
Sketch Generation with Drawing Process Guided by Vector Flow and Grayscale

Zhengyan Tong,1 Xuanhong Chen,1,2 Bingbing Ni,1,2* Xiaohang Wang 1

1 Shanghai Jiao Tong University
2 Huawei Hisilicon

{418004, chen19910528, nibingbing, xygz2014010003}@sjtu.edu.cn

Abstract

We propose a novel image-to-pencil translation method
that could not only generate high-quality pencil sketches
but also offer the drawing process. Existing pencil sketch
algorithms are based on texture rendering rather than the
direct imitation of strokes, making them unable to show
the drawing process but only a final result. To address
this challenge, we first establish a pencil stroke imitation
mechanism. Next, we develop a framework with three
branches to guide stroke drawing: the first branch guides the
direction of the strokes, the second branch determines the
shade of the strokes, and the third branch enhances the details
further. Under this framework’s guidance, we can produce a
pencil sketch by drawing one stroke every time. Our method
is fully interpretable. Comparison with existing pencil
drawing algorithms shows that our method is superior to
others in terms of texture quality, style, and user evaluation.
Our code and supplementary material are now available
at: https://github.com/TZYSJTU/Sketch-Generation-with-
Drawing-Process-Guided-by-Vector-Flow-and-Grayscale

1 Introduction
The pencil sketch is one kind of drawing with a highly realis-
tic style. It is not only a popular form of art creation but also
the essential basic of other art forms such as oil painting. To
draw a pencil sketch, artists should have accurate contour
configuration ability and superb shading drawing skills, re-
quiring long-term professional training. Therefore, there has
always been a strong demand for the pencil sketch rendering
algorithm.

The existing pencil drawing algorithms are mainly imple-
mented by Non-Photorealistic Rendering (NPR) (Rosin and
Collomosse 2012) and can be further divided into 3D model-
based sketching and 2D image-based sketching (Lu, Xu, and
Jia 2012). 3D models can provide the complete geometric
information of the objects, and the lighting condition in the
3D scene is fully controllable. Thus 3D model-based sketch-
ing can accurately grasp the spatial structure and render the
shading texture according to the light condition. However,
in most application scenarios, we can not get 3D models
but only 2D natural images, so there is a greater demand

*Corresponding author: Bingbing Ni.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for image-based sketch rendering algorithms. For 2D natu-
ral images, the geometric information is often incomplete,
and the light components are usually complicated and noisy,
making it hard to do sketch rendering. Generally, mathemat-
ical rendering algorithms can maintain the structures well,
control the rendering effect in a fine-grained manner, and
are often interpretable. In recent years, many deep learning
methods for image style transfer tasks have been developed.
Results of these methods usually have a stronger style than
those of procedural rendering algorithms. However, due to
the complexity of pencil drawing, neural methods do not
perform well at capturing pencil sketch texture (Li et al.
2019). Deep learning style translation usually suffers struc-
ture distortion and artifacts, which is a serious defect for the
pencil drawing task that requires reserving structures and
producing high-quality textures. Besides, neural networks’
parameter control mechanisms are usually high-level and are
difficult to explain.

Whether it is a procedural algorithm or a deep learning
neural style transferer, existing algorithms can only get the
final result without offering the drawing process. Actually,
there exists very limited research on auto-drawing with the
drawing process. Our algorithm implements image-to-pencil
with a drawing process for the first time, which significantly
enhances our algorithm’s novelty. As shown in Figure 1,
given an image (in the rightmost column), our algorithm can
produce a pencil sketch by drawing one stroke at a time (Fig-
ure 1 only shows the drawing process in stages, the whole
process can be found in the supplementary material). Our al-
gorithm could generate high-quality details, and the final re-
sult has a strong style. Besides, we can produce pencil draw-
ings with obviously different visual effects by adjusting the
strokes’ properties. Comparison with existing pencil draw-
ing algorithms shows that our method performs favorably in
terms of texture quality, style, and user evaluation.

Our work is inspired by the observation of real pencil
drawings, and our algorithm models the real artists’ draw-
ing techniques. Thus the interpretability of our method is
stronger than others. Since pencil drawing has many dif-
ferent drawing styles and artists use various drawing tools
(Dodson 1990), we only simulate the most popular sketch-
ing method. That is, drawing strokes with diverse direc-
tions, shades, lengths, and widths on a canvas to gradu-
ally form a picture. For the strokes’ direction, artists usu-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

609



2.59% 11.2% 21.6% 69.1% RGB Input

1.97% 8.84% 17.7% 67.8% 100%

100%

RGB Input

2.38% 8.93% 18.3% 66.8% 100% RGB Input

Figure 1: Given a natural image (in the rightmost column) as input, our algorithm can produce a pencil sketch with the process
by drawing one stroke every time. For the dog, the cat, and the girl, we draw 10390, 11529, and 16698 strokes. The percentage
in the lower right corner of each picture is the proportion of the number of strokes that have been drawn in this picture to the
number of strokes in the final result.

ally use the tangent direction of objects’ edges/contours to
guide the strokes’ direction; for the strokes’ shade, artists
usually adjust their pencil sketches’ contrast higher than real
light conditions to make their works more visually impact-
ful (Kelen et al. 1974; Hoffman 1989). We divide the pencil
sketching task into two steps. For the first step, we develop
a parameter-controlled pencil stroke generation mechanism
based on the pixel-scale statistical results of some real pen-
cil drawings. For the second step, we develop a framework
to guide strokes arranging on the canvas. Finally, we imple-
ment the pencil sketch auto-drawing technique.

In this work, our main contribution is that we propose a
novel image-to-pencil translation method that could gener-
ate high-quality results and offer the drawing process.

2 Related Work
2.1 Non-Photorealistic Rendering
There is a rich research history on the non-photorealistic tex-
ture rendering of pencil drawing. 3D models provide all the
geometric information and light conditions, thus convenient
for pencil drawing rendering. (Lake et al. 2000) presented
pencil sketching texture mapping technique and proposed
pencil shading rendering. (Lee, Kwon, and Lee 2006) de-
tected contours from 3D models and imitated human contour
drawing. For expression of shading, they mapped oriented
textures onto objects’ surface. (Praun et al. 2001) achieved
real-time hatching rendering over arbitrary complex surfaces
using 3D models. These 3D model-based methods usually
obtain satisfactory results. However, when the 3D structure
and light conditions are not available, these methods cannot
work.

2D image-based methods mainly include the following
typical algorithms. Sousa and Buchanan presented an ob-
servational model of blenders and kneaded eraser (Sousa

and Buchanan 1999b), and simulated artists and illustra-
tors’ graphite pencil rendering techniques in (Sousa and
Buchanan 1999a). (Chen et al. 2004) proposed a compos-
ite sketching approach for portrait drawing. (Durand et al.
2001) presented an interactive system that allowed users
to produce drawings in a variety of styles, including pen-
cil sketching. (Mao, Nagasaka, and Imamiya 2002) detected
the input image’s local structure orientation and adopted lin-
ear integral convolution (LIC) to render sketch texture. (Ya-
mamoto, Mo, and Imamiya 2004) divided the input image
into several layers of successive intensity ranges, then did
rendering for each layer and finally added them together.
(Li and Huang 2003) analyzed the image moment and tex-
ture of each region, using the captured feature geometric at-
tributes to implement pencil drawing rendering. Others pro-
posed some improved LIC-based method (Chen et al. 2008;
Gao et al. 2010; Kong, Sheng, and Zhang 2018; Chen et al.
2017). Pencil sketch rendering could also be implemented
by image analogies (Hertzmann et al. 2001). (Lu, Xu, and Jia
2012) proposed a novel two-stage system combining both
line and tone for pencil drawing production and obtained
significantly better effect than the above methods.

2.2 Drawing with Process
All previous works on the image-to-pencil task can only
generate a final result, without offering the drawing process.
Here we review some related Stroke-Based Rendering meth-
ods which have a process.

(Fu et al. 2011) proposed an algorithm that used human
pre-drawn line drawing as the input to derive a stroke or-
der and animate the sketching automatically, but this method
couldn’t well recover the input line drawing. (Ha and Eck
2018) presented a RNN-based method trained on a dataset
of human-drawn simple images to draw stick figures. Stro-

610



Figure 2: Three real pencil drawings. It can be seen from
the zoomed-in areas that the texture of pencil drawings is
actually some parallel strokes.

keNet (Zheng, Jiang, and Huang 2019) can generate a se-
quence of only a few strokes to write Chinese characters.
However, the strokes as well as their sequence are very
different from that of human writing. (Huang, Heng, and
Zhou 2019) adopted model-based Deep Deterministic Pol-
icy Gradient (DDPG) algorithm to train a neural agent to
learn to do oil painting with process. However, this method
cannot be directly applied to pencil drawing because pen-
cil strokes’ characteristics and fusion mode are distinctive
from the oil painting. The strokes of pencil drawing are lines
while the oil painting’ strokes are color blocks; the newly
drawn strokes cannot cover the old ones in pencil drawing
while the oil painting’s strokes can. Besides, lines’ sparsity
makes it hard to train pencil drawing neural agents. Deep
reinforcement learning (DRL) requires a massive amount of
parameters when training, so the network’s input size is very
limited. (Huang, Heng, and Zhou 2019)’s oil agent can only
handle 128 × 128 images, unable to generate fine-grained
details, while our algorithm has no restriction on the size of
the input image and could generate high-quality details.

3 Stroke Simulation
Lines are the fundamental elements of pencil sketching.
Since pencil drawing strokes are lines, we regard the “line”
and the “stroke” as the same concept in this article.

3.1 Observation and Statistic
The analysis of real pencil drawings can be performed glob-
ally or locally. The statistics of global features are mainly
on the histogram. (Lu, Xu, and Jia 2012) counted and fit-
ted the histogram distribution of several real pencil draw-
ings, then did histogram matching to transfer the tone of
input images. The analysis of local features is mainly for
texture. (Sousa and Buchanan 1999b) observed the blenders
and erasers’ absorptive and dispersive properties, and stud-
ied their interacting with lead material which deposited over
the drawing paper. (Hertzmann and Zorin 2000) analyzed
different hatching styles of pencil sketch. (Xie, Zhao, and
Xu 2007) studied the graphite’s distribution in pencil draw-
ings and made three assumptions about the local distribution
characteristics. Generally, local features are more important
than global features because local features can better reflect
the characteristics of pencil drawings, while the global his-
togram distribution of various artists’ works is often person-

alized. Our observation and analysis methods are entirely
based on local features.

Three real pencil drawings are shown in Figure 2. It can be
seen from the zoomed-in area that the texture is composed
of many parallel curves. This pattern is also prevalent and
evident in the rest region of these drawings. For any group
of parallel curves, lines within the group have a high degree
of similarity. That is, the distance between any two adjacent
lines, the shade, length, and width of each line are very close.
Therefore, we can perform statistical analysis on these paral-
lel lines. In order to facilitate statistics, we cut some patches
just containing one set of parallel curves from some real-
istic pencil drawings, and then rotate the patches until the
lines’ direction is nearly horizontal, as shown in Figure 3(a).
We notice that the lines are slightly curved and not strictly
parallel, which brings great difficulty to the statistics in the
horizontal direction, as shown by the red dotted line marked
with x in Figure 3(a). However, the lines’ curving does not
affect the gray values’ distribution in the vertical direction,
as shown by the red dotted line marked with y in Figure 3(a).
So we do statistics in the vertical direction. For the pixels on
the red dotted line marked with y in Figure 3(a), their gray
values are shown in Figure 3(b). We draw some red dotted
lines at all peak points in (b), it shows that the gray value’s
distribution curve between any two adjacent peak points is
close to the letter V, as shown in Figure 3(c). In fact, each
“V” curve in Figure 3(b) corresponds to a stroke in Figure
3(a). The same statistics are performed on all the columns of
pixels. Suppose there are n columns, then each stroke corre-
sponds to n “V”. For the n “V” corresponding to a particular
stroke, the gray value of pixels at the same positions (the
yellow points in Figure 3(c)) can be assumed to be indepen-
dent and identically distributed. Thus, the gray value’s mean
and variance of each pixel in each “V” can be calculated.

y

x

y y

W

G R

X

Y

𝑥
𝛿𝑦

(a) Real pencil (c) “V” model(b) Curve (d) Shifting

Figure 3: (a) is a patch cut from a real pencil drawing; (b)
shows the gray value of the pixels on the red dotted line
marked with y in (a); (c) is the fitting of the gray value’s pe-
riodic change in (b). (d) is the illustration of stroke bending.

We use the following method for fitting. We define two
variables to determine a “V” curve: width W and the mean
value G of the central pixel’s gray value. As shown in Figure
3(c), W represents the pixel amount of the “V” curve. The
red dot indicates the central pixel of the “V” curve. G is the
mean value of the central pixel’s gray value. Assume a pixel
on this curve is d pixels away from the central red pixel,
then the gray value’s mean and variance of this pixel can be
calculated by the following equations:

mean(d) = G+ (255−G)× 2d/W − 1 (1)

variance(d) = (255−G)× cos (πd/W − 1) (2)

611



Now suppose we can straighten the lines in Figure 3(a)
in the horizontal direction, and assuming the length of the
line is L, then these lines can be represented by a gray value
matrix with W rows and L columns. For the pixels in one
specific row, their gray value can be considered to be inde-
pendent and identically Gaussian distributed. Now we de-
fine a matrix F with the shape of (W, 2) to record the gray
value’s distribution of a line. Element (w, 1) and (w, 2) in F
indicates the gray value’s mean and variance of all the pixels
in row w in the line. As long as G and W are specified, the
distribution matrix F of the line can be calculated.

3.2 Stroke Generation
We first simulate a straight line and then bend it in the verti-
cal direction to get a more natural effect. To draw a straight
line, we need to specify three parameters: central pixel’s
gray value mean G, line width W, and line length L. Firstly,
use G and W to calculate the distribution matrix F of this
line. Then for every row, the gray value of each pixel is ran-
domly generated according to F. As shown in Figure 4(a),
We have drawn some lines with the width W = 7 pixels
but with different G. These straight lines look too rigid, so
we adjust their shape further. By observing realistic pencil

(a) Straight (b) Sharp (c) Curved (d) Real Pencil

Figure 4: Stroke generation steps

drawing strokes, as shown in Figure 4(d), we found that the
head/tail of the strokes are thinner and lighter than the mid-
dle part, which is because when the pencil tip just touches
the paper’s surface or when it is about to leave, the pres-
sure of the pencil tip on the paper’s surface is less than when
drawing the middle part of the line. Lines are not entirely
straight but are slightly curved is because artists draw lines
by swinging their wrists, so the movement of the pencil tip
on paper is essentially a circular motion with a large radius.
We bend the previously generated straight lines twice to
achieve these effects. For the first time of bending, as shown
in Figure 3(d), the yellow dots on the X-axis indicate the
pixels in a particular row of the line. These pixels will be
shifted to the blue circle. Use the midpoint of the line as the
origin to establish a coordinate system, pixels with different
abscissas on the line will have different degrees of deviation
in the Y direction. Assuming the blue circle radius is R, pix-
els with abscissa x will be shifted by δy(x) pixels in the Y
direction. The radius R and offset δy(x) can be calculated as
R = L2

4W and δy(x) = x2

2R . Since δy(x) is usually a decimal,
we perform linear interpolation in the Y direction to achieve
this operation. After bending, some pixels will exceed the
matrix with W rows and L columns. For these pixels out of
the matrix, we directly discard them. For the blank part of
the matrix, we fill it with pure white pixels. Now we have
the curves as shown in 4(b). The purpose of the first bending
operation is to make the head and tail of the lines sharp. The

𝑸

G

I R

T

𝜷𝟏 𝜷𝟑𝜷𝟐 𝜷𝒏

…

Stroke drawing

A

Detail enhancement

𝜶𝟏 𝜶𝟑𝜶𝟐 𝜶𝒏

…

Area division

ETF

Figure 5: Schematic illustration of our algorithm. I is the
input. ETF is the visualization of edge tangent flow vector
field (Kang, Lee, and Chui 2007). {α1, α2, . . . , αn} are the
area divisions of the input according to the direction of ETF
vectors. Q is the quantization result of I. {β1, β2, . . . , βn} are
the stroke drawing results of each area. A is the aggregation
of {β1, β2, . . . , βn}. G is the gradient map of I. T is the
edge map generated by G. R is the final result obtained by
multiplying A and T.

second time of bending is almost the same as the first time,
but we preserve those pixels out of the matrix. The purpose
of the second bending is to increase the curvature further.
Now we have the curves as shown in 4(c). It is worth noting
that these curves are essentially still straight lines, only look-
ing more natural than straight lines. We model the strokes as
such straight lines rather than arbitrarily shaped curves is be-
cause, on the one hand, the real pencil strokes are mostly like
this, and on the other hand, the straight lines are convenient
for our subsequent work.

4 Guided Stroke Drawing
Now we introduce how to do sketching by drawing one
stroke every time on the canvas. To determine a stroke, we
need to know the line’s width W, length L, central pixel’s
gray value mean G, starting point’s coordinates, and this
line’s direction. For line width W, now we specify the width
of all strokes as a fixed value (we will discuss the influence
of line width W in Section 4.5 User Control). We will utilize
the local characteristics of the input image to determine the
other parameters.

4.1 Grayscale Guidance
To reduce the difficulty of the task, in this section, we do
not consider how to determine the direction of the strokes
temporarily, but only show how to draw strokes in a fixed
direction. Figure 6(a) is the result of drawing strokes only in
the horizontal direction. In the following, we will introduce
how to draw it.

We first adjust the histogram distribution of the input gray
image to improve its hue. We use contrast limited adaptive
histogram equalization (CLAHE) (Zuiderveld 1994) to en-
hance the contrast of the input. Next, we uniformly quantify
the image into several gray levels. We denote their gray val-
ues as {G1, G2, ..., Gn}. These values will be used as the

612



(a) Horizontal (b) ETF (c) w/o extension (d) w/ extension (e) Edge map (f) Output (g) Rough

Figure 6: Some images used for algorithm introduction. (a) is the result of drawing lines only in the horizontal direction; (b)
is the visualization of edge tangent flow vector field (Kang, Lee, and Chui 2007); (c) and (d) are the results of drawing lines
without/with extension respectively; (e) is the edge map obtained by (Lu, Xu, and Jia 2012); (f) is the drawing result of 5 pixel
wide lines while lines in (g) are 9 pixel wide.

strokes’ central pixel gray value mean G. As shown in Fig-
ure 5, I is the input and Q is the result after quantization.
Then we use Q to search and determine the strokes’ param-
eters by scanning in the horizontal direction.

Take the first row of the pixels in Q as an example. Search
out all the intervals in the first row where the pixels’ gray
value is less than or equal to G1. Use the starting point and
length of these intervals as the starting point and length of
the strokes to be drawn; use G1 as the strokes’ central pixel
gray value mean G. Then we can draw several strokes in the
horizontal direction (width W is specified in advance). Here
we define a new random variable D ∼ N(W, 1), which is
used to generate the lines’ pixel distance in the vertical di-
rection. We have searched and drawn strokes in the first row.
Every next time we move down D rows in the vertical di-
rection and repeat the same operation as the first row un-
til reaching the bottom of the quantization image Q. In this
way, we could draw all the strokes with central pixel gray
value mean G1. Then we draw strokes for {G2, ..., Gn}
in the same way. In this process, different strokes’ cover-
age regions will overlap. The gray value of the pixels in the
overlapped region is determined by the minimum (darkest).
Now we can get the drawing result shown in Figure 6(a). Al-
though we only introduce the method of drawing strokes in
the horizontal direction, different directions are equivalent:
we can rotate the input image by an angle clockwise before
drawing strokes in the horizontal direction. After the draw-
ing is done, we rotate it back counterclockwise. In this way,
we can draw strokes in every direction.

4.2 Direction Guidance
We have introduced how to draw strokes in a fixed direction.
Now suppose we can divide the picture into several areas.
Only strokes in the same area have the same direction. Then
we can use the method in Section 4.1 Grayscale Guidance to
draw strokes for every area according to the area division.

By observing real pencil drawings, it is easy to find the di-
rection of strokes is usually along the edges’ tangent (Kelen
et al. 1974). Therefore, we hope to use the edges of objects
to guide the direction of the strokes nearby. However, it is
difficult to predict the structure of an object from a 2D im-
age. Actually, we do not need accurate predictions but only

an estimation. We could use the input image’s gradient infor-
mation to do this estimation because gradient and edges are
often closely related. Under the natural light condition, the
change of light’s intensity at objects’ edges is often more ap-
parent than in flat areas. Therefore, the gradient vector field
could offer suggestions for determining the direction of the
strokes. We use the edge tangent flow (ETF) proposed by
(Kang, Lee, and Chui 2007) to estimate the strokes’ direc-
tion for each pixel. The constructing of ETF is as follows:
First, calculate the modulus and direction of the gradient
vector for each pixel. Then rotate the directions of these vec-
tors counterclockwise by 90 degrees. Adjust the vectors’ di-
rection iteratively so that the direction of the vectors with
small modulus tends to the direction of the vectors with
larger modulus nearby. Finally, the direction of all the vec-
tors will be roughly parallel to the tangent of the edges. The
visualization of the edge tangent flow vector field is shown
in Figure 6(b). The small red arrows point to the direction of
the ETF vectors.

Now we could divide the input image into several areas
according to the ETF. We uniformly quantify the direction
0 ∼ 2π into n values. Vectors with a phase difference of π
are regarded as the same direction. After quantifying the di-
rection, pixels with the same direction are divided into one
area. As shown in the “Area division” box in Figure 5, {α1,
α2, . . . , αn} indicate the area divisions (pixels belong to
a certain area are white, while the others are black). Af-
ter drawing strokes with different directions for each area
we can get n results, indicated by {β1, β2, . . . , βn} in the
“Stroke drawing” box in Figure 5.

4.3 Area Merging and Detail Enhancement
Now we aggregate {β1, β2, . . . , βn} into one picture, as
shown in Figure 6(c). There are obvious defects at the
boundaries of different areas. Besides, the area division will
cause a large number of very short strokes, which look like
noise points. These two problems are solved by extending
the head and tail of all strokes by 2W pixels (W is the
strokes’ width), as shown in Figure 6(d). A in Figure 5 indi-
cates the aggregation result of strokes in different directions,
which could be obtained as this equation:

A = minimum(β1, β2, . . . , βn) (3)

613



Now the strokes in different directions merge well and ap-
pear more continuous. However, extending the strokes also
causes loss of detail clarity. For example, the lady’s teeth
and eyes in Figure 6(d) are very unclear. Therefore, we need
to enhance the details of the sketch. As shown in Figure 5,
G is the gradient map of the input image. T is the edge map
obtained by G. There are countless algorithms for generat-
ing the edge map from the gradient map. Here we adopt the
linear convolution method of (Lu, Xu, and Jia 2012) because
the edge map obtained by his method looks more like the re-
sult of a pencil drawing than other algorithms, as shown in
Figure 6(e).

Finally, we multiply the edge map T and the drawing re-
sult A to get the final output R, expressed as R = A · T . The
final output R is shown in Figure 6(f).

4.4 Process Reconstruction
The strokes’ search method has been introduced: we first
draw strokes in different directions for each area and then
integrate them into the final output, which seems odd. How-
ever, due to all the strokes’ parameters being determined and
recordable when searching for, we can rearrange the strokes’
drawing sequence in a more realistic and meaningful order.
We call this “Process Reconstruction”. When artists draw
sketches, they usually draw the outlines first (which are of-
ten long or dark lines), and then the details (these lines are
often short and not very dark). To imitate this, we use the
index S to measure whether each line is more likely to be an
outline or a detail:

S = (255−G)×
∑

i∈D
Ti (4)

where G is the stroke’s central pixel gray value mean, D is
the set of pixels where the stroke covers, Ti indicates the
absolute value of gradient at pixel i. The larger the S, the
greater the possibility that the stroke to be an outline. So we
reconstruct the strokes’ drawing process according to S in
descending order. Three examples are shown in Figure 1. It
can be seen that when we only draw about 20% of the total
strokes, we can almost present the drawn objects. The whole
drawing process (video demo) and more interesting results
can be found in the supplementary material.

4.5 User Control
Fineness Our pencil drawing’s fineness is controlled by
the strokes’ width and the number of quantization order. Our
method of searching strokes is essentially doing sampling,
and the width W of the strokes is the sampling interval. The
wider the stroke, the lower the sampling frequency. There-
fore, the wider the strokes, the rougher the pencil drawing
will be. Figure 6(g) is the result of W = 9 while W = 5 in
Figure 6(f). The quantization order’s influence is the same as
the general case: the larger the quantization order is, the less
obvious the block effect is. Usually, we fix W to be 5 pixels
to get finer details. We fix the quantization order of direc-
tion to be 10 because too few directions will make the tex-
ture fluency worse, but too many directions will not improve
the visual experience. The quantization order of gray level
could be chosen from 8-16 according to the input. Inputs

(a) input (b) Mao et al. (c) ours

(e) Lu et al. (f) ours

(h) Li et al.  𝐿1 + 𝑆2 (i) ours(g) input

(d) input

Figure 7: Comparison with several existing algorithms

with more low-frequency components require more quanti-
zation orders. More detailed explanation of the hyperparam-
eters’ influence on the drawing result could be found in the
supplementary material.

Color space conversion All of the above work is per-
formed on the gray image, and only need to do color space
conversion to achieve coloring. We convert the original im-
age to the YUV color space, replace the Y channel with the
gray output, and then transfer back to RGB color space to
obtain a colored pencil drawing. This coloring method is the
same as (Lu, Xu, and Jia 2012). The second column from
the right in Figure 1 shows our RGB result.

5 Experimental Results
In this section, we compare our results with several represen-
tative methods to prove the effectiveness of our algorithm.
The pictures being compared are all from the original paper.
Due to the page limit, we only compared with three meth-
ods in this article. More comparisons and comparisons with
more methods (especially neural methods) can be found in
the supplementary material.

Firstly, we compare our proposed method with a classic
LIC-based method. In the first row of Figure 7, (a) is the in-
put, (b) is the result of (Mao, Nagasaka, and Imamiya 2002),
(c) is our result. Since LIC image is obtained by low-pass
filtering a white noise input image, (b) introduces too much
noise on the original image and looks dirty. The texture di-
rection of (b) is very dull, with only three directions (30◦,
90◦, 135◦), and the change of texture direction has nothing
to do with semantic information. In the zoomed-in area (red
border), the sea’s texture direction in (b) is 135◦while (c)’s
is 0◦, which is more in line with the texture of sea ripples.

614



Group Evaluation Score (Average)
[1] [2] [3] [4]

1st

Stroke/Texture 66.4 52.8 73.1 88.6
Tone/Contrast 78.1 72.6 84.5 87.7
Stereoscopy 54.3 68.9 80.4 84.2
Authenticity 60.7 65.3 83.1 95.3

Overall 68.5 74.1 83.2 92.7
2nd Overall 72.0 80.4 84.2 87.3

Table 1: People in the 1st group were asked to rate the re-
sult in terms of Stroke/Texture, Tone/Contrast, Stereoscopy,
Authenticity, and Overall Perception, while the 2nd group
only need to rate the last term. [1], [2], [3], [4] represent the
methods of (Mao, Nagasaka, and Imamiya 2002), (Lu, Xu,
and Jia 2012), (Li et al. 2019), and ours respectively. It can
be seen that our method has the highest score in the opinions
of both group of people.

In the zoomed-in area (blue border), the texture direction
of (b) is rigidly fixed at 30◦while (c)’s texture looks very
fluent. (c) well expresses the feeling of clouds floating in
the wind, and the overall visual effect is much cleaner and
clearer than (b). The comparison shows that our method’s
result performs better in terms of aesthetic perception and is
closer to the artists’ technique.

Since we use (Lu, Xu, and Jia 2012)’s method to extract
edges and enhance details, we make a comparison with (Lu,
Xu, and Jia 2012) in the second row of Figure 7. (Lu, Xu,
and Jia 2012)’s method can well depict the input’s contours
and edges, but their texture looks too smooth, more like
adding a little noise to the gray image. Besides, (Lu, Xu, and
Jia 2012)’s method uses histogram matching to fix the pen-
cil drawing’s tone, making many areas appear too pale, such
as the girls’ arms and the baby’s head in (e), with only con-
tours but no texture. In our result (f), the girls’ arm and facial
skin’s texture direction is highly consistent with the actual
structure of the human muscles, which is very aesthetic and
vivid. The background in our result (f) has a strong style,
while (e) lacks texture, very close to a gray image.

Now we compare with (Li et al. 2019), which is state of
the art among neural methods. As shown in the third row
of Figure 7, (g) is the input images, (h) is the result of (Li
et al. 2019). Li et al.’s method can produce different kinds
of style combinations. For example, L1+S2 means using the
first type of outline and the second type of shading. So we
just chose one of their style combinations that archives rela-
tively good effects for comparison. Observe (h), it is not dif-
ficult to find apparent artifacts along the edges and borders,
such as the girl’s shoulder in the zoomed-in area (blue bor-
der). These artifacts deteriorate the fineness of their pencil
drawing. (i) is our result, our method can preserve objects’
contours clearly and portray tiny details. In terms of texture,
it can be seen from the zoomed-in area (red border) that (h)’s
texture cannot establish a direct connection with semantics
(folds of clothes), and the texture of (h) can only reflect the
shade of the input but not the input’s structure. Our method
displays the shade and fold of the cloth well at the same
time.

Group See Drawing Process User Preference
[1] [2] [3] [4]

1st Before 3 14 25 58
After 2 9 12 77

2nd Before 2 19 27 52
After 0 8 11 81

Table 2: User Preference indicates how many people voted
for each algorithm. [1], [2], [3], [4] represent the methods
of (Mao, Nagasaka, and Imamiya 2002), (Lu, Xu, and Jia
2012), (Li et al. 2019), and ours respectively.

6 User Study

We investigated the preferences of two groups of people
(100 people in each group) to different pencil drawing al-
gorithms. People in the first group (including ten recognized
artists in our city and ninety professors/lecturers/graduates
in painting-related majors from several universities) have re-
ceived professional training in painting, while those in the
second group do not. We gave ten sets of pictures to every
participant. Every set of pictures included an input and the
corresponding result of four pencil drawing algorithms. Par-
ticipants didn’t know the drawing was from which method
and the ordering of four methods were shuffled in every set.
For the first group of participants, we provided them with
a series of subjective evaluation indicators and asked them
to rate these indicators for each result; for the second group,
we only asked them to rate every result based on their overall
perception. Score range was limited in 0 ∼ 100 and partici-
pants were asked to give distinguished scores. The feedback
results are shown in Table 1.

After completing the above survey, we used A, B, C, and
D to anonymously represent these four algorithms and let
each participant choose their favorite algorithm. We counted
the number of people who voted for each algorithm. Then
we showed our results’ drawing process and informed par-
ticipants that the other three methods couldn’t generate pro-
cess. Now we let the participants choose their favorite algo-
rithm again. The survey results are shown in Table 2: most
participants chose our method as their favorite; after watch-
ing our drawing process, more people voted for our method.

7 Conclusions

In our work, we statistically analyze and explain the tex-
ture of real pencil drawings and propose a controllable pen-
cil stroke generation mechanism. On this basis, we imple-
ment an image-to-pencil automatic drawing algorithm: we
use the edge tangent flow vector field to guide the direction
of the strokes; use the gray image to determine the location,
length, and shade of the strokes; use the edge map for de-
tail enhancement. Our method is a mathematical procedural
algorithm with good interpretability. Comparison with other
pencil drawing algorithms shows our method outperforms in
terms of texture quality, style, and user evaluation. Our most
prominent advantage is that we have the drawing process.

615



Acknowledgments
This work was supported by National Science Foundation of
China (U20B2072, 61976137, U1611461).

References
Chen, D.; Yuan, L.; Liao, J.; Yu, N.; and Hua, G. 2017.
StyleBank: An Explicit Representation for Neural Image
Style Transfer. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2770–2779.
Chen, H.; Liu, Z.; Rose, C.; Xu, Y.; Shum, H.-Y.; and
Salesin, D. 2004. Example-based composite sketching of
human portraits. In Proceedings of the 3rd international
symposium on Non-photorealistic animation and rendering,
95–153.
Chen, Z.; Zhou, J.; Gao, X.; Li, L.; and Liu, J. 2008. A novel
method for pencil drawing generation in non-photo-realistic
rendering. In Pacific-rim conference on multimedia, 931–
934. Springer.
Dodson, B. 1990. Keys to drawing. Penguin.
Durand, F.; Ostromoukhov, V.; Miller, M.; Duranleau, F.;
and Dorsey, J. 2001. Decoupling strokes and high-level
attributes for interactive traditional drawing. In Rendering
Techniques 2001, 71–82. Springer.
Fu, H.; Zhou, S.; Liu, L.; and Mitra, N. J. 2011. Animated
construction of line drawings. In Proceedings of the 2011
SIGGRAPH Asia Conference, 1–10.
Gao, X.; Zhou, J.; Chen, Z.; and Chen, Y. 2010. Automatic
Generation of Pencil Sketch for 2D Images. In ICASSP,
1018–1021.
Ha, D.; and Eck, D. 2018. A Neural Representation of
Sketch Drawings. In International Conference on Learning
Representations.
Hertzmann, A.; Jacobs, C. E.; Oliver, N.; Curless, B.; and
Salesin, D. H. 2001. Image analogies. In Proceedings of the
28th annual conference on Computer graphics and interac-
tive techniques, 327–340.
Hertzmann, A.; and Zorin, D. 2000. Illustrating smooth
surfaces. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, 517–526.
Hoffman, H. S. 1989. Vision and the art of drawing.
Prentice-Hall, Inc.
Huang, Z.; Heng, W.; and Zhou, S. 2019. Learning to paint
with model-based deep reinforcement learning. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, 8709–8718.
Kang, H.; Lee, S.; and Chui, C. K. 2007. Coherent line draw-
ing. In Proceedings of the 5th international symposium on
Non-photorealistic animation and rendering, 43–50.
Kelen, E.; et al. 1974. Leonardo da Vinci’s advice to artists.
Running Press.
Kong, Q.; Sheng, Y.; and Zhang, G. 2018. Hybrid noise
for LIC-based pencil hatching simulation. In 2018 IEEE
International Conference on Multimedia and Expo (ICME),
1–6. IEEE.

Lake, A.; Marshall, C.; Harris, M.; and Blackstein, M. 2000.
Stylized rendering techniques for scalable real-time 3d ani-
mation. In Proceedings of the 1st international symposium
on Non-photorealistic animation and rendering, 13–20.
Lee, H.; Kwon, S.; and Lee, S. 2006. Real-time pencil ren-
dering. In Proceedings of the 4th international symposium
on Non-photorealistic animation and rendering, 37–45.
Li, N.; and Huang, Z. 2003. A feature-based pencil draw-
ing method. In Proceedings of the 1st international con-
ference on Computer graphics and interactive techniques in
Australasia and South East Asia, 135–ff.
Li, Y.; Fang, C.; Hertzmann, A.; Shechtman, E.; and Yang,
M.-H. 2019. Im2pencil: Controllable pencil illustration from
photographs. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 1525–1534.
Lu, C.; Xu, L.; and Jia, J. 2012. Combining sketch and tone
for pencil drawing production. In Proceedings of the sympo-
sium on non-photorealistic animation and rendering, 65–73.
Citeseer.
Mao, X.; Nagasaka, Y.; and Imamiya, A. 2002. Auto-
matic generation of pencil drawing using LIC. In ACM
SIGGRAPH 2002 conference abstracts and applications on,
149–149.
Praun, E.; Hoppe, H.; Webb, M.; and Finkelstein, A. 2001.
Real-time hatching. In Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques,
581.
Rosin, P.; and Collomosse, J. 2012. Image and video-based
artistic stylisation, volume 42. Springer Science & Business
Media.
Sousa, M. C.; and Buchanan, J. W. 1999a. Computer-
generated graphite pencil rendering of 3D polygonal mod-
els. In Computer Graphics Forum, volume 18, 195–208.
Wiley Online Library.
Sousa, M. C.; and Buchanan, J. W. 1999b. Observational
model of blenders and erasers in computer-generated pencil
rendering. In Graphics Interface, volume 99, 157–166.
Xie, D.-e.; Zhao, Y.; and Xu, D. 2007. An efficient approach
for generating pencil filter and its implementation on GPU.
In 2007 10th IEEE International Conference on Computer-
Aided Design and Computer Graphics, 185–190. IEEE.
Yamamoto, S.; Mo, X.; and Imamiya, A. 2004. Enhanced
LIC pencil filter. In Proceedings. International Conference
on Computer Graphics, Imaging and Visualization, 2004.
CGIV 2004., 251–256. IEEE.
Zheng, N.; Jiang, Y.; and Huang, D. 2019. StrokeNet: A
Neural Painting Environment. In International Conference
on Learning Representations.
Zuiderveld, K. 1994. Contrast limited adaptive histogram
equalization. Graphics gems 474–485.

616


