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Abstract

One of the most exciting applications of modern artificial in-
telligence is to automatically discover scientific laws from ex-
perimental data. This is not a trivial problem as it involves
searching for a complex mathematical relationship over a
large set of explanatory variables and operators that can be
combined in an infinite number of ways.
Inspired by the incredible success of deep learning in com-
puter vision, we tackle this problem by adapting various suc-
cessful network architectures into the symbolic law discovery
pipeline. The novelty of our approach is in (1) encoding the
input data as an image with super-resolution, (2) developing
an appropriate deep network pipeline, and (3) predicting the
importance of each mathematical operator from the relation-
ship image. This allows us to prior the exponentially large
search with the predicted importance of the symbolic opera-
tors, which can significantly accelerate the discovery process.
We apply our model to a variety of plausible relationships—
both simulated and from physics and mathematics domains—
involving different dimensions and constituents. We show
that our model is able to identify the underlying operators
from data, achieving a high accuracy and AUC (91% and
0.96 on average resp.) for systems with as many as ten inde-
pendent variables. Our method significantly outperforms the
current state of the art in terms of data fitting (R2), discov-
ery rate (recovering the true relationship), and succinctness
(output formula complexity). The discovered equations can
be seen as first drafts of scientific laws that can be helpful to
the scientists for (1) hypothesis building, and (2) understand-
ing the complex underlying structure of the studied phenom-
ena. Our approach holds a real promise to help speed up the
rate of scientific discovery.

Introduction
A persistent goal in the history of scientific research is to ex-
tract the relationship between variables from data. In most
scientific fields, these relationships can be reduced to simple
expressions composed from elementary mathematical oper-
ators. Physicists, for example, have formulated laws govern-
ing natural phenomena including motion, electricity, etc.

A key objective in modern artificial intelligence is to au-
tomate this process. Symbolic regression (SR) attempts to
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achieve this by searching in the space of mathematical ex-
pressions. Specifically, for a data pair (x, y), SR seeks to
identify a mapping f that best describes the relationship
x → y, i.e., that minimizes a certain loss function. f is re-
quired to be a symbolic expression assembled from mathe-
matical operators, explanatory variables, and constants.

In conventional regression, one prescribes a parametric
model for f . This almost always suffers from the trade-off
between expressiveness and interpretability. Simple mod-
els (such as linear regression) can severely underfit a com-
plex system. Composite models (such as neural network), on
the other hand, are not easily understood by humans (Fan,
Xiong, and Wang 2020). SR, in contrast, can fit to an ar-
bitrarily complex target function and provide readily inter-
pretable results. Even if it does not precisely uncover the
ground truth functional form, the result still offers useful in-
sight to the development of scientific theory.

SR is classically implemented via genetic programming
(Koza 1994). The mapping f is expressed as a symbolic
tree. Each internal node of the tree is an operator and each
leaf node is either an explanatory variable or a constant.
The algorithm randomly initializes a population of symbolic
trees. These instances then fit the dataset through a series of
evolutionary steps, or generations. In each generation, new
trees are created by genetic operations, typically including
point mutation and crossover (subtree exchange). The best-
performing trees are then selected to proceed to the next gen-
eration, based on a fitness measurement on the training set
(e.g., root mean square error). Empirically, the performance
increases with each generation and we can obtain a plausible
symbolic relationship after sufficient rounds.

There is a serious bottleneck of this genetic approach
which is seldom discussed in other SR literature – the op-
erator set. Before running the algorithm, one needs to define
the search space by providing a set of available operators
(add, log, sin, etc.). The model will fail to uncover the
true relationship x→ y if the set lacks some constituent op-
erator. On the other hand, the speed and performance of the
algorithm will be severely hindered if the set is too large.
This is because: 1) We need a larger population and/or more
generations for an exponentially large search space. 2) There
are more false optima of the loss function due to extraneous
operators. We will quantitatively evaluate the impact of op-
erator set initialization in the subsequent sections.
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Ideally, we should prior the algorithm with and only with
the operators that constitute the actual symbolic relationship.
However, this information is most often not provided with
the raw data when scientists study a new system. In this pa-
per, we focus on this symbolic operator identification prob-
lem. Formally, we are given data pair (x, y), such that each
ith observation satisfies yi = f(xi)+ε. Here f is a symbolic
relationship and ε is random noise. Our model determines
whether an operator is contained within the expression of f .

We present Deep Symbolic Tree Operator Identifier (De-
STrOI) as the first practical solution. DeSTrOI first ex-
tracts the relationship between variables and encode it into
an image. We employ a super-resolution residual network
(ResNet) as our encoder. We then use a deep convolutional
neural network (CNN) to decode from the image and pre-
dict the existence of each operator, given in an importance
score. We apply a gated attention mechanism to account for
high dimensional data. Our architecture is able to achieve
85%-96% accuracy and 0.90-0.99 area under curve (AUC)
for our test operators (add, mul, inv, sqrt, log, sin)
and up to 10 explanatory variables. We apply our results
to genetic algorithms and find a ∼ 10% increase in R2,
∼ 25% increase in discovery rate and ∼ 10% decrease in
output formula complexity (all statistically significant). Our
model also significantly improves the efficiency for other
non-genetic state-of-the-art SR methods.

Our paper is organized as follows: In Methods, we de-
scribe the DeSTrOI architecture including encoder, decoder
and the attention mechanism. In Results for Synthetic Data,
we discuss our synthetic dataset and the training process.
We also present the DeSTrOI performance and compare it to
two simpler baseline models that we develop. In Results for
Real Data, we apply DeSTrOI to actual problems in mathe-
matics, physics and engineering, as real scientists would.

DeSTrOI will be useful even outside of the context of SR.
By identifying the mathematical operators from data, it can
guide scientific researchers to derive the underlying formu-
las. For example, our algorithm can report, with high confi-
dence, whether or not there should be a sinusoidal compo-
nent in the mapping x→ y. This effectively provides insight
for scientists to understand the nature of this relationship.

Related Works
Symbolic Regression (SR)
Symbolic equation generation from data was first studied
in computational physics (Crutchfield and Mcnamara 1987;
Crutchfield and Young 1989). Later, Koza (1994) formu-
lated SR as an artificial intelligence problem and designed
the popular genetic algorithm solution. This method is mod-
ified and applied in the seminal work by Schmidt and Lipson
(2009) to discover equations of motion in nonlinear dynam-
ical systems. The authors later developed Eureqa, the first
commercialized SR software.

Evolutionary algorithms have since become the predom-
inant method for SR, and several optimizations have been
developed to improve its accuracy and efficiency (Nguyen
et al. 2011; Amir Haeri, Ebadzadeh, and Folino 2017).
This body of works mainly focus on the evolutionary pro-

cess. They attempt to achieve better performance through
loss function selection, pruning, and hyper-parameter ad-
justments. Our work innovatively highlights the operator set
as an important prior for the algorithm. We demonstrate
that the operator set initialization significantly impacts the
genetic algorithm performance. Some authors have consid-
ered methods for operator set optimization (Lu, Ren, and
Wang 2016). However, they all rely on external informa-
tion such as expert knowledge to prior the algorithm. Our
DeSTrOI approach, on the other hand, seeks to identify the
operators from the raw data itself.

Deep Learning for SR
Developments in machine learning (esp. deep learning) have
prompted researchers to apply these methods in SR. Udrescu
and Tegmark (2020) recently developed AI Feynman, a
framework that constructs the underlying symbolic equa-
tion through a series of feature extraction steps. In particular,
they use a multi-layer perceptron (MLP) to fit the data and
identify symmetries such as translational invariance. This is,
in fact, a very crude version of our architecture. We pro-
vide super-resolution ResNet as a more accurate encoder
than MLP. Moreover, while they try to identify hand-crafted
symmetry features, we use deep CNN to automatically learn
from the images. As we show later, DeSTrOI with genetic
algorithm significantly outperforms AI Feynman.

Sahoo, Lampert, and Martius (2018) developed an Equa-
tion Learner Network. It replaces the activation function of
each internal node in an MLP with a mathematical operator.
This model can indirectly select operators by imposing an
L1 regularization. However, this architecture strictly limits
the depth and width of the symbolic tree. In addition, be-
cause gradient has to propagate through each internal node,
divergent operators such as log and sqrt cannot be in-
cluded, severely biasing the search space.

Deep generative models are also explored in recent stud-
ies as an alternative to genetic algorithms. Kusner, Paige,
and Hernández-Lobato (2017) use variational autoencoder
to train a latent space representation for the symbolic expres-
sions. Language models with recursive neural networks are
applied to “translate” the dataset to a string representation
of the symbolic tree (e.g., a preorder traversal). To deal with
the non-differentiable loss, Anjum et al. (2019) use an evolu-
tionary algorithm and Petersen (2019) uses deep reinforce-
ment learning to optimize the parameters. These methods
do not, in general, outperform state-of-the-art genetic algo-
rithm solutions. They additionally suffer from the problem
that their output string might not reconstruct to a valid sym-
bolic tree (incorrect grammar). Therefore, we constrain our-
selves to DeSTrOI’s application to genetic algorithm, which
is the mainstream solution for SR.

We note that all major works on SR assume a predefined
set of operators. Therefore, DeSTrOI can be applied as an
extra layer to all the existing methods. As we demonstrate in
the Results for Real Data, our model significantly reduces
the run time for AI Feynman. For generative models, we
can use our results to constrain the model vocabulary, which
has shown significant improvement in performance and effi-
ciency for machine translation (Post and Vilar 2018).
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Figure 1: Diagram illustrating the general DeSTrOI architecture. In summary, (x, y) will be encoded via the super-resolution
ResNet as an image that plots the underlying relationship. This encoding is then fed into a deep CNN decoder that predicts zop.

Symbolic Operator Identification
To the best of our knowledge, only Zhong et al. (2018) have
studied the symbolic operator identification problem. They
proposed DL-GEP, a method that attempts to identify opera-
tors from a line plot of the data. Some important limitations
of their work that we have addressed in our model are:

• DL-GEP only works for univariate data, whereas De-
STrOI is applicable for data with arbitrary number of
explanatory variables. We have verified that it achieves
sound test performance for up to 10 explanatory variables.
Note that most real scientific problems are multivariate.

• The core DL-GEP mechanism crucially relies on syntheti-
cally generated line plots. It is unclear how these plots get
produced from discrete data (e.g., no description of in-
terpolation method). We, instead, provide a well-defined
encoder to generate an image for each relationship.

• DL-GEP fails to (significantly) outperform baseline ge-
netic algorithm. (It has better performance for some in-
stances and worse for others. The authors have not in-
cluded a statistical evaluation.) DeSTrOI gives signifi-
cantly better results on a variety of metrics.

Deep Learning for Computer Vision
Our model leverages tools and techniques from learning-
based computer vision. Super-resolution seeks to recover a
high resolution image from a low resolution sample. The
state-of-the-art models provide solutions using ResNet (Lim
et al. 2017; Yu et al. 2018) and generative-adversarial net-
works (GAN) (Ledig et al. 2017). To our knowledge, super-
resolution has not appeared in SR literature. We choose the
ResNet architecture as our encoder because of its lower re-
liance on sample size. Furthermore, We utilizes a deep CNN
for our decoder. Our model is modified from the VGG archi-
tecture developed by Simonyan and Zisserman (2015).

Multiple Instance Learning (MIL)
Our model employs MIL to address higher dimensional data.
This technique, first explored by Dietterich, Lathrop, and
Lozano-Pérez (1997), pools an unordered bag of instances
and predicts a label for the bag. Our model design is in-
spired by MIL’s success in medical imaging. Ilse, Tomczak,

and Welling (2018) have implemented deep attention-based
MIL to detect a cancer site from multiple medical scans. We
innovatively leverage this mechanism to aggregate different
projections of a multi-dimensional dataset.

Methods
Our Deep Symbolic Tree Operator Identifier (DeSTrOI)
predicts whether some mathematical operator (add, log,
sin, etc.) exists in a symbolic relationship f given a pair of
data (x, y) that satisfy yi = f(xi) + ε (ε is a random noise
term). Each input xi ∈ Rk is an observation vector for the
k explanatory variables, and the output yi ∈ R corresponds
to the response variable. For every operator op, we assign a
label zop to indicate whether it exists within f . For example,
for the relationship y = sin(x1

√
1/|x2|), we would have

zadd = 0, zsin = 1, zsqrt = 1, etc. For k = 1, operator se-
lection does not have significant impact for SR (Zhong et al.
2018). Therefore, we will focus on the harder task of k ≥ 2.

We use the encoder-decoder paradigm to develop our
model. A general diagram of our model architecture is
shown in Figure 1. For each relationship f , the encoder out-
puts an image (a plot of f ). Specifically, we construct a grid
of points in the explanatory variable space Rk for a partic-
ular cubic region. With (x, y) as input, our encoder predicts
the value of y at each point on the grid. The result will be a
single channel k-d image. As an example, the (ground truth)
plot of y = sin(x1

√
1/|x2|) is shown in Figure 2a. Our

encoder model will attempt to reconstruct this plot using
(x, y). We then use this visual representation of the relation-
ship to predict zop via the decoder model.

We use a super-resolution ResNet as encoder and a deep
CNN as decoder. We further apply a gated attention mech-
anism for higher dimensional data (explained in the subse-
quent sections). Ultimately, we apply our results as a prior
for SR using genetic algorithm. We probabilistically include
each operator based on its predicted importance. This signif-
icantly accelerates the discovery of the underlying formula.

Super-Resolution Encoder
For a data pair (x, y), we first generate a naive image encod-
ing: We divide the cubic region in Rk into a grid of cells.
We assign a value for each cell as the average y value of
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(a) Ground truth (b) Naive encoding (0.10)

(c) Super-Resolution (0.06) (d) MLP (0.09)

Figure 2: Encoding images for y = sin(x1
√
1/|x2|). Paren-

thesized values are reconstruction MAE.

data points within this region. For cells that does not contain
a data point, we interpolate its value by averaging the val-
ues of its immediate neighbors. To account for adjacent cells
without enclosing data points, we sweep through the grid a
number of times and iteratively recompute the averages.

For our example function y = sin(x1
√
1/|x2|), this naive

encoding is shown in Figure 2b. In comparison to the ground
truth, it is noisy and discontinuous, especially around x2 =
0. These will be very problematic for our CNN decoder.

To fix this, we apply a modified enhanced deep super-
resolution network (EDSR) (Lim et al. 2017) that removes
the noise and increases the resolution of the naive encod-
ing. EDSR is composed from a series of 8 residual blocks.
Each block contains 2 convolutional layers with 64 filters.
We train this model using the mean absolute error (MAE)
loss. The output encoding for our example function is illus-
trated in Figure 2c. The noisy regions in the naive encoding
is properly smoothed and MAE is almost halved.

An alternative encoding method is to train a multi-layer
perceptron (MLP) network to predict the value of each cell.
This method is included in the Appendix for reference. For
completeness, we have included the MLP encoding for our
example function in Figure 2d. In general, super-resolution
has much better performance and efficiency.

CNN Decoder
Once we have a high quality visual relationship between x
and y, we feed it to our decoder, which predicts the existence
of each symbolic operator. For k = 2, we apply a deep CNN
model modified from VGG-16 (Simonyan and Zisserman

Figure 3: Diagram illustrating the gated attention MIL
mechanism. Each 2D projection of the data will be sepa-
rately encoded. Before prediction, their activation will be
pooled together according to their attention weights α’s.

2015). The architecture contains 5 convolution blocks, with
64, 128, 256, 512, 512 filters, respectively. Each block has
2 convolutional layers and 1 max-pooling layer. The output
of the last block then propagates through 3 fully connected
layers, with 4096, 4096, 1000 neurons, respectively. We use
an Exponential Linear Unit (ELU) activation for each kernel
since the encoding contains both positive and negative val-
ues. We regularize the model with an L2 weight decay and
50% dropouts for the fully connected layers.

We train a different model for each op. These models do
not share weights since we do not presume a predefined set
of operators. Our model can then be easily extended to in-
corporate new operators on demand.

Attention-Based MIL
For a scientific system with more explanatory variables (i.e.,
k > 2), we construct a new (x′, y) for each pair of explana-
tory variables by hiding the other variable values. In effect,
we project the original k-d dataset onto each of the orthogo-
nal 2-d planes. For a relationship f , we now have

(
k
2

)
sets of

data points (x′, y). We can then leverage multiple instance
learning (MIL) to perform the decoding.

As illustrated in Figure 3, our encoder generates a bag
of
(
k
2

)
images. We input them into the original decoder and

pool their activation in the last layer before predicting. Sup-
pose the activation vectors are {h1, . . . ,hL}. They are ag-
gregated through a gated attention mechanism (Ilse, Tom-
czak, and Welling 2018):

a =
L∑

l=1

αlhl (1)

a is then used to predict the label for the bag. The αl are
attention weights calculated from:

αl =
exp[wT (tanh(V hl)� σ(Uhl))]∑L
l=1 exp[w

T (tanh(V hl)� σ(Uhl))]
(2)

Here w ∈ RM , V ∈ RM×1000 and U ∈ RM×1000 are
trainable parameters. (In practice, we choose M = 250.) �
is element wise multiplication and σ(·) is the sigmoid func-
tion. This mechanism learns what makes a projection rele-
vant for the operator prediction task. This is more powerful
than simple aggregates (e.g., mean, max).
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Results for Synthetic Data
DeSTrOI is first trained and tested on our synthetic dataset
with randomly generated symbolic trees. Our dataset con-
sists of multiple (x, y) pairs, each sampled from a different
relationship. In the next Results for Real Data section, we
will demonstrate the model’s applicability in real problems
of science and engineering.

Synthetic Dataset
We generate symbolic trees with minimum depth 2 (e.g.,
y = sin(log(x))) and maximum depth 4 (e.g., y =
sin(log(sin(log(x))))). This corresponds to the complexity
of typical symbolic formulas in physical sciences. We se-
lect each internal node randomly from the set of six opera-
tors: {add, muliply, inverse, sqrt, log, sin}. As
discussed before, we can easily extend our model to new
operators on demand. The leaf nodes are either randomly
selected explanatory variables or random constants in the
range [−1, 1]. We also ensure that the symbolic relationships
all have reasonable value ranges. In practice, we exclude
instances that give y values exceeding ±100 for explana-
tory variables within [−10, 10]. Moreover, we add random
Gaussian noise ε ∼ N (0, 0.01) independently to each y to
emulate the inherent imprecision in real data. A more de-
tailed description of data generation is included in the Ap-
pendix. As shown in Table 1, our simulation scheme gives
relatively balanced class labels for each of the operators. We
randomly split the dataset into 80% for training, 10% for
early-stopping, and 10% for testing.

Baseline Models
Since we are working on the novel operator identification
task, there are no established baselines. We present two sim-
ple and intuitive baseline models to benchmark the perfor-
mance of DeSTrOI.

• Genetic Algorithm (GA). A natural predictor to use is to
directly perform genetic algorithm. We use the entire set
of 6 operators for each symbolic relationship and predict
based on whether the best-performing instance contains
a given operator. We use the GPLearn software package
that provides a sophisticated genetic algorithm for SR 1.
In addition to the low accuracy, GA has a few drawbacks
as a predictor: 1) It does not provide a confidence level for

k 2 3 5 10
add 0.43 0.42 0.42 0.42
mul 0.42 0.41 0.41 0.41
inv 0.43 0.39 0.39 0.39
sqrt 0.59 0.59 0.58 0.58
log 0.55 0.56 0.56 0.57
sin 0.56 0.56 0.56 0.58

Table 1: Class imbalance in our synthetic data set for differ-
ent k. Values are given in proportion of positive instances.

1Stephens, T. 2018. GPLearn: Genetic Programming in Python.
URL: https://github.com/trevorstephens/gplearn

Figure 4: DeSTrOI accuracy with and without the super-
resolution encoder. We also show percentage improvement.

the predictions. 2) GA is much more computationally ex-
pensive than parametric methods, especially in the testing
phase.

• Multi-Layer Perceptron (MLP). We can use an MLP
network to predict operator existence. We flatten the set of
(xi, yi) pairs for each symbolic relationship into a vector
of dimensionm×(k+1) and use it as the input. (m is the
number of data pairs.) In our experiment, we use 4 hidden
layers each with 2048 neurons. In addition, the model pre-
diction should be invariant under permutation of the input
(xi, yi) pairs. To account for this, we augment the data
by randomly shuffling the pairs 20 times. At testing time,
we average the predicted operator importance scores over
all the permutations. Note that this method is much more
computation and memory intensive than DeSTrOI.

The baseline performance for k = 2, 3 is shown in Table
2a. For higher k, these models are infeasible: GA takes too
long to converge (> 100 hours) and MLP requires too much
memory (> 100GB). Observe that both baselines yield in-
sufficient accuracies to be useful for real life applications.

DeSTrOI

The accuracy of our model on a held-out testing set is
shown in Table 2a. The area under curve (AUC) scores are
shown in Table 2b. DeSTrOI significantly outperforms the
baseline methods for all the operator types and number of
independent variables. On average, we obtain 91% accu-
racy and 0.96 AUC. Such a high performance suggests that
DeSTrOI is reliable for real scientific problems. Compara-
tively, sin and log predictors are the most accurate while
inv is the hardest to predict. The experiment also verifies
that our architecture is robust against image orientation and
rescaling (More details in Appendix).

We further verify our model by removing the encoder
component. In Figure 4, we compare the DeSTrOI accuracy
when using the super-resolution encoding vs. the naive en-
coding. Our super-resolution encoder gives a significant
contribution to the performance of our model, especially for
higher k (where the naive encoding is more prone to noise).
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k 2 3 5 10

Model GA MLP DeSTrOI GA MLP DeSTrOI DeSTrOI DeSTrOI(baseline) (baseline) (baseline) (baseline)
add 0.72 0.65 0.94 0.71 0.61 0.91 0.91 0.90
mul 0.73 0.66 0.90 0.71 0.57 0.89 0.88 0.86
inv 0.73 0.60 0.88 0.70 0.55 0.87 0.86 0.85
sqrt 0.78 0.77 0.91 0.79 0.76 0.89 0.91 0.86
log 0.80 0.65 0.96 0.77 0.60 0.95 0.95 0.93
sin 0.73 0.73 0.96 0.70 0.70 0.96 0.96 0.92
Average 0.75 0.68 0.93 0.73 0.63 0.91 0.91 0.89

(a) Accuracy
k 2 3 5 10

Model MLP DeSTrOI MLP DeSTrOI DeSTrOI DeSTrOI(baseline) (baseline)
add 0.71 0.97 0.58 0.96 0.96 0.96
mul 0.70 0.95 0.57 0.94 0.94 0.94
inv 0.61 0.92 0.65 0.92 0.89 0.91
sqrt 0.77 0.96 0.77 0.96 0.96 0.94
log 0.73 0.99 0.72 0.99 0.98 0.98
sin 0.77 0.99 0.68 0.98 0.99 0.97
Average 0.71 0.96 0.66 0.96 0.95 0.95

(b) Area Under Curve (AUC)

Table 2: Performance of our models for different operator and k. DeSTrOI significantly outperforms the baseline models. For
larger k (i.e. k = 5 and 10), the baseline models are computationally infeasible. In addition, GA baseline does not give a
probabilistic score so it does not yield an AUC.

Symbolic Regression (SR)
We now apply DeSTrOI to the overarching SR task. We em-
ploy the genetic algorithm for SR provided by the GPLearn
software. We run the evolution 1) with DeSTrOI (i.e., with
each operator probabilistically included based on its pre-
dicted importance) and 2) with all 6 operators as the base-
line. We use the same hyper parameter settings and mea-
sure the SR predictive ability (R2), discovery rate (percent-
age discovering the true formula) and result complexity (#
of internal nodes).

The result after 20 generations is shown in Figure 5. For
all k, DeSTrOI shows (statistically) significantly better per-
formance for all three metrics. That is, our method fits the
data more accurately and do so with a more succinct sym-
bolic expression. It also has a much better capability of dis-
covering the true formula. In addition, as shown in detail in
the Appendix, DeSTrOI consistently beats the baseline for
all number of generations.

Results for Real Data
We now seek to apply DeSTrOI to real problems in science
and engineering. Our experiments are summarized in Table
4. The formulas are selected to have different k and com-
binations of constituent operators. For all experiments, we
include the predicted operator importance value in Table 3.
We are able to give correct predictions for the majority of
cases, except for the two cells marked with asterisks.

We subsequently apply genetic algorithm as described

in the Methods section. Our DeSTrOI-priored algorithm is
compared to the baseline where we input all 6 operators.
Both algorithms are run for 20 generations with the same
hyper-parameters (where both are able to converge). We per-
form 100 independent trials for each formula. The compar-
ative performance is illustrated in Figure 7. (Detailed statis-
tics are included in the Appendix.) DeSTrOI outperforms
the vanilla genetic algorithm for all the metrics. In general,
DeSTrOI is able to find a more succinct formula that better
describes the data.

Additionally, we apply DeSTrOI to AI Feynman (Udrescu
and Tegmark 2020), a non-genetic state-of-the-art method.
Our model pre-selects the operators and prunes the search
tree for the AI Feynman algorithm. Besides Table 4, we also
use AF1, the example formula provided in the AI Feynman
publication (

√
(x2 − x1)2 + (x4 − x3)2). As shown in Fig-

ure 6, we significantly reduce its run time for all 5 formulas.
(Note that AI Feynman is a brute-force method, so we can-
not improve its accuracy. The accuracy scores are lower than
baseline genetic algorithm and included in the Appendix.)

Simple Harmonic Oscillator (SHO). SHO is a well-
studied phenomenon in classical (and quantum) mechanics.
It describes the motion of a massive particle in a quadratic
potential (e.g., a ball attached to a spring). We view the time
t and spring strength k as explanatory variables. We assign
the oscillation amplitude constant A = 2. The visual en-
coding of this relationship is shown in Figure 8a. Here we
use a trick and allow both k and t to be negative since De-
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Figure 5: Performance of DeSTrOI as applied to SR vs. baseline. The fittest tree instance at the 20th generation is selected. The
result is shown forR2, discovery rate, and complexity (number of internal nodes). The percentages show the improvement from
baseline. Error bars show ±1 standard error.

Experiment SHO IIG FSA TRE
add 0.00 0.14 1.00 0.78
multiply 1.00 1.00 1.00 1.00
inverse 0.00 0.63* 1.00* 0.99
square root 1.00 0.38 1.00 0.0
log 0.00 0.94 0.00 1.00
sin 1.00 0.30 0.08 0.01

Table 3: Predicted importance of the operators for our exper-
iments. The incorrect predictions are marked with asterisks.

Figure 6: Run time of AI Feynman with and without De-
STrOI . We also show the percentage improvement.

STrOI requires a region symmetric around the axes. Neg-
ative time can be achieved by a translation (and is inher-
ent for quantum SHO). For k, we replicate the data from
the positive half-plane. In practice, we can always do the
same for non-negative explanatory variables. Remarkably,
our method discovers the correct formula 73% of the time
whereas the baseline only does so 15% of the time.

Isothermal Ideal Gas (IIG). Ideal gas is a model for homo-
geneous gases. When the gas expands, it transfers heat to the
container. Physicists are especially interested in this process
under constant temperature (isothermal expansion). The en-
ergy transfer depends on temperature T and volume V . We
assign k = 1 and V0 = 3. The visual encoding is shown
in Figure 8b and we use the same trick to allow negative T
and V . Our method discovers the correct formula 24% of the
time whereas the baseline only does so 2% of the time.

Frustum Surface Area (FSA). (Conical) frustum is a ge-
ometric object obtained by removing the top of a circular
cone. Its lateral surface is a fraction of a ring and its area
is prescribed by top radius r, bottom radius R, and height
h. We project the data points onto the 3 orthogonal surfaces
and the encoding images are included in the appendix.

Tsiolkovsky Rocket Equation (TRE). TRE is a fundamen-
tal result in modern aerospace engineering. It predicts the fi-
nal velocity vf of an ideal rocket after it exhausts its propel-
lant. vi is the initial velocity; mi and mf are the initial and
final masses; g is the gravitational acceleration impeding the
rocket and t is the travel time. We project the data points onto
the
(
5
2

)
= 10 orthogonal surfaces and the encoding images

are included in the appendix. Two of the most representative
projections and their attention values are plotted in Figure
9. We can verify that our attention mechanism works prop-
erly. DeSTrOI assigns a large weight for inv to the image
on the left which involvesmf . The image on the right is less
informative and therefore little attention is assigned.

Conclusion and Future Work
For decades, researchers have tried to automate the discov-
ery of symbolic laws. In this paper, we identify the sym-
bolic operator identification problem as a core bottleneck for
classical SR. We present DeSTrOI, a computer-vision-based
deep learning architecture that encodes the data into images
and accurately identifies the underlying operators. As a pow-
erful prior, DeSTrOI significantly improves the performance
of SR for both synthetic data and real scientific problems.
From raw observation data, we are able to discover sym-
bolic laws that are more accurate and succinct. We also con-
verge on the true formula much more frequently. Note that
DeSTrOI can also serve as a prior for human. Our predicted
operator importance may inspire physicists and mathemati-
cians on how to proceed with searching for a symbolic law.

Recently, there are ongoing projects for SR using deep
generative models (Petersen 2019). Post and Vilar (2018)
have shown that a constrained vocabulary can give better
performance and beam search efficiency for natural lan-
guage generation. As a potential next step, we can use De-
STrOI to constrain the vocabulary for the generative models
for SR. Furthermore, we will apply DeSTrOI to open prob-
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Experiment Formula k Operators # of Constants Domain
SHO x = A sin(

√
kt) 2 {mul, sqrt, sin} 1 (Quantum) Mechanics

IIG δE = kT ln(V/V0) 2 {mul, inv,log} 2 Thermodynamics
FSA A = π(r +R)

√
(r −R)2 + h2 3 {add, mul, sqrt} 1 Geometry

TRE vf = vi ln(mi/mf )− gt 5 {add, mul,inv, log} 0 Aerospace Engineering

Table 4: Summary of our experiment formulas. We select a variety of equations with different k and combinations of operators.

Figure 7: Performance of DeSTrOI as applied to the experiments vs. baseline. The fittest tree instance at the 20th generation
is selected. The result is shown for R2, discovery rate, and complexity (number of internal nodes). The percentages show the
improvement from baseline. Error bars show ±1 standard error. (Discovery rate for the more complex FSA and TRE formulas
are all 0 and thus omitted.)

(a) SHO (b) IIG

Figure 8: Encodings for SHO and IIG. We take all explana-
tory variables from -10 to 10. (A = 2, k = 1, V0 = 3)

lems in science and engineering and potentially provide in-
teresting results for the scientific community.
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