ns and ni are usually much smaller than n. In practice, sup-
pose the minimum similarity threshold a system can support
is θ′ (e,g., 0.7), we can pre-compute the neighbors for each
trajectory regarding θ′. In this way, for any user specified
threshold θ (θ ≥ θ′), we do not have to check the similarity
of all trajectory pairs to build the graph.

Approximation Ratio Analysis
We first introduce the following lemma, which will help

with the approximation ratio analysis.
Lemma 2. Given two d-dimensional vertices vi and vj , we
call vi conflicts with vj if vi is covered by vj (i.e., ||vi −
vj ||2 < −lnθ). LetR be a diverse vertex set in which no two
vertices conflict with each other. Given a vertex v /∈ R, at
most Cd vertices in R conflict with v, where Cd is a function
of the dimensionality d and independent of |R|.

Proof. If v1, v2 ∈ R conflict with v, then v1 and v2 must be
inside the sphere Sv which is centered at v with radius−lnθ.
Because v1 and v2 do not conflict with each other, we have
||v1 − v2||2 ≥ −lnθ. Obviously, the angle between vv1 and
vv2 is at least 60◦. Next, we prove that there are at most Cd
rays sharing the same initial vertex in d-dimensional space,
where the angle between any two rays is at least 60◦.

For any ϑ ∈ (0, π/3], previous study [Yao 1982] has
shown that the space Ed can be covered with a certain num-
ber of convex cones V = {V1, · · · , VCd

} such that: (1)
all convex cones share the same initial vertex v; and (2)
each convex cone’s angular diameter is smaller than ϑ. Let
Rv = {vu1, · · · , vuCd+1} be any Cd + 1 rays sharing the
same initial vertex v. Based on the pigeonhole principle,
at least two rays are contained in the same convex cone.
Suppose that vu1 and vu2 lie in the same convex V1, we
have ∠u1vu2 < 60◦ because the angular diameter of V1
is smaller than π/3. For any two rays vui and vuj , if the
inequality ∠uivuj ≥ 60◦ always holds, then the number

Algorithm 1: GreedyTrajectorySelection(S, k, θ)
1 Build a graph G = (V,E) using the method described in

Theorem 1;
2 Set R as empty and color all vertices in V white;
3 Partition vertices based on their degrees;
4 foreach vertex v ∈ V do
5 Put 〈v, v.degree, 0〉 into the inverted list Lv.degree;
6 end
7 L ← pick a non-empty inverted list with the largest recorded

number of white neighbors;
8 while L 6= ∅ and |R| < k do
9 t← get a triple entry out of L;

10 if t.v is white then
11 NW (t.v)← the set of the white neighbors of t.v;
12 if t.I(v) < |R| then
13 t.δ(v)← |NW (t.v)|;
14 Put 〈t.v, t.δ(v), |R|〉 into the inverted list

Lt.δ(v);
15 else
16 R← R ∪ {t.v};
17 color t.v and each v′ ∈ NW (t.v) black;
18 end
19 end
20 if L = ∅ and there exists a non-empty inverted list then
21 L ← pick a non-empty inverted list with the largest

recorded number of white neighbors;
22 end
23 end
24 return R;

of rays must be smaller than Cd + 1, where Cd is a func-
tion of the dimensionality d. Note, we can further prove
that Cd = O(d2). This is because there are at most O(d2)
rays sharing the same initial vertex in d-dimensional space,
where the angle between any two rays is at least 45◦.

Given the above, the lemma is proved.

From Lemma 2, we have the approximation ratio of our
greedy algorithm as follows. Due to space constraints, we
leave the full proof to our technical report.

Theorem 2. The approximation ratio of our greedy algo-
rithm is at least 1

Cd+1 .

Experiment

Experimental Setup
Dataset. We experimented on two real-world datasets: T-

Drive [Yuan et al. 2011] and NYCTL [Donovan and Work
2015]. The dataset T-Drive consists of taxi trajectories in
Beijing. The original trajectories are very long (the aver-
age length is 1, 450) and usually last days. To create trips
with realistic duration, we divided them into 0.52 million
hour-long sub-trajectories. The dataset NYCTL covers four
years of taxi trips in NYC. We selected 0.5 million trips
from the dataset and used the New York Road Network to
infer the routes of each trip. In addition, we used real-world
POI data [Yang et al. 2015; Center 2017] to map each POI

693

Methods T-Drive NYCTL
HR@50 R10@50 HR@50 R10@50

LSTM 0.4965 0.7386 0.5861 0.8179
LSTM + ITA 0.5197 0.7584 0.6150 0.8299

BiLSTM + Last 0.4991 0.7398 0.5899 0.8188
BiLSTM + Self-Attention 0.4874 0.7299 0.5784 0.8104
BiLSTM + Max-Pooling 0.4695 0.7192 0.5627 0.7996
BiLSTM + Mean-Pooling 0.5028 0.7425 0.5933 0.8226

Our Model + Last 0.5259 0.7598 0.6184 0.8316
Our Model + Self-Attention 0.5131 0.746 0.5952 0.8197
Our Model + Max-Pooling 0.4953 0.7396 0.5838 0.8101
Our Model + Mean-Pooling 0.5301 0.7626 0.6216 0.8365

Table 1: Comparing different deep metric learning methods.

to the nearest trajectory point, which can describe the ac-
tivity of associated trajectory. We chosen the trajectories in
central city and removed trajectories whose points are less
than 10. Finally, we got 0.29/0.17 million trajectories in T-
Drive/NYCTL.
Baselines. We compared our deep metric learning method
with the following baselines:

(1) LSTM. The last d-dimensional hidden state was se-
lected as the trajectory embedding. Generally, the accuracy
of similarity approximation first improves with the increase
of d and then levels off when d is large enough. In contrast,
the efficiency decreases with the increase of d since the time
complexity is O(d). We tuned d using grid search and set
d = 512 because it has stable performance.

(2) BiLSTM based methods. The BiLSTM computes a set
of 512-d hidden states in each direction. We generated 4
baselines with different ways of combing the hidden states.
For self-attention, we searched hyperparameters in a wide
range and found that d′ = 600 and u = 5 worked best.

(3) Variants of our method. We also experimented with 4
ways of combing the hidden states in our method, and used
the same parameters as the BiLSTM based methods. In ad-
dition, we included the variant of LSTM + ITA as well. We
tuned K with grid search and set K = 9 as it worked best.

For the subset selection problem, we compared our greedy
method with the following baselines:

(1) MaxMin, MaxSum. The two methods [Drosou and Pi-
toura 2014] are commonly used to find a set of most diverse
trajectories. Note, they may return a result set without fulfill-
ing the diversity constraint stated in our problem definition.

(2) Random. We repeatedly picked a trajectory τ if adding
τ to the result set does not break the diversity constraint.
Settings. To moderate the size of memory tensors, we di-
vided the space into 200m×200m grid cells and set the max-
imum number of groups γ in each grid cell as 6. Due to the
numerous number of trajectories, it’s impractical to compute
the similarity of all trajectory pairs. Thus we randomly cho-
sen 15k trajectories to compute the ground truth. In addition,
30%/10%/60% of the ground truth data was used for train-
ing/parameter tuning/testing. The sampling size η was set
as 10. For the DaATS problem, we used the whole dataset
and set the similarity threshold θ as 0.8. We randomly sam-
pled 100 square-shape regions as the explored regions. By

10
-1

10
0

10
1

10
2

10
3

10
4

5 20 80 320 1280

E
la

p
se

d
 T

im
e

(s
)

Data Cardinality (× 10
3
)

Native Method
Our Method

(a) T-Drive

10
-1

10
0

10
1

10
2

10
3

10
4

5 20 80 320 1280

E
la

p
se

d
 T

im
e

(s
)

Data Cardinality (× 10
3
)

Native Method
Our Method

(b) NYCTL

Figure 2: Comparing the similarity computation efficiency.

default, we set the region size as 0.01 of the city size and
selected a subset of size 100.
Evaluation Metrics. We studied the top-k similarity search
problem, and used two metrics to evaluate the effective-
ness of metric learning methods: (1) HR@50. It measures
the overlap of the ground truth and the top-50 results; (2)
R10@50. It measures how many results in top-10 ground
truth can be found from the top-50 results. For the methods
of subset selection, we used CPU time and coverage ratio
(defined as C(R,S)/|S|) to evaluate their efficiency and ef-
fectiveness.
Environment. We conducted experiments on a workstation
powered by Intel Xeon Gold-6148 CPU on Linux (Ubuntu
16.04), having a Nvidia Titan Xp GPU.

Evaluating the Deep Metric Learning Methods
Overall effectiveness. Table 1 shows the effectiveness per-

formance comparison. We observed that our method signif-
icantly outperformed the baselines on both datasets. This
is because our method considers both intra- and inter-
trajectory correlations, which is very helpful to generate
high-quality embeddings. Our method improved other meth-
ods by up to 6.8%. For example, on T-Drive dataset, the
HR@50 of LSTM and our method were 0.4965 and 0.5301,
respectively. Note that the self-attention and max-pooling
based methods had unsatisfactory performance. It might be
because they over-specialize to the training data without
capturing the general information of input trajectories.
Overall efficiency. We compared our method with the na-
tive method that directly computes the exact similarity. As
all metric learning methods have the same time complexity
O(d), we didn’t include the result of other baselines. Fig-
ure 2 shows their run time for computing the similarity of
varying number of trajectory pairs. We observed that our
method always achieved the best performance and improved
the native method by up to 1060×. Moreover, we can see
that our method had steady performance. This is because the
fixed-size embedding has the advantage of stable time cost
for similarity computation.

Evaluating the Greedy Based Method
Evaluating Proposed Techniques. We implemented the

following methods to evaluate the efficiency of our pro-
posed techniques: (1) GreedyBF (brute force) recalculates
the number of uncovered neighbors for all trajectories in
each iteration; (2) GreedyHeap improves GreedyBF with the

694

 0.01

 0.1

 1

 10

0.25 0.5 1 2 4

E
la

p
se

d
 T

im
e

(s
)

 Region Size (× 10
-2

)

GreedyBF
GreedyHeap

Greedy

(a) T-Drive

 0.01

 0.1

 1

 10

0.25 0.5 1 2 4

E
la

p
se

d
 T

im
e

(s
)

 Region Size (× 10
-2

)

GreedyBF
GreedyHeap

Greedy

(b) NYCTL

Figure 3: Evaluation of proposed techniques.

 0.01

 0.1

 1

 10

0.25 0.5 1 2 4

E
la

p
se

d
 T

im
e

(s
)

 Region Size (× 10
-2

)

MaxMin
MaxSum
Random
Greedy

(a) Run time on T-Drive

 0.01

 0.1

 1

 10

0.25 0.5 1 2 4

E
la

p
se

d
 T

im
e

(s
)

 Region Size (× 10
-2

)

MaxMin
MaxSum
Random
Greedy

(b) Run time on NYCTL

 0

 0.2

 0.4

 0.6

 0.8

0.25 0.5 1 2 4

C
o
v
er

a
g
e

R
a
ti

o

 Region Size (× 10
-2

)

MaxMin
MaxSum
Random
Greedy

(c) Coverage ratio on T-Drive

 0

 0.2

 0.4

 0.6

 0.8

0.25 0.5 1 2 4

C
o
v
er

a
g
e

R
a
ti

o

 Region Size (× 10
-2

)

MaxMin
MaxSum
Random
Greedy

(d) Coverage ratio on NYCTL

Figure 4: Comparing with baselines under different region
size.

upper bound based pruning; (3) Greedy (our method) inte-
grates the data partition method into GreedyHeap. Figure 3
shows the result on different region size. We can see that
GreedyHeap outperformed GreedyBF by up to 8.7× when
the region size was large. This is because the upper bound
based pruning technique can reduce the computation cost
by skipping unpromising candidates. We also observed that
the partition technique could help improve the performance.
This is because it eliminates the cost of heap adjustments.
Effect of the region size. Figure 4 depicts the effect of
scaling the explored regions. We observed that our method
showed good scalability. It always achieved the highest cov-
erage ratio and had comparable run time with the Random
method. This is because our method always seeks to retrieve
the trajectory with maximum increment of coverage. More-
over, the proposed optimization techniques can significantly
improve the efficiency of subset selection. Note that the cov-
erage ratio of MaxSum was lower than Random. The main
reason is that it tends to focus on the boundary or sparse area
where the trajectories are farthest to all of the others.
Effect of the result size. Figure 5 displays the effect of the
result size. We observed that our method scaled very well
when the result size was increased. We also observed that
our method was able to keep a high coverage ratio under

 0.01

 0.1

 1

 10

50 75 100 125 150

E
la

p
se

d
 T

im
e

(s
)

 Result Size

MaxMin
MaxSum
Random
Greedy

(a) Run time on T-Drive

 0.01

 0.1

 1

 10

50 75 100 125 150

E
la

p
se

d
 T

im
e

(s
)

 Result Size

MaxMin
MaxSum
Random
Greedy

(b) Run time on NYCTL

 0

 0.15

 0.3

 0.45

 0.6

50 75 100 125 150

C
o

v
er

a
g

e
R

a
ti

o

 Result Size

MaxMin
MaxSum
Random
Greedy

(c) Coverage ratio on T-Drive

 0

 0.15

 0.3

 0.45

 0.6

50 75 100 125 150

C
o
v

er
a
g

e
R

a
ti

o

 Result Size

MaxMin
MaxSum
Random
Greedy

(d) Coverage ratio on NYCTL

Figure 5: Comparing with baselines under different result
size.

 0.01

 0.1

 1

 10

0.7 0.75 0.8 0.85 0.9

E
la

p
se

d
 T

im
e

(s
)

 Similarity Threshold

MaxMin
MaxSum
Random
Greedy

(a) Run time on T-Drive

 0

 0.15

 0.3

 0.45

 0.6

0.7 0.75 0.8 0.85 0.9

C
o
v
er

a
g
e

R
a
ti

o

 Similarity Threshold

MaxMin
MaxSum
Random
Greedy

(b) Coverage ratio on T-Drive

Figure 6: Comparing with baselines under different value of
θ.

different result size. This is due to the fact that our method
has performance guarantees on the approximation ratio.
Effect of the similarity threshold. Lastly, we investigated
the effect of similarity threshold θ. We only included the
result on T-Drive dataset due to space constraints. Figure 6
shows the result. We can see than our method performed
well under different value of θ. Our method outperformed
MaxMin and MaxSum by up to 16× and 19× in terms of
efficiency, and outperformed all the baselines by up to 7.6×
in terms of coverage ratio.

Conclusion
In this paper, we studied the DaATS problem and proposed
a novel approximation solution. To speed up the similarity
computation, we developed a deep metric learning method
to project the trajectories into fixed-size embeddings. For ef-
ficient and effective subset selection, we proposed a greedy
algorithm with a suite of heuristic optimization techniques.
The experimental results demonstrate the superiority of our
proposal.

695

Acknowledgments
Shuo Shang is supported by NSFC U2001212, 62032001
and 61932004.

References
Angel, A.; and Koudas, N. 2011. Efficient diversity-aware
search. In SIGMOD, 781–792.

Ashkan, A.; Kveton, B.; Berkovsky, S.; and Wen, Z. 2015.
Optimal greedy diversity for recommendation. In IJCAI,
1742–1748.

Center, S. I. 2017. Map POI (Point of Interest) data. doi:
10.18170/DVN/WSXCNM. URL https://doi.org/10.18170/
DVN/WSXCNM.

Chen, L.; and Cong, G. 2015. Diversity-aware top-k pub-
lish/subscribe for text stream. In SIGMOD, 347–362.

Chen, L.; Shang, S.; Jensen, C. S.; Yao, B.; and Kalnis, P.
2020. Parallel semantic trajectory similarity join. In ICDE,
997–1008.

Coskun, H.; Tan, D. J.; Conjeti, S.; Navab, N.; and Tombari,
F. 2018. Human motion analysis with deep metric learning.
In ECCV, 693–710.

Donovan, B.; and Work, D. B. 2015. Using coarse GPS data
to quantify city-scale transportation system resilience to ex-
treme events. CoRR abs/1507.06011.

Drosou, M.; and Pitoura, E. 2012. DisC diversity: result
diversification based on dissimilarity and coverage. PVLDB
6(1): 13–24.

Drosou, M.; and Pitoura, E. 2014. Diverse set selection over
dynamic data. IEEE Trans. Knowl. Data Eng. 26(5): 1102–
1116.

Garey, M. R.; and Johnson, D. S. 1979. Computers and in-
tractability: a guide to the theory of NP-Completeness. W.
H. Freeman.

Guo, T.; Feng, K.; Cong, G.; and Bao, Z. 2018. Efficient
selection of geospatial data on maps for interactive and vi-
sualized exploration. In SIGMOD, 567–582.

He, J.; Tong, H.; Mei, Q.; and Szymanski, B. K. 2012. Gen-
DeR: a generic diversified ranking algorithm. In NIPS,
1151–1159.

Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation 9(8): 1735–1780.

Li, X.; Zhao, K.; Cong, G.; Jensen, C. S.; and Wei, W. 2018.
Deep representation learning for trajectory similarity com-
putation. In ICDE, 617–628.

Liu, Y.; Zhao, K.; and Cong, G. 2018. Efficient similar re-
gion search with deep metric learning. In SIGKDD, 1850–
1859.

Lu, Y.; Lu, J.; Cong, G.; Wu, W.; and Shahabi, C. 2014.
Efficient algorithms and cost models for reverse spatial-
keyword k-nearest neighbor search. ACM Trans. Database
Syst. 39(2): 13:1–13:46.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In NIPS, 3111–3119.
Mueller, J.; and Thyagarajan, A. 2016. Siamese recurrent ar-
chitectures for learning sentence similarity. In AAAI, 2786–
2792.
Parambath, S. P.; Usunier, N.; and Grandvalet, Y. 2016. A
coverage-based approach to recommendation diversity on
similarity Graph. In RecSys, 15–22.
Pei, W.; Tax, D. M. J.; and Maaten, L. V. D. 2016. Model-
ing time series similarity with siamese recurrent networks.
CoRR abs/1603.04713.
Shang, S.; Chen, L.; Wei, Z.; Jensen, C. S.; Zheng, K.; and
Kalnis, P. 2017. Trajectory similarity join in spatial net-
works. PVLDB 10(11): 1178–1189.
Tolosana, R.; Vera-Rodrı́guez, R.; Fiérrez, J.; and Ortega-
Garcia, J. 2018. Exploring recurrent neural networks for
on-line handwritten signature biometrics. IEEE Access 6:
5128–5138.
Vee, E.; Srivastava, U.; Shanmugasundaram, J.; Bhat, P.;
and Amer-Yahia, S. 2008. Efficient computation of diverse
query results. In ICDE, 228–236.
Wang, Z.; Long, C.; Cong, G.; and Ju, C. 2019. Effective
and efficient sports play retrieval with deep representation
learning. In SIGKDD, 499–509.
Ward, M. O.; Grinstein, G. G.; and Keim, D. A. 2010. In-
teractive data visualization - foundations, techniques, and
applications. A K Peters.
Yang, D.; Zhang, D.; Zheng, V. W.; and Yu, Z. 2015. Mod-
eling user activity preference by leveraging user spatial tem-
poral characteristics in LBSNs. IEEE Trans. Syst. Man Cy-
bern. Syst. 45(1): 129–142.
Yao, A. C. 1982. On constructing minimum spanning trees
in k-dimensional spaces and related problems. SIAM J.
Comput. 11(4): 721–736.
Yao, D.; Cong, G.; Zhang, C.; and Bi, J. 2019. Comput-
ing trajectory similarity in linear time: a generic seed-guided
neural metric learning approach. In ICDE, 1358–1369.
Yuan, J.; Zheng, Y.; Xie, X.; and Sun, G. 2011. Driving with
knowledge from the physical world. In SIGKDD, 316–324.
Zhang, Y.; Li, X.; Wang, J.; Zhang, Y.; Xing, C.; and Yuan,
X. 2017. An efficient framework for exact set similarity
search using tree structure indexes. In ICDE, 759–770.
Zhang, Y.; Liu, A.; Liu, G.; Li, Z.; and Li, Q. 2019. Deep
representation learning of activity trajectory similarity com-
putation. In ICWS, 312–319.
Zheng, Y. 2015. Trajectory data mining: an overview. ACM
TIST 6(3): 29:1–29:41.
Zhou, C.; Zhang, P.; Guo, J.; Zhu, X.; and Guo, L. 2013.
UBLF: an upper bound based approach to discover influen-
tial nodes in social networks. In ICDM, 907–916.

696

